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The constituent quark number scaling of elliptic flow is studied in a nonequilibrium hadronization and freeze-out
model with rapid dynamical transition from ideal, deconfined, and chirally symmetric quark-gluon plasma, to
final noninteracting hadrons. In this transition a bag model of constituent quarks is considered, where the quarks
gain constituent quark mass while the background bag field breaks up and vanishes. The constituent quarks then
recombine into simplified hadron states, while chemical, thermal, and flow equilibrium break down one after the
other. In this scenario the resulting temperatures and flow velocities of baryons and mesons are different. Using
a simplified few source model of the elliptic flow, we are able to reproduce the constituent quark number scaling,
with assumptions on the details of the nonequilibrium processes.
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I. INTRODUCTION

It was observed that the momentum distribution of particles
created in heavy-ion collisions is not azimuthally symmetric in
the plane perpendicular to the beam direction. This dominant
asymmetry, the elliptic flow, is the result of several factors, the
main one being the anisotropy of the initial configuration after
the collision due to the nonzero impact parameter. The elliptic
flow is typically characterized using the second coefficient
of the Fourier expansion of the momentum distribution, v2.
It was found in experiments [1] that the v2 parameter as a
function of the transverse momentum, pt, scales with the
number of constituent quarks, ncq, in a hadron; that is, if
the v2(pt) curves are rescaled according to the constituent
quark number of the considered hadron species, and v2/ncq is
plotted as a function of pt/ncq for each type of hadron with
mass mh, the curves will coincide. Later results showed that
the scaling is more precise if v2 is plotted as a function of the
transverse kinetic energy, Et =

√
m2

h + pt
2 − mh, instead of

the transverse momentum pt.
This experimentally found scaling law is remarkably

simple, and indicates that the elliptic flow develops before the
quarks recombine into hadrons. Therefore, understanding the
factors influencing the measurable v2 can provide information
about the state of the quark-gluon plasma (QGP).

The fluid dynamical (FD) model describes the dynamical
development of the quark-gluon plasma from the (already
thermalized) initial state until the breakdown of the equilib-
rium, where first the chemical equilibrium among quarks and
antiquarks ceases. Initially the plasma has only two flavors, u
and d, and thus the FD model assumes two flavors. However,
the flavor equilibration in the plasma is a rapid process with
a time scale of the order of 1 fm/c, so by the end of the FD
development a flavor equilibrium among three flavors, u, d,
and s, is reached. Our usual FD evolution does not take into
account this chemical change of flavors with an additional
rate equation; instead this process is taken into account at

the final stage of the FD development, when the subsequent
EoS is already assumed to have three equilibrated flavors.
Energy and momentum conservation and the requirement of
nondecreasing entropy is enforced in the transition, from the
ideal quark-gluon plasma state to the state where quark and
antiquark numbers are frozen out. As a consequence, the mass
change of the quarks starts in the initial QGP with two flavors,
and we use this approximation to estimate the final boundary
where the initial FD stage of the evolution ends, with light
quark masses.

We consider a model of hadronization and investigate the
constituent quark number scaling (QNS) of the v2 parameter.
In this model, a gas of quarks and antiquarks expands in a
background field represented by the bag constant B, which
depends on density and temperature of the expanding fireball.
Initially, this B field includes the energy of the deconfined
perturbative vacuum and of the gluon fields. As the system
expands the deconfinement starts and the average B decreases.
Furthermore, as the chiral symmetry breaking starts, the quarks
gain mass. The quark mass is calculated as a function of
the temperature and density of the matter. The quark gas
expands rapidly while the quark mass increases. This process
can be considered as a simple representation of the breaking
chiral symmetry and deconfinement in a dynamical transition
crossing the Quarkyonic phase [2].

The point during the expansion when the quarks recombine
into hadrons is determined from the condition that the average
hadron energy is equivalent to (1.0–1.1) GeV, as found from
the systematics of experimental data [3]. At recombination,
the thermal and flow equilibrium between particles is broken.

Finally, the v2 parameter is determined using simple two-
and three-source models of the elliptic flow and the particle
distributions obtained from the hadronization model.

The paper is organized as follows: In Sec. II the density and
temperature dependence of constituent quark mass is consid-
ered. The energy, entropy, momentum, and chemical potential
of each individual source and of the total source is given in
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Sec. III. In Sec. IV we describe the used nonequilibrium model
of rapid hadronization. Details of calculation of elliptic flow
parameter v2 are presented in Sec. V. A summary is given in
Sec. VI.

II. CONSTITUENT QUARK MASS

To present our arguments we consider the Nambu-Jona-
Lasinio model (NJL) which is motivated by quantum chromo-
dynamics (QCD) and is basically a quark-quark interaction
theory of quark fields qf with flavor f ; a comprehensive
overview about NJL was presented in Ref. [4]. The extended
NJL model contains three types of quark-quark interaction and
is given by the Lagrangian [7]

LNJL =
∑

f =u,d,s

qf (i γ µ∂µ − mf )qf

+ GS

2

∑
f =u,d,s

8∑
a=0

[(qf λaqf )2 + (qf i γ5 λaqf )2]

− GV

2

∑
f =u,d,s

8∑
a=0

[(qf γµ λaqf )2 + (qf γ5 γµ λaqf )2]

+ GD

2
[det(qf (1 + γ5)qf ) + det(qf (1 − γ5)qf )],

(1)

where qf = q
†
f γ0, γ µ are the Dirac matrices, mf is the

current quark mass of flavor f , GS is the coupling constant of
the scalar-current interaction, GV is the coupling constant of
the vector-current interaction terms, and GD is the coupling
constant of the determinantal flavor-mixing term (determinant
in flavor space). The Gell-Mann matrices are λa where
a = 0, 1, 2, . . . , 8 with λ0 = √

2/3 I , where I is the unit
matrix. This Lagrangian is used to derive the relation between
constituent quark masses and chiral condensates, both for
vacuum and for finite densities and temperatures.

A. Constituent quark mass in vacuum

First, we consider the constituent quark mass in vacuum.
For three flavors, SUf (3), the constituent quark masses in
vacuum M0

f = Mf (nB = 0, T = 0) where f = u, d, s, are
related to the chiral condensates in vacuum as follows [5–7]:

M0
u = mu − 2 GS 〈uu〉0 − GD 〈dd〉0 〈ss〉0, (2)

M0
d = md − 2 GS 〈dd〉0 − GD 〈uu〉0 〈ss〉0, (3)

M0
s = ms − 2 GS 〈ss〉0 − GD 〈uu〉0 〈dd〉0. (4)

Here, u = u† γ0 and so on, mu = 5 MeV,md = 9 MeV,
and ms = 130 MeV are the current quark masses of the
u-quark, d-quark, and s-quark, respectively. Typical values of
the chiral condensates in vacuum are given by, for example,
[8,10] and references therein:

〈qq〉0 = 〈uu〉0 = 〈dd〉0 = −(0.225 GeV)3, (5)

〈ss〉0 = 0.7 〈uu〉0. (6)

Typical values for the coupling constants are GS = (15–
20) GeV−2, GV � 0.5 GS , and GD = − (160–240) GeV−5

[4,6,7]. We note that in relations (2)–(4) the magnitude of
terms proportional to GD are small compared to the terms
proportional to GS .

B. Constituent quark mass in a hot and dense medium

Let us now consider the case of quarks in a hot and dense
medium, at early times of FD evolution. At this stage we
assume to have two flavors. Then, the relations (2)–(4) for two
flavors SUf (2) are reduced to

Mf = mf − 2 GS 〈qq〉nB,T . (7)

The suffix nB, T at chiral condensate denotes the
Gibbs average over eigenstates of the effective theory, see
Refs. [9,11–13] and references therein. Note that for isospin-
symmetric matter there is no difference in the density and
temperature dependence of u-quark and d-quark condensate,
that means 〈qq〉nB,T ≡ 〈uu〉nB,T = 〈dd〉nB,T . In the limit of
high densities and temperatures the constituent quark mass,
Mf , approaches the current quark mass, mf . The well-known
model-independent linear density dependence of the chiral
condensate has widely been applied in many investigations
(e.g., [7,8,12,15]). The temperature dependence of the chiral
condensate was determined up to order O(T 8) in Ref. [16].
To determine the density and temperature dependence of the
chiral condensate we follow the arguments of Refs. [7,12,14],
where the first leading terms in the low-density low-
temperature expansion have been obtained:

〈qq〉nB,T = 〈qq〉0

(
1 − 3 σq

f 2
π m2

π

nB − T 2

8 f 2
π

− T 4

384 f 4
π

− T 6

288 f 6
π

ln
�q

T

)
. (8)

The temperature and density dependence of chiral conden-
sate was plotted in Ref. [14]. The baryonic density in terms of
quark degrees of freedom is given by

nB = 1

3

∑
f =u,d

(nf − nf ), (9)

where nf (nf ) is the quark (antiquark) density. The baryonic
density in a given volume V is related to the conserved

baryon number NB by nB = NB

V
; note the relation h̄ c =

197.3 MeV fm. For the logarithmic scale we take �q �
300 MeV; for details, see Ref. [16]. The pion mass in vacuum
is mπ = 138 MeV and the pion decay constant in vacuum is
fπ = 93 MeV. The numerical value of the quark-sigma term is
σq = 15 MeV (see, e.g., Ref. [7]), which is three times smaller
than the nucleon-sigma term σN = 45 MeV.

By combining Eq. (7) with Eq. (8), we obtain the expression
for the in-medium mass of constituent quarks:

Mf = mf − 2 Gs〈qq〉0

(
1 − 3 σq

f 2
π m2

π

nB − T 2

8 f 2
π

− T 4

384 f 4
π

− T 6

288 f 6
π

ln
�q

T

)
. (10)
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FIG. 1. Temperature and density dependence of the constituent
quark mass Mf according to Eq. (10).

The temperature and density dependence of the constituent
quark mass is plotted in Fig. 1. According to Eq. (10), for
sufficiently high temperatures and densities the constituent
quark mass will coincide with the current-quark-mass mf .
Of course, the applicability of Eq. (10) is restricted to low
densities and temperatures. In any case, the most upper limit
for density and temperature is given by the condition that
constituent quark mass has to be positive.

III. EXPANDING QUARK-ANTIQUARK BAG

The bag consists of quarks, antiquarks, and the gluon fields.
Nonperturbative effects in the QCD vacuum and the energy
density of gluon fields are described by the bag constant, B. In
our model, we subdivide the bag into N individual cells, each
of which moves with an individual flow velocity vi .

A. Total energy of the bag

The total energy of the bag in the center-of-mass frame of
the colliding nuclei is given by the volume integral of the “00”
component of the energy momentum tensor of each cell i,
T

µν

i = (ei + P i)uµ

i uν
i − P i gµν . Considering that our EoS is

given as a sum of the energy and pressure of the ideal quark
and antiquark gas plus the uniform bag energy density B, that

means ei = ei
q + ei

q + B and P i = P i
q + P

i

q − B, the total
energy of all cells of the bag in the center-of-mass frame of
the colliding nuclei is given by

Etotal =
N∑

i=1

V i (γ i)2(ei + P i) −
N∑

i=1

V i P i, (11)

where the sum runs over the number of all cells of the bag.
Here, we assume a uniform bag-field energy density B over the
whole volume, V ; B depends on density and temperature of the
bag, thus on the time of the evolution of the fireball. We have
used the notation ei for the invariant scalar, rest-frame energy
density, and P i for the scalar pressure, V i is the volume of cell

i in the center-of-mass frame, and γi = 1/
√

1 − v2
i where vi

is the 3-velocity of cell i. To determine the rest-frame energy
or proper energy of the cells, we assume a Boltzmann-Jüttner
distribution [17] for the particles inside each individual cell:

f i
J = 1

(2 π h̄)3 exp

(
µi − ui

µ pµ

Ti

)
, (12)

and
∫

d3x
∫

d3p f i
J (x, p) = Ni is the normalization of the

Jüttner distribution, where Ni is the number of particles of
a given type inside cell i under consideration. The proper
energy density is a Lorentz invariant quantity by definition
and, therefore, can be evaluated in any frame (e.g., in the local
rest frame). Accordingly, we obtain the following expression
for the energy density of quarks and antiquarks for each cell
of the bag:

ei = ei
q + ei

q + B, (13)

ei
q = 1

8 π2

∑
f =u,d

M3
f Ti exp

(
µi

q

Ti

)

×
[
K1

(
Mf

Ti

)
+ 3K3

(
Mf

Ti

)]
, (14)

ei
q = 1

8 π2

∑
f =u,d

M3
f Ti exp

(
µi

q

Ti

)

×
[
K1

(
Mf

Ti

)
+ 3K3

(
Mf

Ti

)]
. (15)

Here, Kn are the Bessel functions of second kind [26]. The
density and temperature-dependent constituent quark mass
Mf is given in (10), and ni

B and Ti are the baryonic density
and temperature, respectively, of the cell i. The initial value
of the bag constant is abbreviated by B0, and we use the
numerical value B0 = (198 MeV)4 = 0.2 GeV fm−3; see also
considerations in Ref. [18].

B. Total entropy of the bag

The total entropy in the center-of-mass Lorentz frame (CM)
is given by

Stotal =
N∑

i=1

V i γ i si, (16)

where the sum runs over all cells of the bag. The invariant
scalar entropy density, si , can be evaluated in any frame. The
total entropy density consists of entropy density of the quarks
and antiquarks, and for the assumed Jüttner distribution is
given by

si = si
q + si

q , (17)

si
q = 1

2π2

∑
f =u,d

M2
f exp

(
µi

q

Ti

)

×
[
Mf K1

(
Mf

Ti

)
+ Ti

(
4 − µi

q

Ti

)
K2

(
Mf

Ti

)]
, (18)
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si
q = 1

2π2

∑
f =u,d

M2
f exp

(
µi

q

Ti

)

×
[
Mf K1

(
Mf

Ti

)
+ Ti

(
4 − µi

q

Ti

)
K2

(
Mf

Ti

)]
. (19)

In what follows, we will take the adiabatic limit, which
implies the total entropy to be a constant. We note that there is
no bag constant in the expression for the total entropy because
the bag field is uniform (i.e., the entropy of the bag field
vanishes).

C. Total momentum of the bag

The total momentum of the bag in the center-of-mass
Lorentz frame is given by

0 = ptotal =
N∑

i=1

V i (γ i)2 (ei + P i)vi , (20)

where the sum runs over all cells of the bag. The scalar pressure
of each individual cell of the bag is given by

P i = P i
q + P

i

q − B, (21)

P i
q = 1

2 π2

∑
f =u,d

M2
f T 2

i exp

(
µi

q

Ti

)
K2

(
Mf

Ti

)
, (22)

P
i

q = 1

2 π2

∑
f =u,d

M2
f T 2

i exp

(
µi

q

Ti

)
K2

(
Mf

Ti

)
. (23)

We note that there is no bag constant in the expression for
the total momentum (20) because it cancels out in the sum
ei + P i according to Eqs. (13) and (21).

D. Chemical potential of quarks and antiquarks

Assuming a Jüttner distribution, the density ni
f = Ni

f

Vi
of

quarks having flavor f and the density of antiquarks ni
f = N

i

f

Vi

having flavor f in a given cell i is determined by the following
equations:

ni
f = 1

2 π2
M2

f Ti exp

(
µi

q

Ti

)
K2

(
Mf

Ti

)
, (24)

ni
f = 1

2 π2
M2

f Ti exp

(
µi

q

Ti

)
K2

(
Mf

Ti

)
. (25)

In mechanical (pressure), thermal, and chemical equilib-
rium, the number of quarks depends only on baryonic chemical
potential µB and temperature T . Especially, if the quarks
and antiquarks are in chemical equilibrium with each other,
then µq = µB/3 and µq = −µB/3. To determine the baryonic
chemical potential µB we have to use the total baryonic number
density nB given in Eq. (9). Then, according to the expressions
(24) and (25), we obtain a definition of the chemical potential

µi
B of cell i as

ni
B = 1

3 π2
Ti sinh

(
µi

B

3 Ti

) ∑
f =u,d

M2
f K2

(
Mf

Ti

)
, (26)

where we have used sinh x = 1
2 (ex − e−x). We assume that

these thermodynamic relations hold in the ideal QGP until the
final stage of the expansion starts. Then the net baryon number
in each cell Ni

B and the number of quarks and antiquarks,
Ni

q = (ni
u + ni

d )Vi and N
i

q = (ni
u + ni

d )Vi , respectively, are
given. While Vi and thus ni

f and ni
f are changing during the

expansion, the numbers of quarks and antiquarks, Ni
q and N

i

q ,
are fixed at this point in each cell and do not change afterwards.
This is the chemical freeze-out in the model.

The volumes, baryonic, and quark densities and temper-
atures of each individual cell change during the expansion.
The chemical equilibrium between the baryon density and
quark- and antiquark densities breaks down at this point.
Consequently, the chemical potentials for the single quarks
are related to the single quark (and antiquark) densities only
and are not connected to the net baryon density. Although we
need the chemical potentials for the calculation of the energy
density, pressure, and entropy, these must be calculated from
the given quark and antiquark densities in each cell, by using
Eqs. (24) and (25), which determine µi

q and µi
q . The net baryon

number nB is conserved and is determined by Eq. (9) using
Eqs. (24) and (25). Only in the case of chemical equilibrium
Eq. (26) is used to determine the chemical potential µB ;
that is, the NB/Nq and NB/Nq ratio freezes out first at the
initialization of our model calculation for the final expansion
stage, where quarks start to gain mass, the background field
B starts to disappear, but the constituent quark numbers do
not change. The flow does not evolve, the cells expand while
coasting with negligible pressure. Still considerable changes
happen regarding the masses and temperatures of the system.

IV. NONEQUILIBRIUM EXPANSION STAGE

A. Rapid hadronization hypothesis

A first-order phase transition in chemical and thermal
equilibrium with homogeneous nucleation would take a long
time [19], longer than two-particle correlation measurements
indicate. If the homogeneous nucleation cannot support the
required rapid transition then the transition becomes delayed
and freeze-out and hadronization will happen rapidly and
simultaneously from a supercooled QGP. Thus, a rapid process
must be out of equilibrium, at least of chemical equilibrium
[20]. Possible detailed mechanisms of this out-of-equilibrium
transition are addressed recently in several works [21,22].
In the framework of the present model this transition is
represented by the mass gain and coalescence of constituent
quarks, and the simultaneous disappearance of the bag field.
These two processes are treated phenomenologically, while
we enforce conservation laws and our model constraints.

Such a rapid, out-of-equilibrium process must result in
additional entropy production [20] from the latent heat of the
transition (just like at sudden condensation of supercooled
vapor). We start with our model at the line where we have
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quarks with current quark masses, and the process ends when
we reach the empirical hadron freeze-out line, where quarks
have constituent quark mass.

It was found by Cleymans et al. [3] that, in a wide range
of beam energies, detected hadrons freeze-out and reach the
detectors when the average energy of hadrons (estimated in
a thermal, statistical equilibrium fireball model) is between
EH/NH = (1.0–1.1) GeV. Just at the freeze-out moment the
particles do not interact any longer, so the ideal hadron gas
mixture is a good approximation. Furthermore, if we plot
the FO points on the temperature-chemical potential [T ,µB ]
plane, the (1.0–1.1) GeV constant specific energy contours
fall on a continuous line indicating that the final state is
representing a statistical thermal equilibrium state of hadrons
or a state which is close to it. At the FO state with vanishing
interactions and dissipation the expansion of the fireball is
adiabatic to a good approximation.

We can also approximate the final FO hadron state by
assuming a Jüttner distribution to all hadrons; that means we
use a relation between chemical potential µB and temperature
T by means of average energy per hadron,

EH

NH

=
∑N

h=1 eh(mh, T , µh)∑N
h=1 nh(mh, T , µh)

= (1.0 − 1.1) GeV, (27)

where hadronic energy density and hadronic particle density
are given by

eh = gh

4 π2
T cosh

(µh

T

)
m3

h

(
K1

(mh

T

)
+ K3

(mh

T

))
,

nh = gh

π2
T sinh

(µh

T

)
m2

h K2

(mh

T

)
. (28)

Here, mh is the mass of the hadron, gh is the degeneracy
factor, and for baryons we have µh = µB while for mesons
µh = 0. The Boltzmann-Jüttner gas approach is a good
approximation to the full fluid dynamics and Boltzmann
equation statistical result: In the medium [T ,µB] range
the FO contour lines are shown in Fig. 2(a); we have
taken into account the lightest 100 hadrons, that is, [h =
π0, π±,K0,K±, ...,D(1950)].

In this transition the expansion of the quark gas continues
until the average energy per hadron reaches about (1.0–
1.1) GeV. In a statistical thermal equilibrium model this
can be represented on the [T ,µB] plane. In the present
nonequilibrium model the thermal equilibrium is kept, but µB

is not representative of the hadron multiplicity. However, we
can approximate the Cleymans line by estimating the hadron
multiplicity or density after coalescence of our constituent
quarks into baryons and mesons. The freeze-out curve on the
[nB, T ] plane is plotted in Fig. 2(b).

The cold uniform nuclear matter has an equilibrium density
of nB = (0.15–0.17) fm−3, similar to the central density of
large nuclei. At higher temperatures a considerable number
of mesons are also present in statistical equilibrium, thus the
effective baryon density for the same energy density decreases
with increasing temperature. This enables us to construct an
effective Cleymans freeze-out line on the [T , nB ] plane for the
purposes of our nonequilibrium model.

We have assumed that our rapid hadronization starts at
the [T , nB ] contour where our quarks have current quark
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0
8006004002000

T
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M
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 nB [fm
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FIG. 2. (a) Shows the freeze-out curves on the [µB, T ] plane,
corresponding to mean energy EH/NH = 1.0 and 1.1 GeV per hadron.
The solid lines were computed assuming that the hadrons have a
Jüttner distribution; see Eq. (27) (upper solid curve for 1.1 GeV; lower
solid curve for 1.0 GeV). The dotted lines are from the statistical
thermal model [3] (upper dotted curve for 1.1 GeV; lower dotted
curve for 1.0 GeV). (b) Shows the same curves transformed to the
[nB, T ] plane.

mass of about 7 MeV. This contour is plotted in Fig. 3.
The chemical equilibrium then ceases among quarks and
antiquarks, and we neglect quark and antiquark annihilations
in the final expansion stage. Thus, the total number of quarks
and antiquarks, Nq and Nq , remains constant (in contrast to
the statistical thermal equilibrium model), while the baryon
charge, NB = (Nq − Nq)/3, remains also constant as required
by baryon conservation.

At the final point of the nonequilibrium expansion quarks
will coalesce into mesons, baryons and antibaryons, based
on the phase space arguments used in [23]. The rate of
recombination is given by

q + q → m : ṅm = Cm

gm

gqgq̄

nq nq, (29)

q + q + q → b : ṅb = Cb

gb

gq gq gq

nq nq nq, (30)

q + q + q → b : ṅb = Cb

gb

gq gq gq

nq nq nq. (31)
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FIG. 3. The initial conditions for nonequilibrium expansion are
determined by vanishing quark condensate; see Eqs. (7) and (8). This
corresponds to temperature and density conditions where constituent
quark mass equals current quark mass Mf = mf according to
Eq. (10).

Here, q (q) denotes quarks (antiquarks), m denotes mesons,
b (b) denotes baryons (antibaryons), gm and gb are mesonic
and baryonic degeneracy factors, and the coefficients Cm and
Cb should be determined by including phase space factors and
an additional normalization constant to satisfy the following
relations. Notice that the same statistical phase-space factors
appear in coalescence rates and in the statistical thermal model
if the overlap integrals of the coalescing constituents are
similar. Eventually other channels via di-quark formation can
also be taken into account, and the time-integrated solution
will provide the final hadron abundances.

On the other hand the baryon charge is the excess number of
baryons over antibaryons, and this leads to the normalization
requirements for the final hadrons:

nB = nb − nb. (32)

Thus, a fraction “a” of the antiquarks may form an-
tibaryons:

nb = a
nq

3
, nb = nq − nq

3
+ a

nq

3
, (33)

and the rest of the quarks form mesons:

nm = (1 − a) nq. (34)

The only coefficient, a, should arise from the coalescence
factors above. Initially from Eqs. (30)–(31) the ratio of formed
baryons and antibaryons is nb/nb = Q3, where Q ≡ nq/nq .
Assuming that the initial recombination is dominant the
conservation laws then yield

a ≈ Q − 1

Q3 − 1
. (35)

The full integration of the rate equations may lead to a
change of a, which would modify the ratio of antibaryons to
mesons to a smaller extent. In Ref. [23] the same coalescence
model explained the constituent quark number scaling of the

flow parameter, v2, from a weak elliptic asymmetry of the
coalescing quark distributions.

In this way at any stage of expansion, from an initial volume
V0 to a point at time t with a given volume V (t), we can get all
the meson and baryon densities and masses, as well as the total
energy from energy conservation (neglecting the mechanical
work done by the negligible pressure).

From the baryon and meson densities nB and nm and the
hadronic energy density, EH , we can calculate the baryon and
meson chemical potentials (the meson density may exceed the
thermal equilibrium value), µB and µm, and the respective
temperatures Tb(t) and Tm(t). Notice that with the broken
chemical equilibrium the equality of chemical potentials
is broken. In this rapid hadronization process the thermal,
pressure, and flow equilibrium will also break down. Thus the
details of how this happens should be described in terms of
extensive variables as we will see in the next section.

B. Choice of initial conditions

Let us consider now the initial conditions for all these
parameters. The applicability of Eq. (10) is restricted by the
condition that the constituent quark mass has to be positive.
Accordingly, we will take the initial conditions such that in
the initial state the in-medium chiral condensate 〈qq〉nB,T

vanishes and quarks have a current quark mass. This condition
implies that the density and temperature-dependent terms in
Eq. (10) are equal to 1. The corresponding curve in the
temperature-density plane is shown in Fig. 3. We used for
the current quark mass mf = 7 MeV, ignoring the difference
between u- and d-quarks.

In this model it is assumed that the chemical equilibrium
between the quarks and antiquarks breaks precisely on this
curve, and the quark and antiquark numbers are conserved
separately during further expansion. At the earlier stage, the
quark and antiquark numbers, Nq and Nq , are computed
from the temperature T and baryon number density nB using
Eqs. (26), (24), and (25) with chemical potentials µq = µB/3
and µq = −µB/3. But after crossing the line on Fig. 3 the
numbers of quarks and antiquarks, Nq and Nq , are assumed
to stay constant. During further expansion µq and µq change
separately and can be obtained numerically from the quark
and antiquark densities, nq and nq , by means of Eqs. (24) and
(25). Because this is a nonequilibrium model, all numerical
calculations are carried out on the [nB, T ] plane, using the
densities nB , nq , nq and the temperature T (and not on the
[µB, T ] plane).

C. Expansion of the quark gas

The expansion of the gas of quarks and antiquarks is
considered to be adiabatic (i.e., at constant entropy). The initial
total entropy density of the gas, s0, can be calculated from
the initial temperature, T0, and initial baryon charge density,
n0

B , assuming chemical equilibrium between the quarks and
antiquarks (i.e., µq = −µq = µB/3), and using Eq. (26) to
get the chemical potential and substituting it into Eqs. (17),
(18), and (19).
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FIG. 4. Expansion of the gas of quarks and antiquarks. The thick
solid line is calculated assuming the quark masses to be equal to the
current quark mass, that means it is identical to the curve in Fig. 3.
Beyond that curve we take Mf = mf . The dots on the thick solid
line indicate the initial temperature and initial baryonic density for
each curve of adiabatic and iso-ergic expansion. The thin solid lines
represent the trajectories of the adiabatic expansion of the gas of
quarks and antiquarks. The trajectories of the iso-ergic dissipative
expansion (dotted lines) are plotted for comparison.

After the initial moment, the quark and antiquark densities
decrease inversely proportionally to the volume V of the
system: nq = V0/V n0

q , nq = V0/V n0
q , nB = V0/V n0

B , where
V0 is the initial volume. Then the total entropy of the system
can be expressed simply as a function of volume, temperature,
and numerically obtained chemical potentials (or temperature
and baryon density) using Eqs. (17), (18), and (19).

Using the condition that the total entropy is constant [i.e.,
the entropy density also decreases as s(T , V ) = sq(T , V ) +
sq(T , V ) = V0/V s0], the expansion trajectories on the [nB, T ]
plane can be calculated numerically. These trajectories are
plotted in Fig. 4. The trajectories corresponding to constant
energy expansion (iso-ergic) were calculated, in a similar way,
using Eqs. (14) and (15). This case corresponds to a dissipative
expansion. It is apparent from Fig. 4 that the adiabatic
expansion where s = s0 nB/n0

B leads to the fastest temperature
decrease than the iso-ergic one where e = e0 nB/n0

B .

D. Recombination into hadrons

Because of confining forces, the quarks will finally recom-
bine into hadrons. We assume that this happens rapidly at the
point of recombination when the average energy per hadron
(including the background field) decreases to EH/NH =
1.2 GeV, a value that is still above the values of (1.0–1.1) GeV
obtained by Cleymans et al. [3]. This corresponds nearly to the
energy per hadron of the empirically observed freeze-out. The
end points of the expansion curves where the recombination
happens are shown in Fig. 5.

The quarks are assumed to recombine into three types of
particles: baryons, antibaryons, and mesons, which contain
three quarks, three antiquarks, or a quark and an antiquark,
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FIG. 5. A series of curves of adiabatic expansion (thin solid
lines) of the gas of quarks and antiquarks. The dots on the
adiabatic expansion curves indicate where the rapid freeze-out and
hadronization happens. These points are determined based on the
condition that the energy of the system, including the background
field, divided by the estimated number of hadrons reaches 1.2 GeV
hadron. The thick solid line is the same as in Fig. 3.

respectively. All hadrons are assumed to have a mass that is the
sum of the masses of their constituent quarks at the freeze-out,
that is,

Mb = Mb = 3 Mf

(
nFO

B , T FO
)
, (36)

Mm = 2 Mf

(
nFO

B , T FO
)
. (37)

Further differences between the various hadron species are
disregarded. Most of the antiquarks will pair with quarks to
form mesons, but a small fraction, a, will form antibaryons.
This ratio, a, can be estimated based on the recombination
rates given in Ref. [23]. Thus the baryon, antibaryon, and
meson densities nb, nb, and nm are calculated from the quark
and antiquark densities (nq and nq) using Eqs. (33), (34), and
(35).

We assume that at the point of recombination the flow
freezes out, too, and both the thermal and chemical equilibria
cease. The hadrons are assumed to have Jüttner distribution
after the freeze-out, but the temperature parameter in this
distribution will be different for baryons and mesons. The
parameters of the distribution after recombination are calcu-
lated from the condition of energy conservation: The thermal
energy of each hadron type will be equal to the energy of their
constituent quarks, Eth

m = Eth
b . Because of the different masses

of baryons and mesons, their temperature parameters will be
different. The temperature ratio Tb/Tm will correspond to the
mass ratio Mb/Mm = 3/2. The distributions of baryons and
mesons for a calculation done with initial state n0

B = 0.21 fm−3

and T0 = 176 MeV is shown in Figs. 6 and 7. Here the final
baryon and meson temperatures are Tb = 228 MeV and Tm =
152 MeV and Tb/Tm = 3/2, whereas the final constituent
quark mass is 308 MeV. The scaled pt and Et distributions
become identical under this condition, however, this is not
enough to reproduce the NCQ scaling of v2(pt) indicating that
the recombination influences the flow velocities of the final
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FIG. 6. Baryon (dotted) and meson (solid) distributions as func-
tions of transverse momentum pt (a) and transverse energy Et (b), for
the case of an adiabatic expansion. The initial state for this calculation
was n0

B = 0.21 fm−3 and T0 = 176 MeV.

hadrons. This concept was already pointed out in Ref. [23]
based on the properties of the collision integral. It is important
to point out that the transport theoretical treatment and the
collision integral are applicable also at situations when the
local equilibrium has ceased to exist.

V. ELLIPTIC FLOW

The elliptic flow parameter, v2, can be calculated from the
final, post freeze-out distribution by the Cooper-Frye formula.
Assuming an isochronous FO hypersurface, we obtain simple
expressions for final measurables [24].

A. Formula for the elliptic flow

In this section we mainly follow the arguments of
Refs. [24,25]. The kinematic average of a quantity A(x, p) is
given by

〈A〉 =
∫

d3x
∫

d3p f (x, p) A(x, p)∫
d3x

∫
d3p; f (x, p)

, (38)
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FIG. 7. These diagrams show the same distribution functions for
baryon (dotted) and meson (solid) as calculated in Fig. 6, but rescaled
according to constituent quark number ncq (ncq = 3 for baryons,
ncq = 2 for mesons). (a) Shows the scaled distribution ncq ft as a
function of rescaled transverse momentum ncq pt. (b) Shows the
rescaled distribution ncq ft as a function of rescaled transverse energy
ncq Et. These rescaled distributions almost coincide for baryons and
mesons; they are on top of each other so no difference can be
seen here in the diagrams. The initial state for this calculation was
n0

B = 0.21 fm−3 and T0 = 176 MeV.

where f (x, p) is the one-particle distribution function. Es-
pecially, we are interested in the elliptic flow v2, that is, the
following kinematic average:

v2 =
〈

p2
x − p2

y

p2
t

〉
. (39)

According to Eqs. (38) and (39), we obtain

v2 =
∫

d3x
∫

d3p f (x, p)
p2

x−p2
y

p2
t∫

d3x
∫

d3p f (x, p)
. (40)

Now we subdivide the system into N fireballs or cells, each
of which has a given volume Vi and contains a given number
of particles Ni , which are distributed by a given distribution
function fi(x, p) inside cell i. Because in a given cell the
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elliptic flow parameter v2 does not depend on coordinate x,
we can take the integral over d3x and obtain

v2 =
∑N

i=1 Vi

∫ 2π

0 dφ
∫ ∞

0 dp‖
∫ ∞

0 dpt pt f i( p) cos 2φ∑N
i=1 Vi

∫ 2π

0 dφ
∫ ∞

0 dp‖
∫ ∞

0 dpt pt f i( p)
,

(41)

where we have used the relation cos 2 φ = cos2 φ − sin2 φ =
p2

x

p2
t

− p2
y

p2
t

with pt = √
p2

x + p2
y being the transverse momentum.

In our study we consider the midrapidity particles, (pz =
0 or the rapidity y = 0) [i.e., p = (px, py)] and there is
no integration for the longitudinal momentum or rapidity.
Furthermore, we are interested in the momentum dependence
of elliptic flow parameter v2. Thus we obtain from (41) the
following expression:

v2 (pt, y = 0) =
∑N

i=1 Vi

∫ 2π

0 dφ f i(px, py) cos 2φ∑N
i=1 Vi

∫ 2π

0 dφ f i(px, py)
, (42)

where the sum runs over all individual cells i = 1, ..., N , and
we have used the fact that for midrapidity particles p2 = p2

x +
p2

y = p2
t . Let us study the elliptic flow of a single type of

particle. We assume a Jüttner distribution in each individual
cell of the bag; see Eq. (12), and obtain

f i
J = 1

(2 π h̄)3 exp

(
µi − γi p

i
0 + γ i vi

x px + γ i vi
y py

Ti

)

= 1

(2 π h̄)3 exp

(
µi − γi p

i
0 + γ i vi pv

Ti

)
, (43)

where pv is the component of the momentum parallel to
the cell velocity vi , and µi is the chemical potential of the
given particle type in the cell i; here we have also used
u

µ

i = γ i(1, vi
x, v

i
y, 0) , ui

µ = γ i(1,−vi
x,−vi

y, 0) and pµ =
(p0, px, py, 0) , pµ = (p0,−px,−py, 0). Because the el-
liptic flow parameter is calculated after chemical freeze-out has
happened, each particle type has their own chemical potential,

1

(2πh̄)3
exp

(
µi

T

)
= ni

4π M2
i Ti K2(Mi/Ti)

, (44)

where ni is the density and Mi is the mass of the given particle
type. For particles at CM rapidity the zeroth component of
four-momentum equals the transverse mass (i.e., it is just the
energy of one particle),

pi
0 =

√
M2

i + p2
t = Mi

t . (45)

Then, according to Eqs. (42) and (43), we obtain the
following expression for the elliptic flow:

v2 =
∑N

i=1 Vi

∫ 2 π

0 dφ cos 2φ f i
J (px, py)∑N

i=1 Vi

∫ 2 π

0 dφ f i
J (px, py)

, (46)

where the sum runs over all cells of the bag. Now let us insert
Eq. (43) into expression (46). Then, by means of Eq. (44) we
obtain the following expression for the v2 parameter:

v2 =
∑N

i=1 Ñi e
−γ iMi

t /Ti
∫ 2π

0 dφ cos 2φ eγ i vi pv/Ti∑N
i=1 Ñi e−γ i Mi

t /Ti

∫ 2π

0 dφ eγ i vi pv/Ti

, (47)

where Ñi denotes

Ñi = Vi

ni

Ti K2(Mi/Ti)
. (48)

If the direction of the velocity of cell i relative to axis x is
denoted by φi

0, then pv can be written as pv = pt cos(φ − φ0),
and the following expression is obtained:

v2(pt) =
∑N

i=1 Ñi e
−γ iMi

t /Ti cos 2φi
0 I2(γ i vi pt/Ti)∑N

i=1 Ñi e−γ iMi
t /Ti I0(γ i vi pt/Ti)

. (49)

I0 and I2 denote the zeroth- and second-order modified
Bessel functions of the first kind [26].

Notice that if the source temperatures are all equal or if the
freeze-out temperature of all fluid cells is the same, than one
observes a linear increase of v2 as a function of pt or pt/ncq.
This is frequently quoted as a linear hydrodynamical increase,
observed already in the first model calculations (e.g., [24]).
Such linear increase leads trivially to a constituent quark
number scaling. It is easy to see that this feature is just
a consequence of the equal temperature assumption. If, for
example, we assume a large, hotter, static central source, the
high pt behavior of v2 will be dominated by this hot source
and thus v2 will decrease at high pt as pointed out in Ref. [25].

If we assume that the temperatures of all cells are the same,
Ti = T , then the temperature- and mass-dependent parts of Ñi

[see Eq. (48)] cancel from the numerator and denominator of
Eq. (49), and we get (note at FO the constituent quark mass
does not depend on density and temperature anymore)

v2(pt) =
∑N

i=1 Nie
−γ iMi

t /T cos 2φi
0 I2(γ i vi pt/T )∑N

i=1 Nie−γ iMi
t /T I0(γ i vi pt/T )

. (50)

In the special case of four cells moving into the four
directions (±x,±y), Eq. (50) reduces to the expression given
in Ref. [24].

The simplest configuration that can approximate elliptic
flow is dividing the system into two cells that move in opposite
directions with the same velocity v. For this “two-cell” model
case the v2 parameter is expressed as

v2(pt) = I2(γ vpt/T )

I0(γ v pt/T )
. (51)

A slightly more complicated possibility is having one larger
nonmoving central cell, and two smaller side cells moving in
opposite directions, as shown in Fig. 8. In this “three-cell”
model case v2(pt) can be expressed as

v2(pt) = 2Ns e−γMt/T I2(γ v pt/T )

2Ns e−γMt/T I0(γ v pt/T ) + Nc e−Mt/T
. (52)

Here Nc denotes the particle number of the central cell,
whereas Ns denotes the particle number of the identical
side cells. This configuration corresponds to a flow with
less pronounced asymmetry. The large central cell has a
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FIG. 8. Scheme of three-cell model. The asymmetric flow is
approximated by dividing the system into either two cells that move
in opposite direction with velocity v, or two smaller moving side cells
and a stationary central cell. The schematic of the latter configuration
is shown here.

spherical momentum distribution, whereas the smaller side
cells introduce a slight asymmetry to this.

B. Calculation of the elliptic flow

1. Two-cell model

As a first approximation, the v2 parameter was calculated
using a simple model of elliptic flow where the system is
divided into two droplets moving in opposite directions with
the same velocity. For this model, v2 is given by Eq. (51).

The baryons and mesons were given different flow en-
ergies, such that the ratio of flow energy per quark is
(FEb/ncq)/(FEm/ncq) = 3/2. This leads to different flow ve-
locities for baryons and mesons, and reproduces the constituent
quark number scaling of the elliptic flow parameter. In this
model the scaling according to the transverse momentum pt

and transverse energy Et are tied to each other (i.e., the scaling
is either present or not for both these variables). By this point of
the evolution of our system, all energy in the background field
is exhausted and the internal, excitation, and random kinetic
energies of the hadrons reach the FO value (1.0–1.1) GeV.
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2
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FIG. 9. The v2 parameter as a function of pt, calculated from
the two-cell model, Eq. (51). The initial state used is the same as in
Figs. 6 and 7. The dotted curve represents the baryons, whereas the
solid curve represents the mesons. The cell velocities for baryons and
mesons are vb = 0.26 and vm = 0.21, corresponding to a flow-energy
ratio of 3:2 of the constituent quarks of the two different particle types
(calculated relativistically).
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FIG. 10. The rescaled elliptic flow parameter, v2/ncq, as a
function of pt/ncq (a) and Et/ncq (b), calculated from the two-cell
model. The dotted curves represent the baryons while the solid curves
represent the mesons. The curves coincide for low pt value (i.e., the
constituent quark number scaling is reproduced for the low pt region).

The v2(pt) curve obtained with the initial state parameters
discussed in the previous section is shown in Fig. 9. The
elliptic flow parameter, rescaled according to constituent quark
number is shown in Fig. 10. In this figure, the baryon and
meson curves coincide for low pt (i.e., constituent quark
number scaling of v2 is reproduced for small values of the
transverse momentum, but not for pt > 400 MeV). These
results of QNS can be further improved by considering a
three-cell model, as we will see in the next subsection.

2. Three-cell model

The asymmetry in the two-cell model described in the
previous subsection is very strong. In Ref. [23] it is shown that
the constituent quark number scaling is more precise if the v2

coefficient is small, and the higher harmonic coefficients vk

(k > 2) are negligible. Therefore, a three-cell model with one
large stationary central cell and two moving side cells was also
studied. The schematic scheme of this arrangement of cells is
shown on Fig. 8. The elliptic flow parameter of the three-cell
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FIG. 11. The v2 parameter as a function of pt, calculated from
the three-cell model, Eq. (52). The initial state used is the same as in
Figs. 6 and 7. The dotted curve represents the baryons, whereas the
solid curve represents the mesons. The cell velocities for baryons and
mesons are vb = 0.26 and vm = 0.21, corresponding to a flow-energy
ratio of 3:2 of the constituent quarks of the two different particle
types (calculated relativistically). A particle ratio Nc/Ns = 10 was
assumed.

model is given by Eq. (52) and the result is shown in Fig. 11.
The side cells were assumed to have the same velocities as in
the case of the two-cell model, and the temperature of all cells
was the same. The particle number ratio of the central cell to
the side cells was set to Nc/Ns = 10. It should be noticed, that
the elliptic flow parameter, shown in Fig. 11, is not insensitive
on such choice (e.g., a ratio of Nc/Ns = 5 would enlarge the
value of v2).

The elliptic flow parameter, rescaled according to con-
stituent quark number is shown in Fig. 12. We have found
that QNS is insensitive on the chosen particle number ratio
Nc/Ns = 10 (e.g., a ratio Nc/Ns = 5 yields very similar
results as shown in Fig. 12). According to the results in Fig. 12,
the three-cell model is able to reproduce the constituent quark
number scaling of v2 for a wider range of pt values compared to
the two-cell model. It must be noted that this is not only a result
of the reduction of the momentum distribution asymmetry
compared to the two-cell model. However, the choice of flow
velocities for baryons and mesons is still relevant.

VI. SUMMARY

A model of rapid hadronization was considered in which
the effective constituent quark mass depends on density and
temperature. In this model the evolution starts from an ideal
QGP in chemical, thermal, and mechanical equilibrium. Then,
one after the other the chemical, thermal, and mechanical
equilibrium break down rapidly, while the quarks build up
constituent quark mass, and the background gluon field
(bag constant) breaks up and vanishes. This model can
be considered as a simple representation of the breaking
chiral symmetry and deconfinement in a dynamical transition
crossing the Quarkyonic phase [2].
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FIG. 12. The rescaled elliptic flow parameter, v2/ncq, as a
function of pt/ncq (a) and Et/ncq (b), calculated from the three-cell
model. The dotted curves represent the baryons whereas the solid
curves represent the mesons. The curves overlap nearly completely,
and the constituent quark number scaling is reproduced for a much
wider range of pt than in the case of the two-cell model. The
velocities of the side sources are the same as in Fig. 9. A particle
ratio Nc/Ns = 10 was assumed.

The elliptic flow parameter v2 was calculated for the
final hadron distributions obtained from the model, and the
constituent quark number scaling was partially reproduced.
We assume the following stages of hadronization: (1) The
chemical equilibrium between the quarks and antiquarks
breaks and the chiral symmetry breaks at the same time.
(2) The quark and antiquark numbers are assumed to be
conserved during further expansion (i.e., quark, antiquark pair
creations and annihilations are ceased). (3) As the quark gas
expands and cools, the quarks gain mass according to Eq. (10),
and the field associated with the bag constant B decreases.
(4) The thermal freeze-out and recombination into hadrons
are completed when the mean energy per hadron reaches the
FO value of EH/NH = (1.0–1.1) GeV. The created hadrons
are not in local thermal and flow equilibrium with each
other. We considered only three types of hadrons: baryons,
antibaryons, and mesons, ignoring the differences between
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different hadron species, and the momentum distribution of
hadrons was calculated.

Using the obtained momentum distributions, the elliptic
flow parameter v2 was computed from a simple multisource
model of the elliptic flow. Two cases were considered. In
the first case, the flow asymmetry is approximated by two
fireballs moving in opposite directions. Although this leads
to a very strong asymmetry in the momentum distribution,
it leads to a v2(pt) curve that scales with the constituent
quark number for small pt values only. In the second case,
we added a large central fireball to reduce the asymmetry and
approximate pure elliptic flow better [i.e., reduce the higher
vk (k > 2) harmonic coefficients]. This three-source model
was able to reproduce the constituent quark number scaling
for a wide range of pt values.

The present model is highly simplified and attempts to
provide an insight to the rapid hadronization and freeze-out
process in view of the quark number scaling. We considered the
features arising from the breaking down of equilibrium in this
process in terms of thermo and fluid dynamical parameters that
are applicable to partial components of the matter. We intend
to implement these concepts in more complex models (like
hybrid models) and to search for more fundamental reasons
for the observed freeze-out features in terms of the partial
extensives.

Despite the simplicity of the model, it is capable of
reproducing the constituent quark number scaling of the v2

elliptic flow parameter. The presence of constituent quark
number scaling in experimental data suggests that the elliptic
flow develops in the quark-gluon plasma phase, before the
quarks recombine into hadrons. Therefore understanding the
origin the elliptic flow can provide insight into the quark phase
of matter.
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