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Ab stra c t. T h e k in etic freeze-ou t process of a pion g as th rou g h a fi n ite lay er w ith tim e-lik e n orm al is con -
sid ered . T h e pion g as is d escrib ed b y a B oltz m an n g as w ith elastic collision s am on g th e pion s. W ith in th is
m od el, th e im pact of th e in -m ed iu m pion m ass m od ifi cation on th e freeze-ou t process is stu d ied . A m arg in al
ch an g e of th e freeze-ou t v ariab les tem peratu re an d fl ow v elocity an d an in sig n ifi can t m od ifi cation of th e
frozen -ou t particle d istrib u tion fu n ction h as b een fou n d .

PACS. 24.10.N z H y d rod y n am ic m od els – 25 .75 .-q R elativ istic h eav y -ion collision s

1 In tro d u c tio n

O n e of the greatest d iscov eries in ultra-relativ istic heav y-
ion p hysics has b een the creation of the Q uark G luon
Plasm a (Q G P) at S up er Proton S yn chrotron (S PS ) at
C on seil E urop éen p our la Recherche N ucléaire (C E RN )
in 2 0 0 0 [1 ] an d at the Relativ istic H eav y-Ion C ollid er
(RH IC ) at B rook hav en N ation al L ab oratory (B N L ) in
2 0 0 5 [2 ]. In fact, there are com p ellin g ex p erim en tal sign a-
tures w hich tran sform ed the Q G P from a theoretical p re-
d iction in to a p recise ob serv ation al scien ce: ellip tic fl ow v2,
jet q uen chin g, stran gen ess en han cem en t an d con stituen t
q uark n um b er scalin g can hard ly b e un d erstood w ithout
the clear statem en t that this n ew state of m atter has
b een achiev ed . H ow ev er, d urin g the last years it turn ed
out that the p rod uced n ew state of m atter is m ore sim -
ilar to a stron gly coup led or stron gly in teractin g Q uark
G luon Plasm a (sQ G P), w hich has m ore characteristics of
a liq uid than of a w eak ly in teractin g p lasm a of q uark s
an d gluon s [3 –1 0 ]; for a recen t com m en t on the term
“ sQ G P” see [1 1 ]. W hile there is n o d oub t ab out a Q G P
p hase tran sition of Q uan tum C hrom od yn am ics (Q C D ) at
Tc = (1 7 3 ± 8 ) M eV at v an ishin g b aryon ic d en sities [1 2 ], it
seem s that a Q G P of freely m ov in g p arton s can b e reached
on ly at higher en ergy d en sities an d tem p eratures b eyon d
the critical tem p erature Tc. These n ew in sights im p ly that
further ex p erim en tal sign atures are certain ly n eed ed to
un d erstan d n ot on ly the p hysical features of sQ G P, b ut
also how the n ew ex p erim en tal facts d o coin cid e w ith the
p red iction s of the fun d am en tal theory of stron g in terac-
tion s. F urther in sights in to this m ore com p licated n ew
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state of m atter are n ow ex p ected from the in ten d ed ex -
p erim en ts at the L arge H ad ron C ollid er (L H C ) at C E RN
startin g up v ery soon . In the follow in g w e w ill n ot d istin -
guish b etw een the term s Q G P an d sQ G P, b ut w an t to k eep
in m in d that the n ew state of m atter is m ore com p licated
than ex p ected from the early theoretical p red iction s.

The ev id en ce of a Q G P can n ot b e p rov en d irectly. In -
stead , w e hav e to trace from the ob serv ab les at the d etec-
tors b ack to this v ery early stage of the heav y-ion colli-
sion . O b v iously, the m ore accurate the d escrip tion of the
sub seq uen t p rocesses after form in g the Q G P is, the m ore
accurate w ill b e the p icture an d the un d erstan d in g of this
n ew state of m atter.

O n e p rom isin g theoretical m ethod in this resp ect is
the hyd rod yn am ical ap p roach b ased on the assum p tion of
local therm al eq uilib rium . Accord in g to sev eral theoret-
ical stud ies, the p rod uced Q G P reaches a local therm al
eq uilib rium v ery rap id ly w ithin (0 .3 –0 .5 ) fm /c for gluon s
an d (0 .5 –1 .0 ) fm /c for the q uark s [1 3 –1 6 ]. E x p erim en tal
d ata in d icate a source size of less than 1 0 fm an d less
than 1 0 fm /c tim e ex ten t. This stron gly in d icates a rap id
p re-had ron ization [1 7 , 1 8 ], w hich is also sup p orted b y the
recen t ob serv ation of con stituen t q uark n um b er scalin g
of collectiv e fl ow d ata. E sp ecially, w hen the ex p an d in g
system reaches a tem p erature T ≤ Tc had ron states of
high m ultip licity, con tain in g m ostly p ion s, e.g. [1 9 , 2 0 ], are
form ed . The p re-therm alization of q uark s an d q uark clus-
ters or p re-had ron s results in the local therm alization of
p ion s [2 1 , 2 2 ], an d ev en m ost of the low -lyin g (s) had ron ic
states.

S ub seq uen tly after or ev en d urin g the had ron ization ,
the chem ical an d therm al F reeze-O ut (F O ) of the had ron s
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happens, where the hydrodynamical description breaks
down and transport theoretical approaches are needed.
First, the inelastic collisions among the hadrons cease,
that is the so-called chemical FO at Tch. Immediately or
simultaneously followed by the thermal FO at Tth, where
also the elastic collisions among the hadrons are abon-
dened. The FO process is essentially the last stage of the
heavy-ion collision process and the main source for observ-
ables. An accurate FO description is therefore a basis for
an accurate understanding of the initial states produced
in ultra-relativistic heavy-ion collisions.

A rigorous approach of the FO scenario from first prin-
ciples is given by the Boltzmann transport equation which
is a rather difficult assignment of a task. Even more, re-
cently it has been recognized that the basic assumptions
of the Boltzmann transport equation are spoiled at the
last stages of the kinetic FO process [23,24], and a more
involved modified Boltzmann transport equation has to
be solved. The reason for that is because the character-
istic lenght scale, describing the change of the distribu-
tion function, becomes smaller than the mean free path
λ at the last stages of the kinetic FO process. Thus, phe-
nomenological models which can describe the kinetic FO
process in a simplified manner by taking into account the
main features of a typical FO process only, become rather
important.

Such a phenomenological description of the kinetic FO
process is usually modeled by two different, in some sense
even opposite, methods: a FO modeling through a hy-
persurface of zero thickness, and a FO modeling through
an ininite space-time volume. Recently, the kinetic FO
through a layer with finite thickness has been developed,
for the case of the space-like normal in [25] and for the
case of the time-like normal in [26]; see also [27,28]. This
phenomenological approach makes a bridge between these
mentioned two extreme FO models. So far, the impact of
in-medium modifications of hadrons on the FO process has
been considered only in refs. [29–31]. In our investigation
we will apply this recently developed FO model and con-
sider a kinetic FO scenario through a finite time-like layer
to study the impact of in-medium pion mass modification
on the FO process.

The paper is organized as follows: in sect. 2 we give
the needed basics of a transport theoretical description of
a hot and dense pion gas. The kinetic FO process through
a finite time-like layer is considered in sect. 3. The finite-
temperature mass modification of pions, embedded in a
Boltzmann gas with elastic interactions among the pions,
is examined in sect. 4. In sect. 5 we present the results
obtained, and in sect. 6 a summary is given. Throughout
the paper we take c = � = kB = 1.

2 Transport theoretical description of a pion

gas

Consider a system of N not necessarily conserved num-
ber of particles described by the one-particle distribution
function f(x, p). This invariant scalar function is normal-
ized by N =

∫

d3
r d3

p f(x, p). Throughout the paper we

consider a dilute pion gas where only elastic scatterings
among the pions are allowed, so that xµ = (t, r) is the
four-coordinate and pµ = (p0, p) is the four-momentum of

the pion with p0 =
√

m2
π

+ p2. Then, the particle four-
fl ow is defined by, e.g. [32],

Nµ =

∫

d3
p

p0
pµ f(x, p), (1)

and the energy momentum tensor is

Tµν =

∫

d3
p

p0
pµ pν f(x, p). (2)

The four-fl ow velocity of the medium can be defined as
a time-like unit tangent vector at the wordline of the
particles, i.e. uµ = constant × Nµ (Eckart’s definition).
H owever, in case of non-conserved particles like the pi-
ons are, such a definition would not be convinient. In-
stead, for non-conserved charges or non-conserved parti-
cles the four-fl ow velocity of the medium is usually defined
as a time-like unit vector parallel to the energy fl ow, i.e.

uµ = constant × Tµν uν (L andau’s definition):

uµ =
Tµν uν

uρ T ρσ uσ

. (3)

This tensor equation (3) is by definition valid in any frame.
Obviously, in the rest frame of the gas (RFG ) we would
have u

µ

R F G
= (1, 0, 0, 0) in Eckart’s as well as in L andau’s

definition of the four-fl ow velocity. Any other frame of
interest is related to RFG just by a L orentz boost.

From eq. (1) and eq. (2) one can define three linear
independent L orentz invariants: the scalar particle den-
sity n, the scalar energy density e and the scalar pressure
P , given by

n = Nµ uµ, (4)

e = uµ Tµνuν , (5)

P = −
1

3
Tµν ∆µν , (6)

where ∆µν = gµν − uµuν projects any four-vector into
the plane orthogonal to uµ; the metric tensor gµν =
diag(1,−1,−1,−1). W e also note the invariant scalar en-
tropy density,

s = Sµ uµ, (7)

where the entropy four-current is defined by

Sµ = −

∫

d3
p

p0

pµ [f(x, p) ln f(x, p) − f(x, p)]. (8)

In our investigation we will consider the FO process of
an ultra-relativistic heavy-ion collision, and the hot re-
gion of the fireball shall be deemed to be in chemical
(µπ = 0) and local thermal equilibrium T (x). The con-
served quantum numbers (e.g., baryon number, electric
charge, strangeness) are zero such that the thermal distri-
bution can be characterized by the local temperature pa-
rameter T (x) of the fireball. U p to temperatures T ≤ Tc,



S. Zschocke and L.P. Csernai: Pion mass shift and the kinetic freeze-out process 351

most of the particles of such a system are the pions [19,20],
which interact via elastic collisions with a cross-section
σelastic

ππ
. Thus, we will consider the invariant scalar func-

tions eqs. (4)–(7) for the case of a Boltzmann gas of pi-
ons where only elastic scatterings among the pions are
allowed, and moving with a four-flow velocity uµ. The par-
ticle distribution function in such a case is homogeneous
f(x, p) = f(p) and given by the Jüttner distribution

feq(p, T ) = gπ

1

(2π)3
ex p

(

µπ − pµuµ

T

)

, (9)

where gπ = 3 is the isospin degeneracy factor and µπ = 0.
S ince the functions eqs. (4)–(7) are invariant scalars, they
can be evaluated in any L orentz frame. E specially, in the
local rest frame R F G we obtain, in the case of a pion gas,
characterized by the distribution function (9), the follow-
ing ex pressions:

n=
gπ

2π2
m2

π
T K2(a), (10)

e=
gπ

8π2
m3

π
T [K1(a) + 3K3(a)] , (11)

P =
gπ

2π2
m2

π
T 2 K2(a), (12)

s=
gπ

2π2
m2

π

[

T K2(a)+
1

4
mπ K1(a)+

3

4
mπ K3(a)

]

, (13)

where a = mπ/ T , and Kn are the Bessel functions of
second k ind, see appendix A . The E quation of S tate (E oS )
P (n, T ) of the pion gas follows from eq. (10) and eq. (12),
P = nT , and the thermodynamical relation T s = e+P is
also satisfi ed1. In the limit of vanishing pion mass mπ → 0
we obtain from eq. (11) and eq. (12) the E oS of an ideal
relativistic gas, e = 3P .

F rom these considerations we have seen that in R F G
the particle density, energy density, entropy density, and
pressure are only functions of temperature T . This im-
plies that in any arbitrary L orentz frame only two ther-
modynamical unk nowns, temperature T and four-flow ve-
locity uµ, can enter the problem under consideration. To
determine both unk nowns, we need to have two diff eren-
tial equations, which can be deduced2 from eq. (3) and
eq. (5 ) [33]:

duµ =
∆µν dT νσuσ

e + P
, (15 )

de = uµ dTµν uν . (16 )

1 R ecall that a thermody namical approach b y means of the
canonical potential of a pion g as,

Ω = gπ T

Z

d3
p

(2 π)3
ln(1 − ex p(−p0/ T )), (14 )

and w ith the aid of defi nitions of energ y density e =
−T 2∂ Ω/ ∂ T , pressure P = −Ω and entropy density s =
∂ Ω/ ∂ T , confi rms the fi nding s of eq s. (11)– (13) and the relation
T s = e + P .

2 F or a proof of eq . (15) see footnote 3 in [33], and for eq . (16 )
see also the remarks in appendix A of [31].

F or the left side of eq. (16 ) we obtain from the scalar
invariant (11) the following ex pression:

de =
gπ

8π2
m3

π
[4 a K0(a) + 8K1(a) + 12K3(a)] dT. (17)

E quations (15 )–(17) can be used to determine the tem-
perature and four-flow velocity, while particle density n,
pressure P and entropy density s would follow from their
defi nitions in eqs. (4), (6 ) and (7), respectively. The diff er-
ential of the energy momentum tensor needed in eq. (15 )
and eq. (16 ) follows from eq. (2),

dTµν =

∫

d3
p

p0
pµ pν df(x, p) , (18)

according to which we still need a diff erential equation for
the one-particle distribution function. This will be subject
of the nex t section.

3 Freeze-out process within a finite time-like

layer

The scheme of an ultra-relativistic heavy-ion collision can
be subdivided into three main stages characterized by
their typical temperature parameter T : fi rst, the initial
stage at Tc < T , where a hot and dense parton gas
is produced. S econd, the stage at Tp re-F O ≤ T ≤ Tc

where hadrons are formed. A nd third, the freeze-out pro-
cess at temperatures Tp o st-F O ≤ T ≤ Tp re-F O where the
hadrons freeze out. A fter the complete F O of the hadrons
at T = Tp o st-F O the particle interactions cease, i.e. the
momentum distribution of the particles is frozen out and
the hadrons move freely towards the detector.

In this section we are concerned with the third stage
of the collision scheme, i.e. we start our investigation of
the F O process from the time of the collision where the
ex panding system reaches a temperature T = Tp re-F O and
the hadronization of the primary parton gas is considered
to be completed. In the past, the F O process has been
usually simulated in two ex treme scenarios: a sudden F O
on a hypersurface with zero proper thick ness L = 0, or a
gradual F O process during an infi nite time and through
an infi nite space L → ∞ .

In this section we present a model for a gradual F O
through a fi nite layer, where the thick ness L can be var-
ied from zero to infi nity, thus mak ing a bridge between
the two ex treme schemes mentioned above. W ithin such a
model the F O layer is bounded by two hypersurfaces: the
pre-F O hypersurface with T = Tp re-F O , where the hydro-
dynamical description ends, and a post-F O hypersurface
with T = Tp o st-F O , where all the matter is frozen out.
A covariant model of k inetic F O process within a fi nite
layer has been recently developed, both for the case of
space-lik e [25 ] and time-lik e [26 ] layers; see also [27,28].

In order to get an idea about the physical scales of the
total F O time L of the F O layer, we recall that the colli-
sion time τco ll between the pions, which are the dominant
hadrons, depends on temperature τco ll(T ) = 12 f4

π
/ T 5 [34–

36 ], where fπ = 92.4 M eV is the pion decay constant
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(1 = 0.19733GeV fm). At the pre-FO side of the layer
there is a temperature of Tpre-FO ≈ 175MeV and the col-
lision time is small: τcoll � 1.1 fm/c. The proper thick-
ness L (in time) of the FO layer is taken typically of
the order of a few (at least one) collision time τcoll(T )
at T = Tpre-FO ∼ Tc, i.e. L ∼ (5–10) fm/c.

Here, we will not repeat the theoretical developments
of [25–28] in detail, but should consider the essential steps
relevant for our investigations.

To describe the gradual FO process, the one-particle
distribution function is decomposed into two components,
an interacting part fi and a frozen-out part ff ,

f(x, p) = fi(x, p) + ff (x, p). (19)

During the FO process the number of interacting parti-
cles decreases from the pre-FO to the post-FO side, where
by definition the number of interacting particles tends to
zero. As boundary conditions we assume on the pre-FO
side of the layer a thermal equilibrium, i.e. a Jüttner dis-
tribution (9) for fi and ff = 0, while on the post-FO side
fi vanishes; for an illustration see also fig. 1 in [25].

The space-time evolution of the interacting and non-
interacting components during the FO should be modeled
by the Boltzmann Transport Equation (BTE). We will use
the relaxation time approximation and apply the escape
rate Pesc(x, p), describing the escape of particles from the
interacting component fi to the non-interacting compo-
nent ff . The FO is a strongly directed process, i.e. the
gradient in one preferred FO direction, dσµ = (dσ0, dσ),
is much stronger than the changes in the perpendicular
directions, thus we can neglect these FO gradients in the
perpendicular directions. Then, the BTE can be trans-
formed into the following differential equations [25–28]:

dσµ ∂µfi(x, p) = −Pesc(x, p) fi(x, p)

+
1

τth

[feq (p) − fi(x, p)], (20)

dσµ ∂µff (x, p) = Pesc(x, p) fi(x, p)3. (21)

Here, pµ = (p0, p) is the four-momentum of the particle,
and xµ = (t, r) is the four-coordinate of the particle. The
second term in eq. (20) is the re-thermalization term (see
below), which describes how fast the system relaxes into
some thermalized distribution function feq during a char-
acteristic time scale τth .

A L orentz-invariant expression for the escape rate is
given by [24–28]:

Pesc(x, p) =
1

τ0

L

L − xµ dσµ

pµ dσµ

pµ uµ

Θ(pµdσµ) , (23)

3 Troug hout the paper w e shall use the notation

∂µ f(x, p) ≡
∂

∂xµ
f(x, p), (22)

i.e. ex pressions lik e (22) are not infi nitesim al q uantities. N ote,
the fi nite norm al v ector on the hypersurface is norm alized b y
dσµ dσµ = ±1 w here the upper sig n is for the tim e-lik e and the
low er sig n is for the space-lik e norm al, respectiv ely; note that
dσµ is also not an infi nitesim al q uantity b ut a fi nite v ector (an
ex plicit ex pression for the tim e-lik e norm al is g iv en b elow ).

where τ0 is the characteristic FO time. The Θ-function is
the Bugaev cut-off factor [37], which is important only for
the FO in the space-like direction.

We have to insert the escape rate Pesc into eqs. (20)
and (21). In the following we will consider the FO process
of a pion gas through a finite layer with a time-like normal
dσµ dσµ = +1, so that L becomes a thickness in time.
We will work in the rest frame of the FO front (R FF)
where dσµ = (1, 0, 0, 0). Thus, we obtain the following set
of differential equations:

∂t fi = −
1

τ0

(

L

L−t

)(

p0

pµ uµ

)

fi+
1

τth

[feq (p)−fi], (24)

∂t ff = +
1

τ0

(

L

L − t

)(

p0

pµ uµ

)

fi. (25)

N ote again, the first term in eqs. (24) and (25) describes
the transition of the pions from the interacting to the
frozen-out component. The second term in eq. (24) is the
re-thermalization term [33,38] which describes how the
interacting component relaxes to some thermal distribu-
tion feq , where the parameters of it, T (t), uµ(t), have to
be calculated from the conservation laws. The strength of
both terms is characterized by their typical time scales,
the characteristic freeze-out time τ0 and the relaxation
time τth , respectively [26 ,33,38–41].

In the case of fast re-thermalization τth � τ0, the inter-
acting component can be choosen as equilibrated Jüttner
distribution for all the times [25]. Then, we obtain, with
the aid of eq. (18), for the energy momentum tensor of the
interacting component

dTµν
i

dt
=

∫

d3
p

p0
pµ pν ∂t fi(x, p)

= −
1

τ0

(

L

L − t

)
∫

d3
p

p0
pµ pν

(

p0

pµ uµ

)

×feq (p, T (t), uµ(t)). (26 )

In the following we will give the components of eq. (26 ) in

the R FF, where uµ
R FF = γ(1, v, 0, 0) with γ = 1/

√
1 − v2:

dT 00
i (t, v, T, mπ)

dt
=

1

τ0

L

L − t

n T

4

1

γ v

(

G−

2 (mπ, v, T ) − G+
2 (mπ, v, T )

)

, (27)

dT 0x
i (t, v, T, mπ)

dt
=

1

v

dT 00
i (t, v, T, mπ)

dt

+
1

τ0

L

L − t

n T

2

b2

γ v

(

(3 + v2)K2(a) + a K1(a)
)

, (28)

dT xx
i (t, v, T, mπ)

dt
=

1

v

dT 0x
i (t, v, T, mπ)

dt

−
T

γ v

(

dNx
i (t, v, T, mπ)

dt
−

1

v

dN0
i (t, v, T, mπ)

dt

)

+
1

τ0

L

L − t

n T

2
a b

(

1

v2
(1 + 3v2)K2(a) + bK1(a)

)

, (29)
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and the needed components of time derivative of the par-
ticle four-current are given by

dN0
i (t, v, T, mπ)

dt
=

1

τ0

L

L − t

n

4

(

G−
1 (mπ, v, T ) − G+

1 (mπ, v, T )
)

, (30)

dNx
i (t, v, T, mπ)

dt
=

1

v

dN0(t, v, T, mπ)

dt

+
1

τ0

L

L − t

n

4

(

4aK1(a)

v
+

2a2K0(a)

v

)

, (31)

w here w e recall that a = mπ/ T and b = γ a; the func-
tions G±

n and Kn are defi ned in appendix A . A ccording
to these ex pressions w e also need the invariant scalar pion
density n defi ned in eq . (4), and according to eq . (15 )
w e also need the pressure P defi ned in eq . (6 ). S ince
they are invariant scalars, w e can tak e the ex plicit ex -
pressions given in eq . (10) and eq . (12) evaluated in the
R F G for a J üttner distribution. B y inserting these results
and eq s. (27 )– (29 ) into eq . (15 ) and eq . (16 ), w e obtain a
set of tw o diff erential eq uations for the tw o unk now ns T
and v. Tak ing uµ

R F F
= γ(1, v, 0, 0), uR F F

µ = γ(1,−v, 0, 0),

duR F F
0 = γ3 v dv and duR F F

x = −γ3 dv, w e obtain ex plic-
itly in R F F :

dT

dt
=

8π2

gπ m3
π

(4 a K0(a) + 8K1(a) + 12K3(a))
−1

γ2

×

(

dT 00
i

dt
− 2v

dT 0x
i

dt
+ v2 dT xx

i

dt

)

, (32)

dv

dt
=

2π2

gπ m3
π T

(

1

4
K1(a) +

3

4
K3(a) +

1

a
K2(a)

)−1

×

(

−v
dT 00

i

dt
+ (1 + v2)

dT 0x
i

dt
− v

dT xx
i

dt

)

. (33)

N otice, that the degeneracy factor gπ is actually cancelled
against the same factor contained in the scalar particle
density n of energy momentum components, see eq . (10).
In the limit of vanishing pion mass mπ → 0 the eq s. (32)
and (33) simplify to

dT

dt
= −

1

τ0

L

L − t

1

4
T γ , (34)

dv

dt
= −

1

τ0

L

L − t

1

4

v

γ
, (35 )

in agreement w ith the corresponding limit given in
eq . (9 ) in [26 ]4. The system of the tw o diff erential eq ua-
tions (32), (33), together w ith the invariant scalars n, e,
P in eq s. (10)– (12) and the components of the energy mo-
mentum tensor given in eq s. (27 )– (29 ) constitute a closed

4 N ote that in the case of a massless pion g as w e hav e, due
to J üttner distrib ution,

e = gπ

4 π

(2 π)3

Z

∞

0

dp p 3 ex p(−p /T ) = 3 gπ T 4/π2, (36 )

set of eq uations for the unk now ns T (t) and v(t) inside the
F O layer. O nce these both unk now s have been determined
self-consistently, all other q uantities lik e the particle den-
sity n(t), the pressure P (t) and the entropy density s(t)
inside the fi nite layer can be determined by their ex pres-
sions given in eq s. (10)– (13).

In our investigation, w e are interested on the impact
of in-medium pion mass modifi cation on the F O pro-
cess. Therefore, w e have to implement a temperature-
dependent pion mass mπ(T ) in the given eq uations.
The results of such an investigation can then be compared
w ith the corresponding fi ndings w here a vacuum pion mass
mπ or massless pions are implemented5.

4 Pion mass shift at finite temperature

Typical conditions inside the F O layer are high tempera-
tures, typically betw een 100 M eV ≤ T ≤ 17 5 M eV . S uch
ex treme conditions imply a strong modifi cations of the
hadrons in respect to their mass, coupling constants and
decay rates are ex pected. O ne aim of our investigation is
to evaluate how strong the impact of the pion mass shift
on the k inetic F O process of a pion gas is. The k inetic F O
process of a pion gas concerns elastic interactions among
these particles and how these elastic scatterings cease.
Therefore, w e have to determine the mass modifi cation
of pions embedded in a pion gas w ith elastic scatterings
among these particles. H ow ever, the impact of non-elastic
interactions on the mass modifi cation of pions becomes
relevant for a description of the chemical F O process.

4.1 Pion mass in vacuum

F irst, let us briefl y re-consider the mass of a pion in vac-
uum, defi ned as pole mass of the pion propagator:

Πa
π(p) = i

∫

d4x eip x 〈TW Φ̂a(x)Φ̂a †(0)〉0

=
1

p2−
o
m

2

π −Σa
π(p) + iε

, (38)

w here 〈Ô〉0 = 〈0| O| 0〉 is the vacuum ex pectation value of

an operator Ô, a = 1, 2, 3 is the isospin index , TW is the

w hile in [2 6 ] a B ose g as w as assumed for the E oS:

eB o se = gπ

4 π

(2 π)3

Z

∞

0

dp p 3 [ex p(p /T ) − 1 ]−1 = gπ π2 T 4/30 .

(37 )
T he diff erence is only marg inal. H ow ev er, in eq . (9 ) of ref. [2 6 ]
w e hav e actually to imply the relation nB o se = eB o se/(3 T ) =
gπ π2 T 3/9 0 v alid for massless pions, to g et the ag reement
stated ab ov e.

5 W e note, how ev er, that the in-medium modifi ed pion mass
not only chang es slig htly the distrib ution function, b ut also
the pionic E oS and corresponding ly the ex pansion dy namics,
e.g. [42 ]. W e note, that such a consideration could also b e inv es-
tig ated, w ithin the ex panding model v ery recently dev eloped
in [43].
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Wick time ordering, Φ̂a is the second-quantized pion field
operator and Σa

π is the self-energy of pion a in vacuum.

The parameter
o

mπ is the so-called bare pion mass which
enters the Lagrangian of the effective hadron model of
QCD. The physical pion mass is defined as the pole of
propagator, eq. (38), i.e. as the self-consistent solution of

m2

π =
o

m
2

π + Re Σπ(p2 = m2

π). (39)

The vacuum pion mass is m0
π = 135.04MeV, m±

π =
139.63MeV. Despite the enormous effort in the quantum
field theory, a rigorous derivation of the vacuum pion mass
from first principles of QCD has not been found so far.
That means the vacuum mass of any hadron cannot be
obtained from fundamental QCD without further assump-
tion or new parameters. However, there are promising and
sophisticated approaches which have provided some in-
sights into this very involved issue. Among them there
are chiral perturbation theory, lattice gauge theory, cur-
rent algebra, Dyson-Schwinger approach, Nambu-Jona-
Lasinio model and QCD sum rules, which provide a link
between the quark degrees of freedom of underlaying QCD
and the hadronic degrees of freedom. Such approaches al-
low a derivation of the so-called Gell-Mann–Oakes-Renner
(GOR) relation [44,45],

m2

π f2

π = −2mq 〈q̂q̂〉0, (40)

which allows to determine the pion mass in vacuum from
the microscopic QCD quantities current quark mass mq

and chiral quark condensate at x = 0,

〈q̂q̂〉0 =
1

2
〈ûû + d̂d̂〉0. (41)

Typical values are mq = (mu +md)/2 = 5.5MeV, 〈q̂q̂〉0 =
−(245MeV)3; recall, fπ = 92.4MeV is the pion decay
constant. With these given numerical values, the GOR
relation yields mπ = 138MeV. The pion decay constant
can be defined by

〈0|Âa
µ(0)|πb(q)〉 = −i fπ qµ δab, (42)

where the isospin indices a, b = 1, 2, 3 and

Âa
x(x) = Ψ̂(x) γµ γ5

τa

2
Ψ̂(x) (43)

is the ax ial vector current operator, e.g . [46]; τa are the

P auli spin matrices, and Ψ̂ = (û, d̂)T. F rom eq. (42) we
obtain the ex pression for the pion decay constant in vac-
uum,

fπ = i
qµ

q2
〈0|Âa

µ(0)|πa(q)〉 , (44)

where, due to isospin symmetry, a can be chosen arbi-
trarily, e.g . a = 3 (i.e. there is no sum over index a).
It should be noted that with the aid of LSZ reduction for-
malism [47 ,48], the ex pression (44) can be rewritten as
vacuum ex pectation value over the scalar operator

f̂π(0) ≡

i
qµ

q2

∫

d4y ex p(−iqy)
(

�y+m2

π

)

TWÂa
µ(0) Φ̂a †(y), (45)

that means we basically have

fπ = 〈f̂π〉0. (46)

4.2 Pion mass at finite temperature

Now let us consider the case of pions in-medium. At fi-
nite temperature the pions move in a hot and dense bath
of hadrons. Accordingly, the in-medium pion propagator
reads

Πa
π(p, T ) = i

∫

d4x eip x 〈TW Φ̂a(x)Φ̂a †(0)〉T

=
1

p2−
o

m
2

π −Σa
π(p, T ) + iε

. (47 )

The thermal Gibbs average 〈Ô〉T of an operator Ô is de-
fined by

〈Ô〉T =
Tr〈Ô ex p(−β Ĥ)〉

Tr〈ex p(−β Ĥ)〉
=

∞
∑

n= 0

〈n|Ô ex p(−β Ĥ)|n〉

∞
∑

n= 0

〈n| ex p(−β Ĥ)|n〉
,

(48)
where β = 1/T . In general, for temperatures T ≥ Tc quark
and gluon degrees of freedom would have to be included,
i.e. the sum in eq. (48) runs in general over quark and

gluon eigenstates and over hadron eigenstates of Ĥ. How-
ever, in our investigation the temperatures are T ≤ Tc, i.e.
the operator Ĥ is here an effective Hamiltonian describing
the hadron system under consideration. Accordingly, we
consider |n〉 as hadron eigenstates of Ĥ, and the sum runs
over the spectrum of all these hadron eigenstates |n〉. F ur-
thermore, throughout our considerations we are interested
on the Gibbs average of operators at x = 0, i.e. we always
have 〈Ô〉T = 〈Ô(x = 0)〉T . As in vacuum, the pion pole
mass at finite temperature is defined as the self-consistent
solution of

m2

π(T ) =
o

m
2

π + Re Σπ(p2 = m2

π(T ), T ). (49)

F rom this equation it becomes obvious why there is an
in-medium modification of the pion mass: just because
the self-energy Σπ(p, T ) is now temperature dependent,
which changes the position of the pole mass compared to
vacuum. Such a change of the pole position is caused by
elastic interactions and non-elastic interactions among the
particles. To find an ex pression for the temperature depen-
dence of the pion mass, we will follow a similar way as in
vacuum, i.e. we will apply the in-medium GOR relation.
E specialy, it is a well-known fact that the GOR relation
continues to be valid also at finite temperatures, at least
up to the order O(T 6) [49–55]:

m2

π(T ) f2

π(T ) = −2mq 〈q̂q̂〉T . (50)

We will take relation (50) as a given fact, which would al-
low a determination of the temperature dependence of the
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pion mass; the current quark mass mq as a fundamental
parameter of QCD is of course independent of tempera-
ture, while the constituent quark mass Mq is temperature
dependent. For that we would have to know the tempera-
ture dependence of the chiral condensate and of the pion
decay constant. That means, in the generalization of the
vacuum expectation values in eqs. (41) and (46), we have
now to determine the expressions

〈q̂q̂〉T =

∞
∑

n=0
〈n|q̂q̂ exp(−β Ĥ)|n〉

∞
∑

n=0
〈n| exp(−β Ĥ)|n〉

, (5 1)

fπ(T ) =

∞
∑

n=0
〈n|f̂π exp(−β Ĥ)|n〉

∞
∑

n=0
〈n| exp(−β Ĥ)|n〉

, (5 2)

where the operator f̂π is defi ned in eq. (45 ). B oth of these

expressions, 〈q̂q̂〉T and fπ(T ) = 〈f̂π〉T , have b een evalu-
ated b y means of several approaches. The aim is to fi nd an
expression b oth for the chiral condensate and the pion de-
cay constant at fi nite temperature and consistently within
the kinetic model description. E specially, in our approach
there are only pions. A ccordingly, the G ib b s average of an
operator Ô runs over the diagonal pion states only, i.e.

〈π|Ô|π〉, 〈ππ|Ô|ππ〉, . . . [5 6,5 7 ], b ut does not include the
diagonal matrix elements of heavier hadrons like kaons,
〈K±|Ô|K±〉, etc. S uch an approximation can b e justi-
fi ed, since at low temperatures T ≤ Tc, pion states domi-
nate the thermal average, while states containing heav-
ier mesons with a mass mn > mπ are weighted with
their corresponding B oltzmann factor ∼ exp(−mn/ T ), i.e.
they are exponentially suppressed [19 ,20 ]. For instance,
in refs. [19 , 5 8] contrib utions of heavier mesons to the
chiral condensate at fi nite temperature have b een stud-
ied, where only marginal corrections were found: 5 percent
corrections at T = 10 0 M eV and 10 percent corrections at
T = 15 0 M eV . The G ib b s average (48) can b e further ap-
proximated b y one-pion states [5 8– 60 ],

〈Ô〉T = 〈Ô〉0

+

3
∑

n=1

∫

d3p

(2π)3 2 p0
〈πn(p)|Ô|πn(p)〉 exp

(

−
p0

T

)

+O
(

T 4
)

. (5 3 )

The contrib utions of the next higher order O(T 4) are con-
sidered in appendix C, according to which we will neglect
multi-pion states in the temperature region considered,
see also refs. [5 6,5 7 ]. The pion states are normalized b y

〈πn(p1)|π
m(p2)〉 = 2 p0

1 (2π)3 δ(3)(p1 − p2) δnm, (5 4)

with isospin indices n, m = 1, 2, 3 . W ith the aid of eq. (5 3 )
and according to eqs. (5 1) and (5 2), we ob tain

〈q̂q̂〉T = 〈q̂q̂〉0

+

3
∑

n=1

∫

d3p

(2π)3 2 p0
〈πn(p)|q̂q̂|πn(p)〉 exp

(

−
p0

T

)

+O
(

T 4
)

, (5 5 )

fπ(T ) = fπ

+ i
qµ

q2

3
∑

n=1

∫

d3p

(2π)3 2 p0
〈πn(p)|Âa

µ|π
a(q)πn(p)〉

× exp

(

−
p0

T

)

+ O
(

T 4
)

, (5 6)

where in eq. (5 6) the L S Z reduction of the pion state πa(q)
has b een transformed b ack just after the thermal G ib b s
average. The pion matrix elements can b e determined us-
ing the soft-pion theorem [5 8,61– 64] b y means of which
we ob tain (see eqs. (B .5 )– (B .8) in appendix B )

〈q̂q̂〉T = 〈q̂q̂〉0

(

1 −
1

8

T 2

f2
π

B1

(mπ

T

)

)

+ O
(

T 4
)

, (5 7 )

fπ(T ) = fπ

(

1 −
1

12

T 2

f2
π

B1

(mπ

T

)

)

+ O
(

T 4
)

, (5 8)

mπ(T ) = mπ

(

1 +
1

48

T 2

f2
π

B1

(mπ

T

)

)

+ O
(

T 4
)

, (5 9 )

for the next higher order O(T 4) see appendix C. In order
to derive relation (5 9 ), we have inserted eqs. (5 7 ) and (5 8)
into the G O R relation at fi nite temperature, eq. (5 0 ), as
well as the G O R in vacuum, eq. (40 ), has b een applied.
The function is6

B1(z) =
6

π2

∫ ∞

z

dx
√

x2 − z2 exp(−x) =
6

π2
z K1(z),

lim
z→0

B1(z) =
6

π2
. (61)

The results (5 7 )– (5 9 ) are consistently valid for a pion gas
approximated b y a B oltzmann gas, i.e. with elastic inter-
actions among the pions. H ere, we will require the appli-
cab ility of eqs. (5 7 )– (5 9 ) in a temperature region T ≤ Tc,
where the distance b etween pions is still large7, and where
the correlation b etween pions is still small [65 ,66].

A ccording to eq. (5 9 ) the pion mass increases with in-
creasing temperature, in line with other theoretical inves-
tigations. E specially, more sophisticated approaches yield

6 In case w e w ould hav e taken a B ose distrib ution in eq . (53),
then in eq s. (57 )– (59 ) the function B1 w ould hav e to b e re-
placed b y the function B2:

B2(z) =
6

π2

Z

∞

z

dx
p

x2
− z2

1

ex p(x) − 1
, lim

z→0

B2(z) = 1.

(60 )
H ow ev er, the diff erence for the pion mass shift using B1 or B2

is marg inal in the temperature reg ion considered, see fi g . 1.
7 F or instance, at T = 150 M eV the mean free path of pions

is λ � 1/(n σ e la stic

π π
) � 2 fm.
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Fig. 1. The tem perature-d epend ent pion m ass mπ(T ): thick
solid linepoints show the pion m ass for a B oltz m ann g as ac-
cord ing to eq . (59 ). The straig ht d otted line represents a con-
stant pion m ass in v acuum , mπ = 1 38 M eV , accord ing to the
G O R relation in v acuum (4 0 ). The d ashed line represents the
pion m ass shift in case of a B ose d istrib ution, i.e. w hen in
eq . (59 ) function B1 is replaced b y function B2. The d iff erence
b etw een a pion m ass shift of a B oltz m ann g as and of a B ose g as
are m arg inal in the tem perature reg ion consid ered . The d otted
line (top) represents the result of C hPT accord ing to eq . (64 ),
allow ing a com parison of our results w ith C hPT.

very similar or even the same results for the pion mass
shift, e.g. chiral perturbation theory (ChPT) [67], Nambu-
Jona-Lasinio model [68], QCD sum rules [69,70], linear
sigma model [71–74], mean field approximation [75] and
virial expansion [76]. For instance, we can compare our
findings (57)–(59) with the results of ChPT, since at or-
der O(T 2) the pions are treated as free particles within
ChPT, e.g. [77]. For 〈q̂q̂〉T [19,78], for fπ(T ) [77] and for
mπ(T ) [51,77], the ChPT yields the following expressions:

〈q̂q̂〉T = 〈q̂q̂〉0

(

1 −
1

8

T 2

f2
π

)

+ O
(

T 4
)

, (62)

fπ(T ) = fπ

(

1 −
1

12

T 2

f2
π

)

+ O
(

T 4
)

, (63)

mπ(T ) = mπ

(

1 +
1

48

T 2

f2
π

)

+ O
(

T 4
)

. (64)

The diff erence between our results given in eq s. (57)–(59)
and the results of ChPT given in eq s. (62)–(64) simply
consists in the function B1, refl ecting the fact that ac-
cording to the above-mentioned references the ChPT con-
siders a B ose gas and the limit B2 → 1 (i.e. chiral limit
mπ → 0). The result given in eq . (62) has also been
derived in [79] and confirmed later on within the sigma
model [80]. The given result in eq . (63) is confirmed, e.g.

in [56,80–82]. In this respect we should refer the inter-
ested reader to ref. [82] where a Páde approximation of
fπ(T ) has been established, valid for arbitrary tempera-
tures T ≤ Tc. Nonetheless, to apply that result fπ(T ) one
needs a Páde approximation for 〈q̂q̂〉T as well in order to
be consistent within the entire framework . W e also refer

to [54,55] where a stronger decrease of the pion decay con-
stant fπ(T ) and a stronger increase of pion mass mπ(T )
for high temperatures were found within the framework of
Dyson-S chwinger eq uations.

It is worth mentioning, that for in-medium pion mass
shift there is an experimental result available [83–86],
namely for the case of a deeply bound pionic state with
a π− at finite baryonic density. E specially, a significant
pion mass upshift of 19.3± 2.7 M eV in 207 Pb, i.e. approx-
imatly at nuclear saturation density n0 � 0.17 fm−3, has
been found.

A nother important experimental fact concerns the
constituent q uark number scaling recently found [87,88].
S uch a scaling refers to an evident dependence of the
hadron elliptic fl ow v2 on the number of constituent q uark s
in the hadron under consideration. This experimental
fact can be understood by assuming that FO and pre-
hadronization after QG P occurs at an intermediate con-
stituent q uark stage [89,90]. A ccordingly, the pre-hadrons
are made of constituent q uark s which have a mass of
about Mq � (200–300) M eV . For the pre-pions (this ar-
gumentation is not valid for all the other hadrons, be-
cause they are considerably heavier than the pions) in
QG P it would imply a mass much higher than their vac-
uum mass mπ � 138 M eV . From this point of view a mass
increase with increasing temperature and baryon density
is in agreement with these experimental facts. Indeed,
QCD sum rules [52] and the QCD Dyson-S chwinger eq ua-
tion [54,55] predict a very strong pion mass up-shift near
Tc. In this respect we note that a q uark clustering lik e qq,
qq, g g , qg etc. in the sQG P state has also been proposed
in [91,92].

5 Results and discussion

In this section we will present and discuss the solution
of the coupled set of diff erential eq uations (32) and (33)
for massive pions, once with the vacuum pion mass and
once with a temperature-dependent pion mass according
to eq . (59). In order to ascertain the impact of pion mass
itself on the FO process, we will compare these results
with the case of massless pions.

The diff erential eq uations (32) and (33) are solved
with the aid of the R unge-K utta method [93]. The limit
mπ → 0 given in eq s. (34) and (35) has been solved in-
dependently using M A PLE [94], i.e. used as independent
verification. The two boundary conditions of these first-
order diff erential eq uations are the initial temperature on
the pre-FO hypersurface, Tp re-F O � Tc = 175 M eV , and
the initial fl ow velocity on the pre-FO hypersurface of the
finite layer, vp re-F O = 0.5 c. B oth of these are typical val-
ues; note that such initial temperatures at small bary-
onic densities can be reached for instance at S PS [95].
In the numerical evaluation we have tak en τ0 = 1 fm/c
and L = 10 τ0. The results are plotted in figs. 2 and 3.

Let us first consider the temperature of the interacting
component plotted in fig. 2. The temperature decreases in
time, because the number of interacting particle decreases
in time, see also fig. 4. The diff erence between the case
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Fig. 2. T emperature of the interacting component as a func-
tion of time, w hen the matter crosses a fi nite freeze-out lay er.
In the numerical ev aluation w e hav e taken τ0 = 1 fm/c and
L = 1 0 τ0. T hree situations of freeze-out are considered: a pion
g as w ith a temperature-dependent pion mass mπ(T ) (solid line,
top), the case of pions w ith a constant v acuum pion mass mπ

(dashed line, middle), and for massless pions mπ = 0 (dotted
line, b ottom). A s the sy stem ex pands, the temperature of the
interacting component drecreases in all three cases, since the
particles w ith larg er momentum freeze out faster. T he lig hter
the pions are, the faster the freeze-out proceeds. In the left
inset the marg inal impact of the pion mass shift ev en at ex -
tremly hig h temperatures is show n. T he rig ht inset show s the
fast drecrease of temperature at the post– freeze-out surface.
T he sub stantial diff erence b etw een the curv es for massiv e pi-
ons and massless pions show s how important the impact of the
pion mass on the freeze-out process is.

of a temperature-dependent pion mass mπ(T ) (solid line)
and the case of massive pions with constant vacuum mass
mπ (dashed line) is marginal. The reason for that can be
understood by means of the left inset of fig. 2: at high
temperatures T � Tc the pion suffers a mass up-shift of
about 5 percent of its vacuum mass, see fig. 1. And indeed,
at such high temperatures we find a difference of about 5
percent in the temperature slope between the case mπ(T )
and mπ. However, at such high temperatures the impact
of a pion mass is small anyway, because the averaged mo-
mentum of pions due to thermal motion is considerably
higher than the pion mass itself. At lower temperatures
the impact of a pion mass on the FO process is stronger
because the averaged momentum of pions becomes compa-
rable with the pion mass itself. However, already at mod-
erate high temperatures of about T � 135MeV the pion
mass up-shift is less than 5 percent, see fig. 1, and we can-
not expect any longer a significant impact of the mass shift
on the FO process. In fact, while the in-medium modifica-
tion of the pion mass shift has almost no impact, it turns
out that there is a significant deviation between the case
of massive pions and massless pions. This is due to the
fact mentioned, that at moderate high temperatures the
pion mass becomes very comparable to the averaged mo-
mentum of the pion. In the right small figure implemented
in fig. 2 we can see the fast dropping of temperature at
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Fig. 3 . V elocity of the interacting component as a function
of time, w hen the pions cross a fi nite freeze-out lay er. In the
numerical ev aluation w e hav e taken τ0 = 1 fm/c and L = 1 0 τ0.
T hree cases are considered: massiv e pions w ith a temperature-
dependent pion mass mπ(T ) (solid line, top), massiv e pions
w ith a constant v acuum pion mass mπ (dashed line, middle),
and massless pions mπ = 0 (dotted line, b ottom). T he line of
in-medium modifi ed pion mass (solid line) is ab ov e the line of a
constant pion mass. T his is due to the fact that the pion mass
is a b it larg er in the former case. D uring the freeze-out process
the fastest particles leav e the interacting matter component
fi rst, so the v elocity of the remaining non-interacting compo-
nent decreases. T he left inset show s the tiny impact of the pion
mass shift, w hile the rig ht inset show s the fast dropping of v e-
locity at the v ery end of the freeze-out process. T he remarkab le
diff erence b etw een the curv es for massiv e pions and massless
pions show s the importance of pion mass on the freeze-out
process.

the end of the FO process. This is because of the factor
L/ (L−t) in front of eq . (32) which becomes infinite at the
post-FO side of the hypersurface.

L et us now consider the fl ow velocity of the interacting
component plotted in fig. 3. The fl ow velocity decreases in
time, because the number of interacting particles also de-
creases, see fig. 4 . As in the case of temperature, the differ-
ence between a FO scenario with a temperature-dependent
pion mass mπ(T ) (solid line) and a constant vacuum pion
mass mπ (dashed line) is negligible. The reason for such a
behaviour is the very same as in the case of temperature:
at the pre-FO side of the layer, there is a remark able pion
mass up-shift of about 5 percent compared to the vacuum
pion mass, which implies roughly a 10 percent impact on
the fl ow velocity, as seen in the left inset of fig. 3. How-
ever, at such high temperatures T � Tc the pion mass is
considerably smaller than the averaged pion momentum
due to thermal motion, so that the impact of a pion mass
is negligible. As the system cools down, the pion mass ap-
proaches rapidly the vacuum pion mass, see fig. 2. That
means, at moderate temperatures of T � 135MeV, where
a pion mass starts to have some impact on the FO pro-
cess, the pion mass up-shift is already less than 5 percent,
so that the impact of the in-medium modification of the
pion mass on the FO process becomes negligible. How-
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Fig. 4. D ensity of the interacting com ponent as a function of
tim e, w hen the pions cross a fi nite freeze-out layer. In the nu-
m erical ev aluation w e hav e tak en τ0 = 1 fm /c and L = 1 0 τ0.
Three cases are consid ered : m assiv e pions w ith a tem perature-
d epend ent pion m ass mπ(T ) (solid line), m assiv e pions w ith
a constant v acuum pion m ass mπ (d ashed line), and m ass-
less pions mπ = 0 (d otted line). D uring the freeze-out pro-
cess the particles leav e the interacting m atter com ponent, so
the d ensity of the rem aining interacting particles d ecreases.
F or the strong d ecrease of the pion d ensity w e recall that
for low tem peratures the particles d ecreases ex ponentially:
lim T→0 n(T ) = gπ/(4π2)m2

π T
p

2π/a ex p(−a); a = mπ/T .

ever, there is a considerable difference between the case of
massive pions and massless pions, as can be seen in fig. 3.
The right inset implemented in fig. 3 shows that at the
post-FO side of the hypersurface the velocity falls down
rapidly because of the factor L/(L − t) which becomes
infinite at times near L.

Figure 4 shows the rapid decrease of the particle den-
sity of the interacting component. More than 90 percent of
the particles get frozen out before a time scale of t � 3 τ0

is reached, both for the massive and massless case.
In heavy-ion collision experiments the relevant experi-

mental parameters are of course not the temperature T (t)
or flow velocity v(t) of the interacting component. Instead,
via the experimentally accessible spectrum of the particles
dN/d3p one measures the post-FO distribution, which is
formed in the applied model at the outer hypersurface,
fFO(px) ≡ ff (t = L, px). The Cooper-Frye formula [96]

p0

dN

d3p
=

∫
σ

dσ̂µ pµ fFO(p)

=

∫
dV p0 fFO(p) ∼ p0 fFO(p) (65 )

allows us to calculate the particle spectrum (dσ̂µ =
(dV, 0, 0, 0) is the time-lik e normal vector of an infinites-
imal element of the post-FO hypersurface). In the one-
dimensional model used, the volume V of the pionic fire-
ball is ill-defined8, so that only a q ualitative comparison

8 S ince the v olum e of the pionic fi reb all is not d efi ned , the
g lob al energ y and m om entum conserv ation cannot b e applied .
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Fig. 5 . Top: m assless pions. S olid line: F O d istrib ution
function fF O (px) = ff (t = L,px), ev aluated b y m eans of
eq . (25) w ith T (t) and v(t) ev aluated prev iously, see fi g s. 2
and 3. D ashed line: a fi t of the ab ov e solid line b y a therm al
(i.e. Jüttner) d istrib ution w ith T = 1 25 M eV and v = 0 .49 c.
B oth d istrib ution functions peak sharply. At low m om enta px,
there is a consid erab le d iff erence b etw een a therm al d istrib u-
tion and the F O d istrib ution function, i.e. the F O d istrib ution
function fF O (px) ev aluated w ithin the k inetic m od el applied is
ob v iously not a therm al d istrib ution. This is actually one of the
m ain results of the k inetic F O m od el. B ottom : m assiv e pions.
S olid line: F O d istrib ution function fF O (px) ≡ ff (t = L,px)
ev aluated b y m eans of eq . (25) w ith T (t) and v(t) ev aluated
prev iously, see fi g s. 2 and 3, and w ith an in-m ed ium pion m ass
mπ(T ). D ashed line: a fi t of the ab ov e solid line b y a ther-
m al Jüttner d istrib ution w ith T = 1 40 M eV and v = 0 .4 c and
mπ(T ). There is a consid erab le d iff erence b etw een a therm al
d istrib ution and the F O d istrib ution function for a m assiv e
pion g as at low m om enta px, a result w hich is in ag reem ent
w ith the correspond ing statem ent in the m assless case. The
d istrib utions for m assless and m assiv e pions peak at d iff erent
m om enta px! This is ex pected to eff ect fl ow m easurem ents. The
sharp peak is sm eared out after sum m ing up for fl uid elem ents
w ith d iff erent pre-F O fl ow v elocities.

with experimental data, for instance the transverse spec-
trum, is possible, i.e.

dN
dpx

∼ fFO(px), where px is locally

H ow ev er, g lob al conserv ation law s can lead to d iff erent results
if and only if the curv ature of the surface is larg e, thus lead ing
to a sig nifi cant d iv erg ence. S uch a situation has b een consid -
ered in [9 7 ], w here also related issues concerning an ex pand ing
system are d iscussed .
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Fig. 6. Contour plot of the F O distrib ution function,
fFO(px, py) ≡ ff (t = L, px, py), ev aluated b y means of eq . (2 5)
w ith T (t) and v(t) ev aluated prev iously , see fi g s. 2 and 3. T he
solid line is for the case of massiv e pions mπ(T ), the dashed
line for the case of massless pions. T here is no curv e for the
case of massiv e pions if fFO = 1 0 −2 b ecause the F O distrib u-
tion function in the case of massiv e pions is smaller than this
v alue, see fi g . 5. It illustrates the importance of pion mass for
an accurate F O description. T he non-thermal asy mmetry of
the post-F O particles is a strong and dominant feature, ev en
for a time-like normal F O hy persurface or lay er.

pointing out in transverse direction. Due to the marginal
impact of in-medium pion mass modification it is mean-
inful to compare the case of massive pions mπ(T ) with
the case of massless pions, and both of each with a simple
thermal distribution.

In fig. 5 the frozen-out distribution functions fFO(px)
for massless and massive pions are plotted and compared
with a thermal distribution. It is shown that at low mo-
menta the distribution function fFO(px) evaluated within
the kinetic FO model differs considerably from a simple
thermal distribution, both for massless and massive pions.
This confirms a very recent FO evaluation where a grad-
ual FO with Bjorken expansion and with a constant pion
mass mπ = 0.138MeV has been considered [43,98]. Notice
that the peak position of the distribution function for the
case of massive pions differs from the peak position for a
massless pion gas. This is expected to effect experimental
flow measurements.

In fig. 6 the contour plot fFO(px, py) for the massive
case mπ(T ) and the massless case mπ = 0 is compared.
For large momenta p there is only a slight difference be-
tween the FO of massive and massless pions. However, at
low p there is a significant deviation between a massive
pion gas and the massless case. Figures 5 and 6 demon-
strate that the mass of pions is relevant for an accurate
FO description.

6 Summary

The strong interacting quark gluon plasma is not directly
accessible via experiments. In fact, one has to trace back
from the experimental data to the initially formed new

state of matter during an ultra-relativistic heavy-ion col-
lision. This implies a detailed and accurate description of
all subsequent stages of the heavy-ion collision process.
The kinetic FO process is basically the last stage of the
collision after which the particles move freely towards the
detectors. Thus, kinetic FO has to be considered as last
source of all the observables. Therefore, an accurate de-
scription of kinetic FO is compelling for an accurate un-
derstanding of the initial stages produced by heavy-ion
collisions. Within our FO model of a pion gas described
by a Boltzmann gas, we have considered the problem how
strong the impact of an in-medium modification of the
pion mass on the kinetic freeze-out process is.

We have considered the kinetic FO process through a
finite layer for a pion gas with finite pion mass and with
massless pions. Throughout the investigation, all calcula-
tions have been consistently performed within the model
of a pion gas with elastic scatterings among them and
approximated by a Boltzmann gas.

First, we have found, that there is a strong impact of
the finite pion mass on the FO process compared to a
FO process with massless pions. This result is highlighted
in figs. 2 and 3, where a significant modification of the
basic thermodynamical functions temperature T (t) and
flow velocity v(t) of the elastic interacting component of
a pion gas inside a finite FO layer has been found.

Hereafter, we have investigated how strong the impact
of an in-medium modification of the pion mass on the
FO process is. To determine the pion mass at finite tem-
perature, the generalized GOR relation at finite temper-
ature has been applied as a given fact, and the needed
expressions 〈q̂q̂〉T , fπ (T ) have been evaluated by a ther-
mal average over one-pion states. The needed pion matrix
elements were evaluated by the soft-pion theorem. E spe-
cially, the modification of effective pion mass is increasing
with increasing temperature, becoming significant around
100MeV and reaches � 5MeV at T � 180MeV, see fig. 1.

It has turned out that the impact of the in-medium
pion mass shift mπ(T ) on the FO process is marginal com-
pared to a massive pion gas with a constant pion mass mπ.
The physical reason for that can be understood as follows:
a significant pion mass shift occurs at high temperatures
T � Tc. However, at such high temperatures the impact
of the pion mass itself on the FO process is negligible be-
cause the momentum of thermal motion is sizebly larger
than the pion mass. During the FO process the tempera-
ture decreases rapidly, and after the initial ∼ 2 τ0 time it
was below T � 100MeV. But already at moderate temper-
atures T ≤ 135MeV, where the impact of the pion mass
on the FO process becomes relevant, there is no longer a
remarkable in-medium modification of the pion mass.

For a qualitative comparison with experimantal data
and in order to investigate the importance of a finite
pion mass for the FO process, in figs. 5 the FO distribu-
tion function fFO(px) has been plotted, both for massive
mπ(T ) and massless mπ = 0 pions. The FO distribution
functions have been compared with a thermal distribution.
It is shown that at low momenta there is a considerable
difference to a thermal spectrum, both for a massive and
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massless pion gas. The distributions peak at different mo-
menta px, which is expected to affect experimental flow
measurements. The contour plot in fig. 6 elucidates a re-
markable difference between massive and massless pions
at low momenta. Both figs. 5 and 6 show the importance
of a finite pion mass for an accurate description of the FO
process.

The numerical order of the in-medium pion mass shift
at finite temperatures used in our model calculation is in
some sense also encouraged from experiments which have
found a pion mass up-shift of 19.3 ± 2.7MeV around the
baryon saturation density n0 � 0.17 fm−3 [83–86]. How-
ever, we have to take into account that the in-medium
pion mass shift might be much more pronounced at high
temperatures T � Tc than at those used in our model
calculations. For instance, QCD sum rules [52] and QCD
Dyson-Schwinger equation [54,55] predict a strong pion
mass up-shift near Tc.

Such a strong in-medium modification of the pion
mass would be also in line with the argumentation of
quark pre-clustering inside the QGP for temperatures
higher but near the QCD phase transition at T ≥ Tc,
because the quarks will have a constituent quark mass
of about Mq � 200–300MeV, so that the mass of pre-
pions for such temperature regions would be much higher
than the vacuum pion mass. Our results indicate that an
earlier pre-hadronization and FO at higher temperatures
would increase the sensitivity on the changing of effective
pion mass.

From the experimental side, as mentioned in sect. 4,
such a conclusion is mainly supported by the experimen-
tal fact of the constituent quark number scaling, i.e. the
dependence of the hadron elliptic flow v2 on the number of
constituent quarks of the hadrons. Therefore, for a more
comprehensive analysis on how strong the impact of an
in-medium modification of the pion mass for an accurate
description of a heavy-ion collision process is, further in-
sides of (pre-)pion mass shift near (and beyond) the crit-
ical temperature Tc, both from theoretical as well as ex-
perimental side, are mandatory. Especially, the pion mass
modification caused by non-elastic scatterings among the
pions have to be evaluated in order to describe the chem-
ical FO process.

In summary, in our model study we come to the con-
clusion that, while a pion mass mπ has a significant impact
on the kinetic FO process, the temperature dependence of
the pion mass mπ(T ) is negligible for an accurate descrip-
tion of the kinetic FO process.
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Appendix A.

The function G±
n (n = 1, 2) is defined by

G±
n (mπ, v, T ) =

1

Tn+ 2

∫ ∞

0

dp p
(

√

p2 + m2
π

)n

×E1

( γ

T

√

p2 + m2
π ±

γ v p

T

)

, (A .1)

where E1 is a special case of incomplete Gamma-
function [99]

E1(x) =

∫ ∞

x

dt t−1 e−t. (A .2)

In the massless case we get the temperature-independent
limits

lim
mπ→0

G±
1 =

2

3

1

γ3

1

(1 ± v)3
,

lim
mπ→0

G±
2 =

3

2

1

γ4

1

(1 ± v)4
. (A .3)

The function Kn is the Bessel function of second kind [99],
defined by

Kn(z) =
2n n!

(2n)!
z−n

∫ ∞

z

dx e−x (x2 − z2)n−1/2 . (A .4)

Appendix B .

In this appendix we will evaluate the matrix elements
in eqs. (55) and (56) with the aid of the soft-pion the-
orem [58,61–64] (a derivation of the soft-pion theorem for
the here-used simplier case of “ free” pions can be found
in the appendix of ref. [100]) given by

lim
p2→0

lim
p1→0

〈πm(p2)|Ô(x)|πn(p1)〉 =

1

f2
π

〈0|

[

Q̂m
A ,

[

Ô(x), Q̂n †
A

]

−

]

−

|0〉, (B.1)

where Q̂n
A is the (time independent) axial charge, i.e. the

spatial integral over the zeroth component of the axial

vector current (43): Q̂n
A =

∫

d3
r Ân

0 (r, t), and Q̂
n †
A = Q̂n

A;

and n, m = 1, 2, 3 are the isospin indices. [Â, B̂]− = ÂB̂−

B̂Â is the commutator. Here, we are interested in the pion
matrix elements of the following two-quark operators at
x = 0:

Ô1 = q̂q̂ ≡
1

2

3
∑

i= 1

4
∑

α,β= 1

(γ0)αβ

(

ûi †
α ûi

β + d̂i †
α d̂i

β

)

, (B.2)

Ô2 = Â3
µ =

1

2

(

ûγµγ5û − d̂γµ γ5d̂
)

≡

1

2

3
∑

i= 1

4
∑

α,β= 1

(γ0γµγ5)αβ

(

ûi †
α ûi

β − d̂i †
α d̂i

β

)

, (B.3)
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where the Greek letters α, β denote Dirac indices, µ is the
Lorentz index, and i is the color index of quark fields. The
equal-time anti-commutators of the full QCD quark fields
read for quark operators of the same flavor

[q̂i
α(r1, t), q̂

j †
β (r2, t)]+ = δ(3)(r1 − r2) δαβ δi j , (B.4)

where [Â, B̂]+ = ÂB̂ + B̂Â is the anti-commutator, while
quark fields of different flavor anti-commute. Using iden-
tities like [Â, B̂Ĉ]− = [Â, B̂]+ Ĉ − B̂[Â, Ĉ]+ and the anti-
commutator relation (B.4) we obtain

lim
p2→0

lim
p1→0

〈πm(p2)|q̂q̂|π
n(p1)〉 = −

1

f2
π

〈0|q̂q̂|0〉 δmn, (B.5 )

lim
p2→0

lim
p1→0

〈π1(p2)|Â
3
µ|π

3(q)π1(p1)〉 =

−
1

f2
π

〈0|Â3
µ|π

3(q)〉 = i
1

fπ

qµ, (B.6 )

lim
p2→0

lim
p1→0

〈π2(p2)|Â
3
µ|π

3(q)π2(p1)〉 =

−
1

f2
π

〈0|Â3
µ|π

3(q)〉 = i
1

fπ

qµ, (B.7 )

lim
p2→0

lim
p1→0

〈π3(p2)|Â
3
µ|π

3(q)π3(p1)〉 = 0, (B.8)

where we have also used relation (42).

Appendix C.

In our model we have taken into account the Gibbs average
over one-pion states of an operator Ô, see eq. (5 3 ). H ere
we will consider the next order, i.e. the Gibbs average over
two-pion states of an operator Ô:

O
(

T 4
)

=
1

2!

3
∑

n,m= 1

∫

d3p1

(2π)3 2 p0
1

∫

d3p2

(2π)3 2 p0
2

× exp

(

−
p0
1

T

)

exp

(

−
p0
2

T

)

×〈πm(p2)π
n(p1)|Ô|πn(p1)π

m(p2)〉, (C.1)

where the factor (2!)−1 in front of (C.1) circumvents
a double counting by integrating over the permutations
p1 ↔ p2. W ith the aid of the soft-pion theorem we obtain
the pion matrix elements for the chiral condensate and
pion decay constant:

3
∑

n,m= 1

lim
p2→0

lim
p1→0

〈πm(p2)π
n(p1)|q̂q̂|π

n(p1)π
m(p2)〉

=
9

f4
π

〈0|q̂q̂|0〉, (C.2)

3
∑

n,m= 1

lim
p2→0

lim
p1→0

〈πm(p2)π
n(p1)|Â

3
µ|π

3(q)πn(p1)π
m(p2)〉

=
4

f4
π

〈0|Â3
µ|π

3(q)〉 = −i
4

f3
π

qµ, (C.3 )

where in eq. (C.3 ) we have applied eq. (42). By means of
these expressions we obtain

〈q̂q̂〉T = 〈q̂q̂〉0

(

1−
1

8

T 2

f2
π

B1+
1

128

T 4

f4
π

B2
1

)

+O(T 6), (C.4)

fπ(T )=fπ

(

1−
1

12

T 2

f2
π

B1+
1

288

T 4

f4
π

B2
1

)

+O(T 6), (C.5 )

mπ(T )=mπ

(

1+
1

48

T 2

f2
π

B1+
1

46 08

T 4

f4
π

B2
1

)

+O(T 6), (C.6 )

and B1 ≡ B1(mπ/ T ). A numerical evaluation shows that
the terms of order O(T 4) contribute at most a few per-
cent compared to the terms of order O(T 2) in the tem-
perature region we are interested in. W ithin the ChP T
approach very similar statements are found, but it should
be mentioned that in ChP T non-elastic particle interac-
tions y ield additional contributions to order O(T 4), while
eqs. (C.4)– (C.6 ) are the results for a pion gas with elastic
particle collisions only . The dy namical non-elastic interac-
tions among the pions change not only the given numerical
values in eqs. (C.4)– (C.6 ) but also the sign of the coeffi -
cients in front of the given order O(T 4), e.g . ref. [5 7 ], where
the result (C.4) is also mentioned. But we note again that
in ChP T the given coeffi cients of the order O(T 2) remain
untouched even when taking into account the contribu-
tions of non-elastic pion scatterings.

F urthermore, in a pion gas with elastic interactions
and to all orders in temperature we obtain by iteration

〈q̂q̂〉T =

〈q̂q̂〉0

(

1 −
1

8

T 2

f2
π

+

∞
∑

n= 2

(−1)n 1

n!

1

8n

T 2n

f2n
π

Bn
1

)

, (C.7 )

fπ(T ) =

fπ

(

1 −
1

12

T 2

f2
π

+
∞
∑

n= 2

(−1)n 1

n!

1

12n

T 2n

f2n
π

Bn
1

)

, (C.8)

mπ(T ) =

mπ

(

1 +
1

48

T 2

f2
π

+

∞
∑

n= 2

1

n!

1

48n

T 2n

f2n
π

Bn
1

)

, (C.9)

that means all higher orders are factorial suppressed
even at temperatures near Tc. A gain we underline that
eqs. (C.7 )– (C.9) are useful to study the impact of the pion
mass shift on the kinetic F O of a pion gas (elastic interac-
tions cease among the pions). H owever, they are not ap-
plicable for modelling the pion mass shift impact on the
chemical F O process of a pion gas (non-elastic interactions
cease among the pions), because then the non-elastic in-
teractions among the pions will change significantly the
given series of higher order.
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71. Å. Larsen, Z. Phys. C 33, 291 (1986).
72. C. Contreras, M. Loewe, Int. J. Mod. Phys. A 5, 2297

(1990).
73. A. Ayala, S. Sahu, Phys. Rev. D 62, 056007 (2000).
74. N. Petropoulos, AIP Conf. Proc. 739, 506 (2005); arXiv:

hep-ph/0406258.
75. A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto, G.

Pettini, Phys. Rev. D 46, 2203 (1992).



S. Zschocke and L.P. Csernai: Pion mass shift and the kinetic freeze-out process 363

76. A. Schenk, Phys. Rev. D 47, 5138 (1993).
77. J. Gasser, H. Leutwyler, Phys. Lett. B 184, 83 (1987);

188, 477 (1987).
78. H. Leutwyler, Proceedings of the International Conference

of High Energy Physics, Uppsala, 1987, Nucl. Phys. B
(Proc. Suppl.) 4, 248 (1988).

79. V.I. Eletsky, Phys. Lett. B 299, 111 (1993).
80. A. Bochkarev, J. Kapusta, Phys. Rev. D 54, 4066 (1996).
81. V.L. Eletsky, Ian I. Kogan, Phys. Rev. D 49, R3083

(1994).
82. S. Jeon, J. Kapusta, Phys. Rev. D 54, 6475 (1996).
83. T. Yamazaki, R.S. Hayano, K. Itahashi, K. Oyama, A.

Gillitzer, H. Gilg, M. Knülle, M. Münch, P. Kienle, W.
Schott, H. Geissel, N. Iwasa, G. Münzenberg, Z. Phys. A
355, 219 (1996).

84. T. Yamazaki, Nucl. Phys. A 629, 338c (1998).
85. A. Gillitzer, Nucl. Phys. A 639, 525c (1998).
86. T. Yamazaki, R.S. Hayano, K. Ithahashi, K. Oyama, A.

Gillitzer, H. Gilg, M. Knülle, M. Münch, P. Kienle, W.
Schott, W. Weise, H. Geissel, N. Iwasa, G. Münzenberg,
S. Hirenzaki, H. Toki, Phys. Lett. B 418, 246 (1998).

87. PHENIX Collaboration, Phys. Rev. Lett. 91, 182301
(2003).

88. STAR Collaboration, Phys. Rev. Lett. 92, 052302 (2004).
89. S.A. Voloshin, J. Phys. Conf. Ser. 9, 276 (2005).
90. S.A. Voloshin, Nucl. Phys. A 715, 379 (2003).
91. E.V. Shuryak, I. Zahed, Phys. Rev. D 70, 054507 (2004).
92. F. Karsch, S. Ejiri, K. Redlich, Nucl. Phys. A 774, 619

(2006).
93. J.D. Lambert, D. Lambert, Numerical Methods for Or-

dinary Differential Systems: The Initial Value Problem

(Wiley, New York, 1991).
94. M. Kofler, Maple V Release 4 (Addison-Wesley Publish-

ing Company, Bonn, 1996).
95. J. Cleymans, K. Redlich, Phys. Rev. C 60, 054908 (1999).
96. F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974).
97. V.K. Magas, L.P. Csernai, E. Molnar, Eur. Phys. J. A

31, 854 (2007).
98. V.K. Magas, L.P. Csernai, arXiv: nucl-th/0711.2981.
99. M. Abramowitz, I.A. Stegun, Handbook of Mathematical

Functions (Dover Publ. Inc., New York, 1970).
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