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Abstract. The kinetic freeze-out process of a pion gas through a finite layer with time-like normal is con-
sidered. The pion gas is described by a Boltzmann gas with elastic collisions among the pions. Within this
model, the impact of the in-medium pion mass modification on the freeze-out process is studied. A marginal
change of the freeze-out variables temperature and flow velocity and an insignificant modification of the
frozen-out particle distribution function has been found.

PACS. 24.10.Nz Hydrodynamic models — 25.75.-q Relativistic heavy-ion collisions

1 Introduction

One of the greatest discoveries in ultra-relativistic heavy-
ion physics has been the creation of the Quark Gluon
Plasma (QGP) at Super Proton Synchrotron (SPS) at
Conseil Européen pour la Recherche Nucléaire (CERN)
in 2000 [1] and at the Relativistic Heavy-Ion Collider
(RHIC) at Brookhaven National Laboratory (BNL) in
2005 [2]. In fact, there are compelling experimental signa-
tures which transformed the QGP from a theoretical pre-
diction into a precise observational science: elliptic flow vg,
jet quenching, strangeness enhancement and constituent
quark number scaling can hardly be understood without
the clear statement that this new state of matter has
been achieved. However, during the last years it turned
out that the produced new state of matter is more sim-
ilar to a strongly coupled or strongly interacting Quark
Gluon Plasma (sQGP), which has more characteristics of
a liquid than of a weakly interacting plasma of quarks
and gluons [3-10]; for a recent comment on the term
“sQGP” see [11]. While there is no doubt about a QGP
phase transition of Quantum Chromodynamics (QCD) at
T. = (173+8) MeV at vanishing baryonic densities [12], it
seems that a QGP of freely moving partons can be reached
only at higher energy densities and temperatures beyond
the critical temperature T¢.. These new insights imply that
further experimental signatures are certainly needed to
understand not only the physical features of sQGP, but
also how the new experimental facts do coincide with the
predictions of the fundamental theory of strong interac-
tions. Further insights into this more complicated new
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state of matter are now expected from the intended ex-
periments at the Large Hadron Collider (LHC) at CERN
starting up very soon. In the following we will not distin-
guish between the terms QGP and sQGP, but want to keep
in mind that the new state of matter is more complicated
than expected from the early theoretical predictions.

The evidence of a QGP cannot be proven directly. In-
stead, we have to trace from the observables at the detec-
tors back to this very early stage of the heavy-ion colli-
sion. Obviously, the more accurate the description of the
subsequent processes after forming the QGP is, the more
accurate will be the picture and the understanding of this
new state of matter.

One promising theoretical method in this respect is
the hydrodynamical approach based on the assumption of
local thermal equilibrium. According to several theoret-
ical studies, the produced QGP reaches a local thermal
equilibrium very rapidly within (0.3-0.5) fm/c for gluons
and (0.5-1.0) fm/c for the quarks [13-16]. Experimental
data indicate a source size of less than 10fm and less
than 10fm/c time extent. This strongly indicates a rapid
pre-hadronization [17,18], which is also supported by the
recent observation of constituent quark number scaling
of collective flow data. Especially, when the expanding
system reaches a temperature T' < T, hadron states of
high multiplicity, containing mostly pions, e.g. [19,20], are
formed. The pre-thermalization of quarks and quark clus-
ters or pre-hadrons results in the local thermalization of
pions [21,22], and even most of the low-lying (s) hadronic
states.

Subsequently after or even during the hadronization,
the chemical and thermal Freeze-Out (FO) of the hadrons
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happens, where the hydrodynamical description breaks
down and transport theoretical approaches are needed.
First, the inelastic collisions among the hadrons cease,
that is the so-called chemical FO at Tt,. Immediately or
simultaneously followed by the thermal FO at Tiy, where
also the elastic collisions among the hadrons are abon-
dened. The FO process is essentially the last stage of the
heavy-ion collision process and the main source for observ-
ables. An accurate FO description is therefore a basis for
an accurate understanding of the initial states produced
in ultra-relativistic heavy-ion collisions.

A rigorous approach of the FO scenario from first prin-
ciples is given by the Boltzmann transport equation which
is a rather difficult assignment of a task. Even more, re-
cently it has been recognized that the basic assumptions
of the Boltzmann transport equation are spoiled at the
last stages of the kinetic FO process [23,24], and a more
involved modified Boltzmann transport equation has to
be solved. The reason for that is because the character-
istic lenght scale, describing the change of the distribu-
tion function, becomes smaller than the mean free path
A at the last stages of the kinetic FO process. Thus, phe-
nomenological models which can describe the kinetic FO
process in a simplified manner by taking into account the
main features of a typical FO process only, become rather
important.

Such a phenomenological description of the kinetic FO
process is usually modeled by two different, in some sense
even opposite, methods: a FO modeling through a hy-
persurface of zero thickness, and a FO modeling through
an ininite space-time volume. Recently, the kinetic FO
through a layer with finite thickness has been developed,
for the case of the space-like normal in [25] and for the
case of the time-like normal in [26]; see also [27,28]. This
phenomenological approach makes a bridge between these
mentioned two extreme FO models. So far, the impact of
in-medium modifications of hadrons on the FO process has
been considered only in refs. [29-31]. In our investigation
we will apply this recently developed FO model and con-
sider a kinetic FO scenario through a finite time-like layer
to study the impact of in-medium pion mass modification
on the FO process.

The paper is organized as follows: in sect. 2 we give
the needed basics of a transport theoretical description of
a hot and dense pion gas. The kinetic FO process through
a finite time-like layer is considered in sect. 3. The finite-
temperature mass modification of pions, embedded in a
Boltzmann gas with elastic interactions among the pions,
is examined in sect. 4. In sect. 5 we present the results
obtained, and in sect. 6 a summary is given. Throughout
the paper we take c = h = kg = 1.

2 Transport theoretical description of a pion
gas

Consider a system of N not necessarily conserved num-
ber of particles described by the one-particle distribution
function f(x,p). This invariant scalar function is normal-
ized by N = [d*rd3p f(z, p). Throughout the paper we
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consider a dilute pion gas where only elastic scatterings
among the pions are allowed, so that z# = (¢,r) is the
four-coordinate and p* = (p°, p) is the four-momentum of
the pion with p® = \/m2 + p2. Then, the particle four-
flow is defined by, e.g. [32],

d3p
Nﬂ:/pr“f(x,P)v (1)
and the energy momentum tensor is

d3p

T = prupV f(z,p). (2)

The four-flow velocity of the medium can be defined as
a time-like unit tangent vector at the wordline of the
particles, i.e. u* = constant x N# (Eckart’s definition).
However, in case of non-conserved particles like the pi-
ons are, such a definition would not be convinient. In-
stead, for non-conserved charges or non-conserved parti-
cles the four-flow velocity of the medium is usually defined
as a time-like unit vector parallel to the energy flow, i.e.
ut = constant x T"" u,, (Landau’s definition):

TH u,,

wo_
Ut = —.
U, TP Uy

(3)

This tensor equation (3) is by definition valid in any frame.
Obviously, in the rest frame of the gas (RFG) we would
have ufpo = (1,0,0,0) in Eckart’s as well as in Landau’s
definition of the four-flow velocity. Any other frame of
interest is related to RFG just by a Lorentz boost.

From eq. (1) and eq. (2) one can define three linear
independent Lorentz invariants: the scalar particle den-
sity n, the scalar energy density e and the scalar pressure
P, given by

n= N"u,, (4)

e=u, T"u,, (5)
1 v

P: 7§TIJ« Aluy, (6)

where A,, = g — u,u, projects any four-vector into
the plane orthogonal to w*; the metric tensor g,, =
diag(1,—1,—1,—1). We also note the invariant scalar en-
tropy density,

s = S"uy,, (7)

where the entropy four-current is defined by

SH — _/(ifp“ [f(z,p) In f(z,p) — f(x,p)]- (8)

In our investigation we will consider the FO process of
an ultra-relativistic heavy-ion collision, and the hot re-
gion of the fireball shall be deemed to be in chemical
(x = 0) and local thermal equilibrium 7T'(z). The con-
served quantum numbers (e.g., baryon number, electric
charge, strangeness) are zero such that the thermal distri-
bution can be characterized by the local temperature pa-
rameter T'(z) of the fireball. Up to temperatures T < T,
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most of the particles of such a system are the pions [19,20],
which interact via elastic collisions with a cross-section
oclastic Thus, we will consider the invariant scalar func-
tions eqs. (4)—(7) for the case of a Boltzmann gas of pi-
ons where only elastic scatterings among the pions are
allowed, and moving with a four-flow velocity u*. The par-
ticle distribution function in such a case is homogeneous

f(z,p) = f(p) and given by the Jiittner distribution

ay (7)o

where g, = 31is the isospin degeneracy factor and p, = 0.
Since the functions eqs. (4)—(7) are invariant scalars, they
can be evaluated in any Lorentz frame. Especially, in the
local rest frame RFG we obtain, in the case of a pion gas,
characterized by the distribution function (9), the follow-
ing expressions:

feq(pa T) = 9gr

n:29;2 m2 T Ks(a), (10)
o= Jrmd T [ (a) + 3 Ks(a)], ()
Pzzg;z m3 T Ks(a), (12)
xzi;”ﬁ TKﬂ@+im“KM®+Zm%Kd®’ 13)

where a = m, /T, and K, are the Bessel functions of
second kind, see appendix A. The Equation of State (EoS)
P(n,T) of the pion gas follows from eq. (10) and eq. (12),
P =nT, and the thermodynamical relation T's = e+ P is
also satisfied!. In the limit of vanishing pion mass m, — 0
we obtain from eq. (11) and eq. (12) the EoS of an ideal
relativistic gas, e = 3 P.

From these considerations we have seen that in RFG
the particle density, energy density, entropy density, and
pressure are only functions of temperature T'. This im-
plies that in any arbitrary Lorentz frame only two ther-
modynamical unknowns, temperature 7" and four-flow ve-
locity u,,, can enter the problem under consideration. To
determine both unknowns, we need to have two differen-
tial equations, which can be deduced? from eq. (3) and
eq. (5) [33]:

A, dTVu
du, = —*——72 1
Uy iy (15)
de = u, dT"" u,. (16)

! Recall that a thermodynamical approach by means of the
canonical potential of a pion gas,

3
0=g T/ AP 101 exp(—po/T)), (14)

(2m)?
and with the aid of definitions of energy density e =
—T2%082/0T, pressure P = — and entropy density s =
082/0T, confirms the findings of egs. (11)—(13) and the relation
Ts=e+ P.

2 For a proof of eq. (15) see footnote 3 in [33], and for eq. (16)
see also the remarks in appendix A of [31].
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For the left side of eq. (16) we obtain from the scalar
invariant (11) the following expression:

In

d =
cT 82

m2 [4a Ko(a) +8 Ki(a) + 12 K3(a)] dT. (17)
Equations (15)—(17) can be used to determine the tem-
perature and four-flow velocity, while particle density n,
pressure P and entropy density s would follow from their
definitions in eqs. (4), (6) and (7), respectively. The differ-
ential of the energy momentum tensor needed in eq. (15)
and eq. (16) follows from eq. (2),

d3p
=t

dTH = p”df(z,p),

(18)
according to which we still need a differential equation for
the one-particle distribution function. This will be subject
of the next section.

3 Freeze-out process within a finite time-like
layer

The scheme of an ultra-relativistic heavy-ion collision can
be subdivided into three main stages characterized by
their typical temperature parameter T first, the initial
stage at T, < 7T, where a hot and dense parton gas
is produced. Second, the stage at Tpre-ro < T < T
where hadrons are formed. And third, the freeze-out pro-
cess at temperatures Thost-ro < T' < Tpre-ro Where the
hadrons freeze out. After the complete FO of the hadrons
at T = Tpost-ro the particle interactions cease, i.e. the
momentum distribution of the particles is frozen out and
the hadrons move freely towards the detector.

In this section we are concerned with the third stage
of the collision scheme, i.e. we start our investigation of
the FO process from the time of the collision where the
expanding system reaches a temperature T' = Tp;e-ro and
the hadronization of the primary parton gas is considered
to be completed. In the past, the FO process has been
usually simulated in two extreme scenarios: a sudden FO
on a hypersurface with zero proper thickness L = 0, or a
gradual FO process during an infinite time and through
an infinite space L — oo.

In this section we present a model for a gradual FO
through a finite layer, where the thickness L can be var-
ied from zero to infinity, thus making a bridge between
the two extreme schemes mentioned above. Within such a
model the FO layer is bounded by two hypersurfaces: the
pre-FO hypersurface with T' = T}6-Fo, Where the hydro-
dynamical description ends, and a post-FO hypersurface
with T' = Tpest-Fo, Where all the matter is frozen out.
A covariant model of kinetic FO process within a finite
layer has been recently developed, both for the case of
space-like [25] and time-like [26] layers; see also [27,28].

In order to get an idea about the physical scales of the
total FO time L of the FO layer, we recall that the colli-
sion time 7.o)1 between the pions, which are the dominant
hadrons, depends on temperature 7.on (1) = 12 f2/T° [34—
36], where fr = 92.4MeV is the pion decay constant
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(1 = 0.19733GeV fm). At the pre-FO side of the layer
there is a temperature of Tpre-ro ~ 175 MeV and the col-
lision time is small: 7con =~ 1.1fm/c. The proper thick-
ness L (in time) of the FO layer is taken typically of
the order of a few (at least one) collision time 7.on(7T)
at T = Tpre-vo ~ T¢, i.e. L ~ (5-10)fm/c.

Here, we will not repeat the theoretical developments
of [25-28] in detail, but should consider the essential steps
relevant for our investigations.

To describe the gradual FO process, the one-particle
distribution function is decomposed into two components,
an interacting part f; and a frozen-out part fr,

f(m,p) = fi(xvp) + ff(xvp)'

During the FO process the number of interacting parti-
cles decreases from the pre-FO to the post-FO side, where
by definition the number of interacting particles tends to
zero. As boundary conditions we assume on the pre-FO
side of the layer a thermal equilibrium, i.e. a Jiittner dis-
tribution (9) for f; and f; = 0, while on the post-FO side
fi vanishes; for an illustration see also fig. 1 in [25].

The space-time evolution of the interacting and non-
interacting components during the FO should be modeled
by the Boltzmann Transport Equation (BTE). We will use
the relaxation time approximation and apply the escape
rate Pese(z, p), describing the escape of particles from the
interacting component f; to the non-interacting compo-
nent fr. The FO is a strongly directed process, i.e. the
gradient in one preferred FO direction, do, = (doo,do),
is much stronger than the changes in the perpendicular
directions, thus we can neglect these FO gradients in the
perpendicular directions. Then, the BTE can be trans-
formed into the following differential equations [25-28]:

dO’“ 3Mf2(x,p) = _Pesc($7p) fz(xap)
+Ti[feq(p) _fi(xvp)}v
th

do* a,u.ff(xap) = Pcsc(xap) fz(xap)s

Here, p,, = (po,p) is the four-momentum of the particle,
and x, = (t,r) is the four-coordinate of the particle. The
second term in eq. (20) is the re-thermalization term (see
below), which describes how fast the system relaxes into
some thermalized distribution function f.q during a char-
acteristic time scale 7iy,.

A Lorentz-invariant expression for the escape rate is
given by [24-28]:

(19)

(20)
(21)

1 L pHdo
Pose(x,p) = — " O(ptd , 23
esc(m p) To L — b dG’M pﬂ U# (p UN) ( )
3 Troughout the paper we shall use the notation
0
8u f(va) = 7f(xap)7 (22)

= Oxm

i.e. expressions like (22) are not infinitesimal quantities. Note,
the finite normal vector on the hypersurface is normalized by
do, do* = £1 where the upper sign is for the time-like and the
lower sign is for the space-like normal, respectively; note that
do,, is also not an infinitesimal quantity but a finite vector (an
explicit expression for the time-like normal is given below).
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where 7p is the characteristic FO time. The ©@-function is
the Bugaev cut-off factor [37], which is important only for
the FO in the space-like direction.

We have to insert the escape rate Pug. into egs. (20)
and (21). In the following we will consider the FO process
of a pion gas through a finite layer with a time-like normal
do, do* = +1, so that L becomes a thickness in time.
We will work in the rest frame of the FO front (RFF)
where do, = (1,0,0,0). Thus, we obtain the following set
of differential equations:

1 L p° 1 _
3t fz = 77'70 (L—t) (pu u“) fiWLa[feq(p)*fz]a (24)

(%) () #

Note again, the first term in eqs. (24) and (25) describes
the transition of the pions from the interacting to the
frozen-out component. The second term in eq. (24) is the
re-thermalization term [33,38] which describes how the
interacting component relaxes to some thermal distribu-
tion feq, where the parameters of it, T'(t), u,(t), have to
be calculated from the conservation laws. The strength of
both terms is characterized by their typical time scales,
the characteristic freeze-out time 79 and the relaxation
time ¢y, respectively [26,33,38-41].

In the case of fast re-thermalization 7y, << 79, the inter-
acting component can be choosen as equilibrated Jiittner
distribution for all the times [25]. Then, we obtain, with
the aid of eq. (18), for the energy momentum tensor of the
interacting component

drt d3p
7 12N .
N / o PO file,p)

1 L dp o, P°
o (u)/pop’p (p>
X feq(p, T(t), up(t)).

In the following we will give the components of eq. (26) in
the RFF, where ufpp = 7(1,0,0,0) with v = 1/v1 — v%:

1
To

(26)

d7°(t,v, T, myz)

dt
1 L nT 1
- (G5 (ma,v,T)— G (my,v,T)), (27
TOL7t4'}/U( 2(maU7 ) 2(m v )) ( )
AT (t,v, T,my)  1dTPO(t,v, T, m,)
dt v dt
1 L nT b 9
— K K 2
oL —t 2 7@((34-@) 2(a) + a Ky(a)) , (28)
dT7r*(t, v, T, my) B ldTiow (t,v, T, my)
dt v dt
72 dNiI(t7U7T7m7T) 71dNP(t,v,T,m,r)
Yv dt v dt
1 L nT 1
— o —ab| —(1+3v*)K. K 2
ToL—t2ab(v2( +3v°)Ks(a) + b 1(a)>7(9)
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and the needed components of time derivative of the par-
ticle four-current are given by

dN?(t,v, T, my)

dt
1 L n
-’ - ek
— 1 G im0 D) = Gl (e, TY) . (30)
dN7 (t,v,T,my) ldNO(t,U,T, My )
dt o dt
1 L n (4aKi(a) 2a%Ko(a)
— — 31
+7'0L—t4< P v ’ (31)

where we recall that a = m, /T and b = 7a; the func-
tions G and K, are defined in appendix A. According
to these expressions we also need the invariant scalar pion
density n defined in eq. (4), and according to eq. (15)
we also need the pressure P defined in eq. (6). Since
they are invariant scalars, we can take the explicit ex-
pressions given in eq. (10) and eq. (12) evaluated in the
RFG for a Jittner distribution. By inserting these results
and egs. (27)—(29) into eq. (15) and eq. (16), we obtain a
set of two differential equations for the two unknowns T
and v. Taking ukpp = v(1,v,0,0), uEFF = (1, —v,0,0),

dulfF = 43 v dv and dulFF = —43 dv, we obtain explic-
itly in RFF:
% - gi:f;r (4a Ko(a) + 8K1(a) + 12K3(a)) " 2
X (d(];fo - QUd?tOI + 02 d??) ) (32)
b 2 (ks B + L)
X <—vd?:0 +(1 —|—v2)d?:$ - vd?:w> . (33)

Notice, that the degeneracy factor g, is actually cancelled
against the same factor contained in the scalar particle
density n of energy momentum components, see eq. (10).
In the limit of vanishing pion mass m, — 0 the egs. (32)
and (33) simplify to

dT 1 L 1

—=-———"-T 34
dt o L—-t4 ¥ (34)
d 1 L 1
v__ 2 v (35)
dt 0 L—t4xy

in agreement with the corresponding limit given in
eq. (9) in [26]%. The system of the two differential equa-
tions (32), (33), together with the invariant scalars n, e,
P in egs. (10)—(12) and the components of the energy mo-
mentum tensor given in eqgs. (27)—(29) constitute a closed

4 Note that in the case of a massless pion gas we have, due
to Jittner distribution,

47

e=gn 73/ dpp® exp(—p/T) =3g.T"/7°,  (36)
(2m)3 Jo
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set of equations for the unknowns T'(¢) and v(t) inside the
FO layer. Once these both unknows have been determined
self-consistently, all other quantities like the particle den-
sity n(t), the pressure P(t) and the entropy density s(t)
inside the finite layer can be determined by their expres-
sions given in egs. (10)—(13).

In our investigation, we are interested on the impact
of in-medium pion mass modification on the FO pro-
cess. Therefore, we have to implement a temperature-
dependent pion mass m,(T) in the given equations.
The results of such an investigation can then be compared
with the corresponding findings where a vacuum pion mass
m, or massless pions are implemented®.

4 Pion mass shift at finite temperature

Typical conditions inside the FO layer are high tempera-
tures, typically between 100 MeV < T < 175MeV. Such
extreme conditions imply a strong modifications of the
hadrons in respect to their mass, coupling constants and
decay rates are expected. One aim of our investigation is
to evaluate how strong the impact of the pion mass shift
on the kinetic FO process of a pion gas is. The kinetic FO
process of a pion gas concerns elastic interactions among
these particles and how these elastic scatterings cease.
Therefore, we have to determine the mass modification
of pions embedded in a pion gas with elastic scatterings
among these particles. However, the impact of non-elastic
interactions on the mass modification of pions becomes
relevant for a description of the chemical FO process.

4.1 Pion mass in vacuum

First, let us briefly re-consider the mass of a pion in vac-
uum, defined as pole mass of the pion propagator:

me(p) = i / dtz 6P (Tyy 8 (2)84T(0))q

- ! , (38)

0?2 .
p2_ meq _E#(p) + 1€

where (O)g = (0|O]0) is the vacuum expectation value of
an operator O, a = 1, 2, 3 is the isospin index, Ty is the

while in [26] a Bose gas was assumed for the EoS:

eBose = gr ol / dpp® [exp(p/T) — 17" = g x> T*/30.
(2m) 0

(37)
The difference is only marginal. However, in eq. (9) of ref. [26]
we have actually to imply the relation npose = €Bose/(37) =
gx ™2 T3/90 valid for massless pions, to get the agreement
stated above.

5 We note, however, that the in-medium modified pion mass
not only changes slightly the distribution function, but also
the pionic EoS and correspondingly the expansion dynamics,
e.g. [42]. We note, that such a consideration could also be inves-
tigated, within the expanding model very recently developed
in [43].
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Wick time ordering, & is the second-quantized pion field
operator and X¢ is the self-energy of pion a in vacuum.

The parameter Tcﬁw is the so-called bare pion mass which
enters the Lagrangian of the effective hadron model of
QCD. The physical pion mass is defined as the pole of
propagator, eq. (38), i.e. as the self-consistent solution of

m?2 :T?Li +Re Z,(p? = m?2). (39)
The vacuum pion mass is m% = 135.04MeV, m: =
139.63 MeV. Despite the enormous effort in the quantum
field theory, a rigorous derivation of the vacuum pion mass
from first principles of QCD has not been found so far.
That means the vacuum mass of any hadron cannot be
obtained from fundamental QCD without further assump-
tion or new parameters. However, there are promising and
sophisticated approaches which have provided some in-
sights into this very involved issue. Among them there
are chiral perturbation theory, lattice gauge theory, cur-
rent algebra, Dyson-Schwinger approach, Nambu-Jona-
Lasinio model and QCD sum rules, which provide a link
between the quark degrees of freedom of underlaying QCD
and the hadronic degrees of freedom. Such approaches al-
low a derivation of the so-called Gell-Mann—Oakes-Renner
(GOR) relation [44,45],

my fz = —2mq (G3)o, (40)

which allows to determine the pion mass in vacuum from

the microscopic QCD quantities current quark mass m,

and chiral quark condensate at = = 0,
~ 1 .. =4
(@q)o = - (ui + dd)o.

: (41)

Typical values are m, = (m, +mg)/2 = 5.5MeV, (¢4)o =
—(245MeV)3; recall, f, = 92.4MeV is the pion decay
constant. With these given numerical values, the GOR
relation yields m, = 138 MeV. The pion decay constant
can be defined by

<O|AZ(0)|7Tb(Q)> =1 fﬂ' qu 6ab7 (42)
where the isospin indices a,b =1, 2, 3 and
~n -~ 7-11 R
Ag(z) =¥ () 1075 - ¥ (2) (43)

2

is the axial vector current operator, e.g. [46]; 7 are the
Pauli spin matrices, and ¥ = (4,d)". From eq. (42) we
obtain the expression for the pion decay constant in vac-
uum,

fr = Z— (014 (0)]7(q))

where, due to isospin symmetry, a can be chosen arbi-
trarily, e.g. a = 3 (i.e. there is no sum over index a).
It should be noted that with the aid of LSZ reduction for-
malism [47,48], the expression (44) can be rewritten as
vacuum expectation value over the scalar operator

f+(0) =
i?T;L / d'yexp(—igy) (O, +m2) TwA;,(0) 81 (y), (45)

(44)
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that means we basically have

(46)

4.2 Pion mass at finite temperature

Now let us consider the case of pions in-medium. At fi-
nite temperature the pions move in a hot and dense bath
of hadrons. Accordingly, the in-medium pion propagator
reads

Ie(p,T) =i / d*z ™ (Ty &%(x)9 1(0)) 1
1
= . . (47)
o
p27 mﬂ' 727?;(1)5 T) + i€

The thermal Gibbs average (O)r of an operator O is de-
fined by

(nO exp(~B H)ln)

)

(n] exp(—6 H)|n)

(48)
where § = 1/T. In general, for temperatures T' > T, quark
and gluon degrees of freedom would have to be included,
i.e. the sum in eq. (48) runs in general over quark and
gluon eigenstates and over hadron eigenstates of H. How-
ever, in our investigation the temperatures are T' < T¢, i.e.
the operator H is here an effective Hamiltonian describing
the hadron system under consideration. Accordingly, we
consider |n) as hadron eigenstates of H, and the sum runs
over the spectrum of all these hadron eigenstates |n). Fur-
thermore, throughout our considerations we are interested
on the Gibbs average of operators at z = 0, i.e. we always
have <(§>T = (@(x = 0))7. As in vacuum, the pion pole
mass at finite temperature is defined as the self-consistent
solution of
m2(T) = .. +Re Sn(p? = m2(T), T).

™

(49)

From this equation it becomes obvious why there is an
in-medium modification of the pion mass: just because
the self-energy X, (p,T') is now temperature dependent,
which changes the position of the pole mass compared to
vacuum. Such a change of the pole position is caused by
elastic interactions and non-elastic interactions among the
particles. To find an expression for the temperature depen-
dence of the pion mass, we will follow a similar way as in
vacuum, ¢.e. we will apply the in-medium GOR relation.
Especialy, it is a well-known fact that the GOR relation
continues to be valid also at finite temperatures, at least
up to the order O(T°) [49-55]:

mz(T) f2(T) = —2myq (@) -

We will take relation (50) as a given fact, which would al-
low a determination of the temperature dependence of the

(50)
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pion mass; the current quark mass m, as a fundamental
parameter of QCD is of course independent of tempera-
ture, while the constituent quark mass M, is temperature
dependent. For that we would have to know the tempera-
ture dependence of the chiral condensate and of the pion
decay constant. That means, in the generalization of the
vacuum expectation values in eqgs. (41) and (46), we have
now to determine the expressions

(n|gq exp(—5 H)|n)

18

3

e

(q4)r =

(n] exp(—5 H)|n)
0

3
Il

(nl fr exp(—B H)|n)

e

-
3

|

3

e |

) (n exp(—6 H)|n)

3
Il

where the operator f7T is defined in eq. (45). Both of these
expressions, (G4)r and fr(T) = (fx)r, have been evalu-
ated by means of several approaches. The aim is to find an
expression both for the chiral condensate and the pion de-
cay constant at finite temperature and consistently within
the kinetic model description. Especially, in our approach
there are only pions. Accordingly, the Gibbs average of an
operator O runs over the diagonal pion states only, i.e.
(7|O|x), (xm|O|rr), . .. [56,57], but does not include the
diagonal matrix elements of heavier hadrons like kaons,
(K*|O|K#), ete. Such an approximation can be justi-
fied, since at low temperatures T' < T, pion states domi-
nate the thermal average, while states containing heav-
ier mesons with a mass m, > m, are weighted with
their corresponding Boltzmann factor ~ exp(—m.,, /T, i.e
they are exponentially suppressed [19,20]. For instance,
in refs. [19,58] contributions of heavier mesons to the
chiral condensate at finite temperature have been stud-
ied, where only marginal corrections were found: 5 percent
corrections at T' = 100 MeV and 10 percent corrections at
T = 150 MeV. The Gibbs average (48) can be further ap-
proximated by one-pion states [58-60],

{O)r
3w

+0(17).

= (0)o

(53)

The contributions of the next higher order O(T*) are con-
sidered in appendix C, according to which we will neglect
multi-pion states in the temperature region considered,
see also refs. [56,57]. The pion states are normalized by

(m" ()7 (p2)) = 29 (21)° 6P (p1 — P2) G, (54)
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with isospin indices n,m = 1,2, 3. With the aid of eq. (53)
and according to egs. (51) and (52), we obtain

3 dSp . po
+; / (27)3 20 (7" (p)|gd|™" (p)) exp (_T>
+0 (1), )
fx(T) = fx

w3 3
ﬂ%; / (2733]92 5 (" ()| ALl (¢)7" (p))
o (_ZZ’?> roay. (56)

where in eq. (56) the LSZ reduction of the pion state 7% (q)
has been transformed back just after the thermal Gibbs
average. The pion matrix elements can be determined us-
ing the soft-pion theorem [58,61-64] by means of which
we obtain (see eqgs. (B.5)—(B.8) in appendix B)

8 f2

By (= ))+O(T4), (57)
| T2

12 f2 Bl(T )>+O(T4)’
(1+418 3:223 (";)) +O(TY, (59)

for the next higher order O(T*) see appendix C. In order
to derive relation (59), we have inserted egs. (57) and (58)
into the GOR relation at finite temperature, eq. (50), as
well as the GOR in vacuum, eq. (40), has been applied.
The function is®

Bi(z) = %/ dz Va2 — 22 exp(—z) = %zKl(z),

. 6
lli% Bi(z) = - (61)

@ﬁ<@(11ﬁ

tMﬂﬂ(l (58)

my(T) =

The results (57)—(59) are consistently valid for a pion gas
approximated by a Boltzmann gas, i.e. with elastic inter-
actions among the pions. Here, we will require the appli-
cability of egs. (57)—(59) in a temperature region T' < T,
where the distance between pions is still large”, and where
the correlation between pions is still small [65,66].
According to eq. (59) the pion mass increases with in-
creasing temperature, in line with other theoretical inves-
tigations. Especially, more sophisticated approaches yield

5 Tn case we would have taken a Bose distribution in eq. (53),
then in eqgs. (57)—(59) the function B; would have to be re-
placed by the function Bs:

Ba(z) = E/ dz /2?2 — 22

2 T lii%Bz(z) =1.
(60)
However, the difference for the pion mass shift using By or B2
is marginal in the temperature region considered, see fig. 1.
" For instance, at T = 150 MeV the mean free path of pions

isA~1/(n Uelas“c) ~ 2 fm.

exp(z) —
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Fig. 1. The temperature-dependent pion mass m,(7T): thick
solid linepoints show the pion mass for a Boltzmann gas ac-
cording to eq. (59). The straight dotted line represents a con-
stant pion mass in vacuum, m, = 138 MeV, according to the
GOR relation in vacuum (40). The dashed line represents the
pion mass shift in case of a Bose distribution, i.e. when in
eq. (59) function Bj is replaced by function Bs. The difference
between a pion mass shift of a Boltzmann gas and of a Bose gas
are marginal in the temperature region considered. The dotted
line (top) represents the result of ChPT according to eq. (64),
allowing a comparison of our results with ChPT.

very similar or even the same results for the pion mass
shift, e.g. chiral perturbation theory (ChPT) [67], Nambu-
Jona-Lasinio model [68], QCD sum rules [69,70], linear
sigma model [71-74], mean field approximation [75] and
virial expansion [76]. For instance, we can compare our
findings (57)—(59) with the results of ChPT, since at or-
der O(T?) the pions are treated as free particles within
ChPT, e.g. [77]. For (G§)r [19,78], for f(T) [77] and for
m.(T) [51,77], the ChPT yields the following expressions:

(@d)r = (ad)o (1 - ;?;) +0(T), (62)

f=(T) = f= (1—1123:2) +0(1Y), (63)
2

mx(T) = ma <1 + % ;) +0(T"). (64)

The difference between our results given in egs. (57)—(59)
and the results of ChPT given in eqs. (62)—(64) simply
consists in the function Bj, reflecting the fact that ac-
cording to the above-mentioned references the ChPT con-
siders a Bose gas and the limit By — 1 (i.e. chiral limit
my, — 0). The result given in eq. (62) has also been
derived in [79] and confirmed later on within the sigma
model [80]. The given result in eq. (63) is confirmed, e.g.
in [56,80-82]. In this respect we should refer the inter-
ested reader to ref. [82] where a Pdde approximation of
f=(T) has been established, valid for arbitrary tempera-
tures T < T,. Nonetheless, to apply that result f.(T") one
needs a Pade approximation for @cj)T as well in order to
be consistent within the entire framework. We also refer
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to [54,55] where a stronger decrease of the pion decay con-
stant f(7) and a stronger increase of pion mass m,(7')
for high temperatures were found within the framework of
Dyson-Schwinger equations.

It is worth mentioning, that for in-medium pion mass
shift there is an experimental result available [83-86],
namely for the case of a deeply bound pionic state with
a m~ at finite baryonic density. Especially, a significant
pion mass upshift of 19.3+2.7MeV in 2°"Pb, i.e. approx-
imatly at nuclear saturation density ng ~ 0.17 fm =3, has
been found.

Another important experimental fact concerns the
constituent quark number scaling recently found [87,88].
Such a scaling refers to an evident dependence of the
hadron elliptic flow v on the number of constituent quarks
in the hadron under consideration. This experimental
fact can be understood by assuming that FO and pre-
hadronization after QGP occurs at an intermediate con-
stituent quark stage [89,90]. Accordingly, the pre-hadrons
are made of constituent quarks which have a mass of
about M, ~ (200-300) MeV. For the pre-pions (this ar-
gumentation is not valid for all the other hadrons, be-
cause they are considerably heavier than the pions) in
QGP it would imply a mass much higher than their vac-
uum mass m, =~ 138 MeV. From this point of view a mass
increase with increasing temperature and baryon density
is in agreement with these experimental facts. Indeed,
QCD sum rules [52] and the QCD Dyson-Schwinger equa-
tion [54,55] predict a very strong pion mass up-shift near
T.. In this respect we note that a quark clustering like qq,
qq, 99, qg etc. in the sQGP state has also been proposed
in [91,92].

5 Results and discussion

In this section we will present and discuss the solution
of the coupled set of differential equations (32) and (33)
for massive pions, once with the vacuum pion mass and
once with a temperature-dependent pion mass according
to eq. (59). In order to ascertain the impact of pion mass
itself on the FO process, we will compare these results
with the case of massless pions.

The differential equations (32) and (33) are solved
with the aid of the Runge-Kutta method [93]. The limit
m, — 0 given in egs. (34) and (35) has been solved in-
dependently using MAPLE [94], i.e. used as independent
verification. The two boundary conditions of these first-
order differential equations are the initial temperature on
the pre-FO hypersurface, Tpre-ro =~ Tc = 175 MeV, and
the initial flow velocity on the pre-FO hypersurface of the
finite layer, vpre-ro = 0.5 c. Both of these are typical val-
ues; note that such initial temperatures at small bary-
onic densities can be reached for instance at SPS [95].
In the numerical evaluation we have taken 79 = 1fm/c
and L = 10 7g. The results are plotted in figs. 2 and 3.

Let us first consider the temperature of the interacting
component plotted in fig. 2. The temperature decreases in
time, because the number of interacting particle decreases
in time, see also fig. 4. The difference between the case
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Fig. 2. Temperature of the interacting component as a func-
tion of time, when the matter crosses a finite freeze-out layer.
In the numerical evaluation we have taken 70 = 1fm/c and
L = 10 79. Three situations of freeze-out are considered: a pion
gas with a temperature-dependent pion mass m (T (solid line,
top), the case of pions with a constant vacuum pion mass mx
(dashed line, middle), and for massless pions m. = 0 (dotted
line, bottom). As the system expands, the temperature of the
interacting component drecreases in all three cases, since the
particles with larger momentum freeze out faster. The lighter
the pions are, the faster the freeze-out proceeds. In the left
inset the marginal impact of the pion mass shift even at ex-
tremly high temperatures is shown. The right inset shows the
fast drecrease of temperature at the post—freeze-out surface.
The substantial difference between the curves for massive pi-
ons and massless pions shows how important the impact of the
pion mass on the freeze-out process is.

of a temperature-dependent pion mass m,(7T) (solid line)
and the case of massive pions with constant vacuum mass
m, (dashed line) is marginal. The reason for that can be
understood by means of the left inset of fig. 2: at high
temperatures T ~ T, the pion suffers a mass up-shift of
about 5 percent of its vacuum mass, see fig. 1. And indeed,
at such high temperatures we find a difference of about 5
percent in the temperature slope between the case m,(T)
and m,. However, at such high temperatures the impact
of a pion mass is small anyway, because the averaged mo-
mentum of pions due to thermal motion is considerably
higher than the pion mass itself. At lower temperatures
the impact of a pion mass on the FO process is stronger
because the averaged momentum of pions becomes compa-
rable with the pion mass itself. However, already at mod-
erate high temperatures of about 7' ~ 135MeV the pion
mass up-shift is less than 5 percent, see fig. 1, and we can-
not expect any longer a significant impact of the mass shift
on the FO process. In fact, while the in-medium modifica-
tion of the pion mass shift has almost no impact, it turns
out that there is a significant deviation between the case
of massive pions and massless pions. This is due to the
fact mentioned, that at moderate high temperatures the
pion mass becomes very comparable to the averaged mo-
mentum of the pion. In the right small figure implemented
in fig. 2 we can see the fast dropping of temperature at
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Fig. 3. Velocity of the interacting component as a function
of time, when the pions cross a finite freeze-out layer. In the
numerical evaluation we have taken 7o = 1fm/c and L = 10 7o.
Three cases are considered: massive pions with a temperature-
dependent pion mass m,(T") (solid line, top), massive pions
with a constant vacuum pion mass m, (dashed line, middle),
and massless pions m, = 0 (dotted line, bottom). The line of
in-medium modified pion mass (solid line) is above the line of a
constant pion mass. This is due to the fact that the pion mass
is a bit larger in the former case. During the freeze-out process
the fastest particles leave the interacting matter component
first, so the velocity of the remaining non-interacting compo-
nent decreases. The left inset shows the tiny impact of the pion
mass shift, while the right inset shows the fast dropping of ve-
locity at the very end of the freeze-out process. The remarkable
difference between the curves for massive pions and massless
pions shows the importance of pion mass on the freeze-out
process.

the end of the FO process. This is because of the factor
L/(L—t) in front of eq. (32) which becomes infinite at the
post-FO side of the hypersurface.

Let us now consider the flow velocity of the interacting
component plotted in fig. 3. The flow velocity decreases in
time, because the number of interacting particles also de-
creases, see fig. 4. As in the case of temperature, the differ-
ence between a FO scenario with a temperature-dependent
pion mass m,(7") (solid line) and a constant vacuum pion
mass m, (dashed line) is negligible. The reason for such a
behaviour is the very same as in the case of temperature:
at the pre-FO side of the layer, there is a remarkable pion
mass up-shift of about 5 percent compared to the vacuum
pion mass, which implies roughly a 10 percent impact on
the flow velocity, as seen in the left inset of fig. 3. How-
ever, at such high temperatures T' ~ T, the pion mass is
considerably smaller than the averaged pion momentum
due to thermal motion, so that the impact of a pion mass
is negligible. As the system cools down, the pion mass ap-
proaches rapidly the vacuum pion mass, see fig. 2. That
means, at moderate temperatures of T' ~ 135 MeV, where
a pion mass starts to have some impact on the FO pro-
cess, the pion mass up-shift is already less than 5 percent,
so that the impact of the in-medium modification of the
pion mass on the FO process becomes negligible. How-
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Fig. 4. Density of the interacting component as a function of
time, when the pions cross a finite freeze-out layer. In the nu-
merical evaluation we have taken 79 = 1fm/c and L = 10 7o.
Three cases are considered: massive pions with a temperature-
dependent pion mass m(T) (solid line), massive pions with
a constant vacuum pion mass m. (dashed line), and mass-
less pions m. = 0 (dotted line). During the freeze-out pro-
cess the particles leave the interacting matter component, so
the density of the remaining interacting particles decreases.
For the strong decrease of the pion density we recall that
for low temperatures the particles decreases exponentially:
limr_o n(T) = g /(47*)m2 T /27 /aexp(—a); a = mx/T.

ever, there is a considerable difference between the case of
massive pions and massless pions, as can be seen in fig. 3.
The right inset implemented in fig. 3 shows that at the
post-FO side of the hypersurface the velocity falls down
rapidly because of the factor L/(L — t) which becomes
infinite at times near L.

Figure 4 shows the rapid decrease of the particle den-
sity of the interacting component. More than 90 percent of
the particles get frozen out before a time scale of ¢t ~ 37,
is reached, both for the massive and massless case.

In heavy-ion collision experiments the relevant experi-
mental parameters are of course not the temperature T'(¢)
or flow velocity v(t) of the interacting component. Instead,
via the experimentally accessible spectrum of the particles
dN/d3p one measures the post-FO distribution, which is
formed in the applied model at the outer hypersurface,
fro(pz) = f¢(t = L, p,). The Cooper-Frye formula [96]

dN N
pOdTp :/dUuP“fFO(P)

_ / dV po fro(p) ~ po fro (p) (65)

allows us to calculate the particle spectrum (dé, =
(dV,0,0,0) is the time-like normal vector of an infinites-
imal element of the post-FO hypersurface). In the one-
dimensional model used, the volume V of the pionic fire-
ball is ill-defined®, so that only a qualitative comparison

8 Since the volume of the pionic fireball is not defined, the
global energy and momentum conservation cannot be applied.
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Fig. 5. Top: massless pions. Solid line: FO distribution
function fro(pz) = fr(t = L,ps), evaluated by means of
eq. (25) with T'(¢) and v(t) evaluated previously, see figs. 2
and 3. Dashed line: a fit of the above solid line by a thermal
(i.e. Jiittner) distribution with 7" = 125MeV and v = 0.49c.
Both distribution functions peak sharply. At low momenta p.,
there is a considerable difference between a thermal distribu-
tion and the FO distribution function, i.e. the FO distribution
function fro(pz) evaluated within the kinetic model applied is
obviously not a thermal distribution. This is actually one of the
main results of the kinetic FO model. Bottom: massive pions.
Solid line: FO distribution function fro(pz) = fr(t = L,pa)
evaluated by means of eq. (25) with T'(¢) and v(t) evaluated
previously, see figs. 2 and 3, and with an in-medium pion mass
mx(T). Dashed line: a fit of the above solid line by a ther-
mal Jiittner distribution with 7= 140 MeV and v = 0.4 ¢ and
mx(T). There is a considerable difference between a thermal
distribution and the FO distribution function for a massive
pion gas at low momenta p,, a result which is in agreement
with the corresponding statement in the massless case. The
distributions for massless and massive pions peak at different
momenta p,! This is expected to effect flow measurements. The
sharp peak is smeared out after summing up for fluid elements
with different pre-FO flow velocities.

with experimental data, for instance the transverse spec-

trum, is possible, i.e. (‘}Z])V ~ fro(pz), where p, is locally

However, global conservation laws can lead to different results
if and only if the curvature of the surface is large, thus leading
to a significant divergence. Such a situation has been consid-
ered in [97], where also related issues concerning an expanding
system are discussed.
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Fig. 6. Contour plot of the FO distribution function,
fro(Pa,py) = fr(t = L, pa, py), evaluated by means of eq. (25)
with T'(¢t) and v(t) evaluated previously, see figs. 2 and 3. The
solid line is for the case of massive pions mx(T), the dashed
line for the case of massless pions. There is no curve for the
case of massive pions if fro = 10~2 because the FO distribu-
tion function in the case of massive pions is smaller than this
value, see fig. 5. It illustrates the importance of pion mass for
an accurate FO description. The non-thermal asymmetry of
the post-FO particles is a strong and dominant feature, even
for a time-like normal FO hypersurface or layer.

pointing out in transverse direction. Due to the marginal
impact of in-medium pion mass modification it is mean-
inful to compare the case of massive pions m,(T) with
the case of massless pions, and both of each with a simple
thermal distribution.

In fig. 5 the frozen-out distribution functions fro(ps)
for massless and massive pions are plotted and compared
with a thermal distribution. It is shown that at low mo-
menta the distribution function fro(p.) evaluated within
the kinetic FO model differs considerably from a simple
thermal distribution, both for massless and massive pions.
This confirms a very recent FO evaluation where a grad-
ual FO with Bjorken expansion and with a constant pion
mass m, = 0.138 MeV has been considered [43,98]. Notice
that the peak position of the distribution function for the
case of massive pions differs from the peak position for a
massless pion gas. This is expected to effect experimental
flow measurements.

In fig. 6 the contour plot fro(pe,py) for the massive
case m,(T) and the massless case m, = 0 is compared.
For large momenta p there is only a slight difference be-
tween the FO of massive and massless pions. However, at
low p there is a significant deviation between a massive
pion gas and the massless case. Figures 5 and 6 demon-
strate that the mass of pions is relevant for an accurate
FO description.

6 Summary

The strong interacting quark gluon plasma is not directly
accessible via experiments. In fact, one has to trace back
from the experimental data to the initially formed new
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state of matter during an ultra-relativistic heavy-ion col-
lision. This implies a detailed and accurate description of
all subsequent stages of the heavy-ion collision process.
The kinetic FO process is basically the last stage of the
collision after which the particles move freely towards the
detectors. Thus, kinetic FO has to be considered as last
source of all the observables. Therefore, an accurate de-
scription of kinetic FO is compelling for an accurate un-
derstanding of the initial stages produced by heavy-ion
collisions. Within our FO model of a pion gas described
by a Boltzmann gas, we have considered the problem how
strong the impact of an in-medium modification of the
pion mass on the kinetic freeze-out process is.

We have considered the kinetic FO process through a
finite layer for a pion gas with finite pion mass and with
massless pions. Throughout the investigation, all calcula-
tions have been consistently performed within the model
of a pion gas with elastic scatterings among them and
approximated by a Boltzmann gas.

First, we have found, that there is a strong impact of
the finite pion mass on the FO process compared to a
FO process with massless pions. This result is highlighted
in figs. 2 and 3, where a significant modification of the
basic thermodynamical functions temperature 7'(¢) and
flow velocity v(¢) of the elastic interacting component of
a pion gas inside a finite FO layer has been found.

Hereafter, we have investigated how strong the impact
of an in-medium modification of the pion mass on the
FO process is. To determine the pion mass at finite tem-
perature, the generalized GOR relation at finite temper-
ature has been applied as a given fact, and the needed
expressions (g4)r, fm(T) have been evaluated by a ther-
mal average over one-pion states. The needed pion matrix
elements were evaluated by the soft-pion theorem. Espe-
cially, the modification of effective pion mass is increasing
with increasing temperature, becoming significant around
100 MeV and reaches ~ 5 MeV at T ~ 180 MeV, see fig. 1.

It has turned out that the impact of the in-medium
pion mass shift m,(T') on the FO process is marginal com-
pared to a massive pion gas with a constant pion mass m..
The physical reason for that can be understood as follows:
a significant pion mass shift occurs at high temperatures
T ~ T.. However, at such high temperatures the impact
of the pion mass itself on the FO process is negligible be-
cause the momentum of thermal motion is sizebly larger
than the pion mass. During the FO process the tempera-
ture decreases rapidly, and after the initial ~ 27y time it
was below T' ~ 100 MeV. But already at moderate temper-
atures T' < 135 MeV, where the impact of the pion mass
on the FO process becomes relevant, there is no longer a
remarkable in-medium modification of the pion mass.

For a qualitative comparison with experimantal data
and in order to investigate the importance of a finite
pion mass for the FO process, in figs. 5 the FO distribu-
tion function fro(ps) has been plotted, both for massive
my(T) and massless m, = 0 pions. The FO distribution
functions have been compared with a thermal distribution.
It is shown that at low momenta there is a considerable
difference to a thermal spectrum, both for a massive and
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massless pion gas. The distributions peak at different mo-
menta p,, which is expected to affect experimental flow
measurements. The contour plot in fig. 6 elucidates a re-
markable difference between massive and massless pions
at low momenta. Both figs. 5 and 6 show the importance
of a finite pion mass for an accurate description of the FO
process.

The numerical order of the in-medium pion mass shift
at finite temperatures used in our model calculation is in
some sense also encouraged from experiments which have
found a pion mass up-shift of 19.3 £ 2.7 MeV around the
baryon saturation density ng ~ 0.17fm~2 [83-86]. How-
ever, we have to take into account that the in-medium
pion mass shift might be much more pronounced at high
temperatures T ~ T, than at those used in our model
calculations. For instance, QCD sum rules [52] and QCD
Dyson-Schwinger equation [54,55] predict a strong pion
mass up-shift near Tt.

Such a strong in-medium modification of the pion
mass would be also in line with the argumentation of
quark pre-clustering inside the QGP for temperatures
higher but near the QCD phase transition at T" > T,
because the quarks will have a constituent quark mass
of about M, ~ 200-300MeV, so that the mass of pre-
pions for such temperature regions would be much higher
than the vacuum pion mass. Our results indicate that an
earlier pre-hadronization and FO at higher temperatures
would increase the sensitivity on the changing of effective
pion mass.

From the experimental side, as mentioned in sect. 4,
such a conclusion is mainly supported by the experimen-
tal fact of the constituent quark number scaling, i.e. the
dependence of the hadron elliptic flow v5 on the number of
constituent quarks of the hadrons. Therefore, for a more
comprehensive analysis on how strong the impact of an
in-medium modification of the pion mass for an accurate
description of a heavy-ion collision process is, further in-
sides of (pre-)pion mass shift near (and beyond) the crit-
ical temperature T¢, both from theoretical as well as ex-
perimental side, are mandatory. Especially, the pion mass
modification caused by non-elastic scatterings among the
pions have to be evaluated in order to describe the chem-
ical FO process.

In summary, in our model study we come to the con-
clusion that, while a pion mass m, has a significant impact
on the kinetic FO process, the temperature dependence of
the pion mass m,(T) is negligible for an accurate descrip-
tion of the kinetic FO process.
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Appendix A.

The function G (n = 1,2) is defined by

1 o0 n
+ _ 2 2
Gy (mg,v,T) = Tt /o dpp (x/p +m7r)
xEq (% VPE+mi £ W’;P) ,

where E; is a special case of incomplete Gamma-
function [99]

(A1)

Ei(z) = /00 dtt=te " (A.2)

In the massless case we get the temperature-independent
limits

21 1
lim Gy =3 = ——,
o 1 T 393 (T £0)3

31 1
lim GE=2—- - A
am Gy = A Aoy (A4.3)

The function K, is the Bessel function of second kind [99],
defined by

Appendix B.

In this appendix we will evaluate the matrix elements
in egs. (55) and (56) with the aid of the soft-pion the-
orem [58,61-64] (a derivation of the soft-pion theorem for
the here-used simplier case of “free” pions can be found
in the appendix of ref. [100]) given by

lim 1im0<7rm(p2)|@(x)|ﬂn(]31)> =

p2—0p1—
0 [ 2. [0, ] o m

where QZ& is the (time independent) axial charge, i.e. the
spatial integral over the zeroth component of the axial
vector current (43): Q% = Jd3r Az (r,t), and QZT =Qn;
and n,m = 1, 2, 3 are the isospin indices. [121, E]_ = AB—
BA is the commutator. Here, we are interested in the pion
matrix elements of the following two-quark operators at
z=0:

4
Or=i=3>" >

/~
b
)
=
)
ot
>
|
ISR
)
=
)
ot
&A>
~—
I
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where the Greek letters «, 8 denote Dirac indices, p is the
Lorentz index, and 7 is the color index of quark fields. The
equal-time anti-commutators of the full QCD quark fields
read for quark operators of the same flavor

(5 (r1,1), 851 (r2, )] = 6@ (11 —12) bap 89, (BA4)
where [A, By = AB + BA is the anti-commutator, while
quark fields of different flavor anti-commute. Using iden-
tities like [A, BC|_ = [A, B]+ C — B[A, C]+ and the anti-
commutator relation (B.4) we obtain

tim, i (x" ()| (p1)) = — 5 (O[310) 5™, (B.5)
p2—Up1— fﬂ'
Jim Tim, (! (p2) |47 7 (9) ' (1)) =
O 0) = i - g (B.6)
i, VAL )
o1
72 <0|AB\7T (9)) =i (B.7)
lim lim (7 (pg)\Ai\ﬂ3(q)7T3(p1)) =0, (B.8)
p2—0p1—0

where we have also used relation (42).

Appendix C.

In our model we have taken into account the Gibbs average
over one-pion states of an operator @, see eq. (53). Here
we will consider the next order, i.e. the Gibbs average over
two-pion states of an operator O:

3

N / d*py / d*py
o(1") = 2! Z (2r)32p9 ) (27m)3 29

n,m=1

< (7™ (p2)7" (p1)|O]7™ (p1) 7™ (p2))

where the factor (2!)7! in front of (C.1) circumvents
a double counting by integrating over the permutations
p1 <> p2. With the aid of the soft-pion theorem we obtain
the pion matrix elements for the chiral condensate and
pion decay constant:

(C.1)

23: iy 1}2@0 i (77 (p2)7" (p1) g7 (1) 7™ (p2))
= 2 (0fdlo). (c.2)
il plgiglo Jim (7 (p2)7" (p1) |45 |7 ()7 (p1)7"™ (p2))
= 21 O3 @) = =i g, (C.3)

361

where in eq. (C.3) we have applied eq. (42). By means of
these expressions we obtain

2 2 172 1T, 6
(@@)r =(ad)o (18]”7% BlJrﬁSE Bl) +0O(T"), (C.4)
172 1 7
(T)=fr (1- 5= Bi+ 527 B} T° :
Fo0)= 1 (135 Bk T B) w0, (e
1717 17
T 1 Bi+——— B} T°), (C.
me(1) = (1 B T ) o), ()
and By = Bi(m,/T). A numerical evaluation shows that

the terms of order O(T*) contribute at most a few per-
cent compared to the terms of order O(T?) in the tem-
perature region we are interested in. Within the ChPT
approach very similar statements are found, but it should
be mentioned that in ChPT non-elastic particle interac-
tions yield additional contributions to order O(T*), while
egs. (C.4)—(C.6) are the results for a pion gas with elastic
particle collisions only. The dynamical non-elastic interac-
tions among the pions change not only the given numerical
values in egs. (C.4)—(C.6) but also the sign of the coeffi-
cients in front of the given order O(T?), e.g. ref. [57], where
the result (C.4) is also mentioned. But we note again that
in ChPT the given coefficients of the order O(T?) remain
untouched even when taking into account the contribu-
tions of non-elastic pion scatterings.

Furthermore, in a pion gas with elastic interactions
and to all orders in temperature we obtain by iteration

B?) , (C.7)

2 oo
< S

11712
nl 8 f2n

177 & 11 7
f7r< 22 +Z n!lQ”fT%”B{l)’ (C.8)
mq(T) =
177 X1 1 7™
<1+48 f2+zn!48"f2"31>’ (C.9)
n=2 7"

that means all higher orders are factorial suppressed
even at temperatures near T.. Again we underline that
egs. (C.7)—(C.9) are useful to study the impact of the pion
mass shift on the kinetic FO of a pion gas (elastic interac-
tions cease among the pions). However, they are not ap-
plicable for modelling the pion mass shift impact on the
chemical FO process of a pion gas (non-elastic interactions
cease among the pions), because then the non-elastic in-
teractions among the pions will change significantly the
given series of higher order.

References

1. CERN Press Release 2000-02-10, http://press.web.
cern.ch/press/PressReleases/.

2. Hunting the Quark Gluon Plasma, BNL Report: BNL-
73847-2005, 11th April 2005.



13.
14.

15.
16.
17.
18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

The European Physical Journal A

BRAHMS Collaboration, Nucl. Phys. A 757, 1 (2005).
PHOBOS Collaboration, Nucl. Phys. A 757, 28 (2005).
STAR Collaboration, Nucl. Phys. A 757, 102 (2005).
PHENIX Collaboration, Nucl. Phys. A 757, 184 (2005).
M. Gyulassy, L. McLerran, Nucl. Phys. A 750, 30 (2005).
E.V. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004).
E.V. Shuryak, I. Zahed, Phys. Rev. C 70, 021901 (R)
(2004).

E.V. Shuryak, I. Zahed, Phys. Rev. D 69, 014011 (2004).

. J.L. Nagle, Eur. Phys. J. C 49, 275 (2007).
. F. Karsch, Lectures on Quark Matter (Springer, Berlin,

2002) Lect. Notes Phys. 583, 209 (2002); arXiv: hep-
lat/0106019v2.

E. Shuryak, Phys. Rev. Lett. 68, 3270 (1992).

T.S. Birg, E. van Doorn, B. Miiller, M.H. Thoma, X.-N.
Wang, Phys. Rev. C 48, 1275 (1993).

X.N. Wang, Nucl. Phys. A 590, 47¢ (1995).

K. Geiger, J.I. Kapusta, Phys. Rev. D 47, 4905 (1993).
T. Csorgd, L.P. Csernai, Phys. Lett. B 333, 494 (1994).
L.P. Csernai, I.N. Mishustin, Phys. Rev. Lett. 74, 5005
(1995).

P. Gerber, H. Leutwyler, Nucl. Phys. B 321, 387 (1989).
J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys.
G 32, 223 (2006).

E.L. Bratkovskaya, W. Cassing, C. Greiner, M. Effen-
berger, U. Mosel, A. Sibirtsev, Nucl. Phys. A 681, 84
(2001).

R. Rapp, J. Wambach, Phys. Lett. B 315, 220 (1993).
V.K. Magas, L.P. Csernai, E. Molnér, A. Nyiri, K. Tamo-
siunas, Nucl. Phys. A 749, 202 (2005).

L.P. Csernai, V.K. Magas, E. Molnar, A. Nyiri, K. Tamo-
siunas, Eur. Phys. J. A 25, 65 (2005).

E. Molnar, L.P. Csernai, V.K. Magas, A. Nyiri, K. Tamo-
siunas, Phys. Rev. C 74, 024907 (2006).

E. Molnar, L.P. Csernai, V.K. Magas, Zs.I. Lazéir, A.
Nyiri, K. Tamosiunas, J. Phys. G 34, 1901 (2007).

E. Molnér, L.P. Csernai, V.K. Magas, Acta Phys. Hung.
A 27,359 (2006).

V.K. Magas, L.P. Csernai, E. Molnar, Acta Phys. Hung.
A 27,351 (2006).

W. Florkowski, W. Broniowski, Phys. Lett. B 477, 73
(2000).

D. Ziesche, S. Schramm, J. Schaffner-Bielich, H. Stoecker,
W. Greiner, Phys. Lett. B 547, 7 (2002).

S. Zschocke, L.P. Csernai, E. Molnar, A. Nyiri, J. Man-
ninen, Phys. Rev. C 72, 064909 (2005).

L.P. Csernai, Introduction to Relativistic Heavy Ion Col-
lisions (John Wiley & Sons, Chichester, 1994).

Cs. Anderlik, Zs.I. Lazar, V.K. Magas, L.P. Csernai, H.
Stocker, W. Greiner, Phys. Rev. C 59, 388 (1999).

E.V. Shuryak, Phys. Lett. B 207, 345 (1988).

J.L. Goity, H. Leytwyler, Phys. Lett. B 228, 517 (1989).
P. Gerber, H. Leytwyler, J.L. Goity, Phys. Lett. B 246,
513 (1990).

K.A. Bugaev, Nucl. Phys. A 606, 559 (1996).

V.K. Magas, Cs. Anderlik, L.P. Csernai, F. Grassi, W.
Greiner, Y. Hama, T. Kodama, Zs. Lazar, H. Stocker,
Phys. Lett. B 459, 33 (1999).

V.K. Magas, C. Anderlik, L.P. Csernai, F. Grassi, W.
Greiner, Y. Hama, T. Kodama, Z.I. Lazar, H. Stoecker,
Heavy Ion Phys. 9, 193 (1999).

V.K. Magas, Cs. Anderlik, L.P. Csernai, F. Grassi, W.
Greiner, Y. Hama, T. Kodama, Zs. Lazar, H. Stocker,
Nucl. Phys. A 661, 596 (1999).

41.
42.
43.
44.
45.
46.
47.
48.

49.

50.
51.

52.

53.
54.

55.

56.

57.
58.

59.

60.

61.
62.

63.

64.

65.

66.
67.

68.

69.
70.

71.
72.

73.
74.

75.

V.K. Magas, A. Anderlik, Cs. Anderlik, L.P. Csernai, Eur.
Phys. J. C 30, 255 (2003).

R. Rapp, J. Wambach, Phys. Rev. C 53, 3057 (1996).
V.K. Magas, L.P. Csernai, Phys. Lett. B 663, 191 (2008).
M. Gell-Mann, R.J. Oakes, B. Renner, Phys. Rev. 175,
2195 (1968).

R. Dashen, Phys. Rev. 183, 1245 (1969); Phys. Rev. D
3, 1879 (1971).

T. Ericson, W. Weise, Pions and Nuclei (Oxford Science
Publications, Oxford, 1988).

H. Lehmann, K. Symanzik, W. Zimmermann, Nuovo Ci-
mento 6, 319 (1957).

C. TItzykson, J.-B. Zuber, Quantum Field Theory
(McGraw-Hill, New York, 1980).

T. Hatsuda, T. Kunihiro, Prog. Theor. Phys. Suppl. 91,
284 (1987).

V. Thorsson, A. Wirzba, Nucl. Phys. A 589, 633 (1995).
R.D. Pisarski, M. Tytgat, Phys. Rev. D 54, 2989 (R)
(1996).

C.A. Dominquez, M.S. Fetea, M. Loewe, Phys. Lett. B
387, 151 (1996).

C.L.V. Reyes, PhD Thesis (2005) arXiv: hep-ph/0510124.
D. Blaschke, Yu.L. Kalinovsky, P.C. Tandy, arXiv:
hep-ph/9811476; XI. International Conference Problems
of Quantum Field Theory, 13th - 17th July 1998,
Dubna/Russia, MPG-VT-UR-169-98, Nov 1998.

A. Bender, D. Blaschke, Y. Kalinovsky, C.D. Roberts,
Phys. Rev. Lett. 77, 3724 (1996).

M. Dey, V.L. Eletsky, B.L. loffe, Phys. Lett. B 252, 620
(1990).

V.L. Eletsky, B.L. Ioffe, Phys. Rev. D 51, 2371 (1995).
T. Hatsuda, Y. Koike, Su H. Lee, Nucl. Phys. B 394, 221
(1993).

A.l. Bochkarev, M.E. Shaposhnikov, Nucl. Phys. B 268,
220 (1986).

V.I. Eletsky, P.J. Ellis, J.I. Kapusta, Phys. Rev. D 47,
4084 (1993).

Y. Nambu, D. Lurie, Phys. Rev. D 125, 1429 (1962).
S.L. Adler, R. Dashen, Current Algebra and Applications
to Particle Physics (Benjamin, 1968).

J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of
the Standard Model (Cambridge University Press, Cam-
bridge, UK, 1992).

A. Hosaka, H. Toki, Quarks, Baryons and Chiral Symme-
try (World Scientific, 2001).

H. Leutwyler, A.V. Smilga, Nucl. Phys. B 342, 387
(1990).

V.1. Eletsky, Phys. Lett. B 245, 229 (1990).

T. Inagaki, D. Kimura, A. Kvinikhidze, arXiv: hep-
ph/0712.1336.

M. Loewe, C. Villavicencio, Phys. Rev. D 67, 074034
(2003).

N. Kodama, M. Oka, Nucl. Phys. A 601, 304 (1996).
C.A. Dominguez, M.S. Fetea, M. Loewe, Phys. Lett. B
387, 151 (1996).

A. Larsen, Z. Phys. C 33, 291 (1986).

C. Contreras, M. Loewe, Int. J. Mod. Phys. A 5, 2297
(1990).

A. Ayala, S. Sahu, Phys. Rev. D 62, 056007 (2000).

N. Petropoulos, AIP Conf. Proc. 739, 506 (2005); arXiv:
hep-ph/0406258.

A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto, G.
Pettini, Phys. Rev. D 46, 2203 (1992).



76
7

78.

79.
80.
81.

82.
83.

84.
85.
86.

S. Zschocke and L.P. Csernai: Pion mass shift and the kinetic freeze-out process

. A. Schenk, Phys. Rev. D 47, 5138 (1993).

. J. Gasser, H. Leutwyler, Phys. Lett. B 184, 83 (1987);
188, 477 (1987).

H. Leutwyler, Proceedings of the International Conference
of High FEnergy Physics, Uppsala, 1987, Nucl. Phys. B
(Proc. Suppl.) 4, 248 (1988).

V.I. Eletsky, Phys. Lett. B 299, 111 (1993).

A. Bochkarev, J. Kapusta, Phys. Rev. D 54, 4066 (1996).
V.L. Eletsky, Ian I. Kogan, Phys. Rev. D 49, R3083
(1994).

S. Jeon, J. Kapusta, Phys. Rev. D 54, 6475 (1996).

T. Yamazaki, R.S. Hayano, K. Itahashi, K. Oyama, A.
Gillitzer, H. Gilg, M. Kniille, M. Miinch, P. Kienle, W.
Schott, H. Geissel, N. Iwasa, G. Miinzenberg, Z. Phys. A
355, 219 (1996).

T. Yamazaki, Nucl. Phys. A 629, 338c (1998).

A. Gillitzer, Nucl. Phys. A 639, 525¢ (1998).

T. Yamazaki, R.S. Hayano, K. Ithahashi, K. Oyama, A.
Gillitzer, H. Gilg, M. Kniille, M. Miinch, P. Kienle, W.
Schott, W. Weise, H. Geissel, N. Iwasa, G. Miinzenberg,
S. Hirenzaki, H. Toki, Phys. Lett. B 418, 246 (1998).

87.

88.
89.
90.
91.
92.

93.

94.
95.
96.
97.

98.
99.

100.

363

PHENIX Collaboration, Phys. Rev. Lett. 91, 182301
(2003).

STAR Collaboration, Phys. Rev. Lett. 92, 052302 (2004).
S.A. Voloshin, J. Phys. Conf. Ser. 9, 276 (2005).

S.A. Voloshin, Nucl. Phys. A 715, 379 (2003).

E.V. Shuryak, I. Zahed, Phys. Rev. D 70, 054507 (2004).
F. Karsch, S. Ejiri, K. Redlich, Nucl. Phys. A 774, 619
(2006).

J.D. Lambert, D. Lambert, Numerical Methods for Or-
dinary Differential Systems: The Initial Value Problem
(Wiley, New York, 1991).

M. Kofler, Maple V Release 4 (Addison-Wesley Publish-
ing Company, Bonn, 1996).

J. Cleymans, K. Redlich, Phys. Rev. C 60, 054908 (1999).
F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974).

V.K. Magas, L.P. Csernai, E. Molnar, Eur. Phys. J. A
31, 854 (2007).

V.K. Magas, L.P. Csernai, arXiv: nucl-th/0711.2981.

M. Abramowitz, [.A. Stegun, Handbook of Mathematical
Functions (Dover Publ. Inc., New York, 1970).

S. Zschocke, B. Kdmpfer, G. Plunien, Phys. Rev. D 72,
014005 (2005).



