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Impact of nucleon mass shift on the freeze-out process
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The freeze-out of a massive nucleon gas through a finite layer with a timelike normal is studied. The impact
of the in-medium nucleon mass shift on the freeze-out process is investigated. A considerable modification
of the thermodynamic variables of temperature, flow velocity, energy density, and particle density has been
found. Because of the nucleon mass shift the freeze-out particle distribution functions are changed noticeably in
comparison with the evaluations, which use the vacuum nucleon mass.
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I. INTRODUCTION

High-energy nucleus-nucleus collision experiments are
designed mainly for the search for and the investigation
of a predicted new state of matter, the quark-gluon plasma
(QGP), in which quarks and gluons would be set free from
the color confinement observed in normal nuclear matter.
Moreover, heavy-ion reactions are expected to exhibit other
phenomena of quantum chromodynamics (QCD) in the hot and
dense environment of the collision region, such as in-medium
modifications of almost all hadrons or the state of color
superconductivity (CSC). In this respect, the nucleus-nucleus
collision experiments provide a unique way to test the validity
of current theoretical approaches and models of physics of
strongly interacting matter.

On the other side, a characteristic and inevitable problem
of collision experiments is that in-medium modifications of
hadrons and the expected new states of matter (e.g., QGP, CSC)
disappear by the end of the reaction. Accordingly, one cannot
directly measure these properties of the hot and dense medium
produced. Instead, one has to probe the initial stages of the
collision indirectly by using theoretical models to reproduce
the observed final particle spectra. A detailed understanding
of the different stages of a relativistic heavy-ion collision
process therefore becomes very compelling. The scheme of
a representative relativistic heavy-ion collision process is as
follows.

In the very early stage of nucleus-nucleus collisions, an
extremely hot and dense medium is created in which several
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hundred or even thousands of secondary partons are produced.
Because of the high partonic density, local (perhaps global)
thermal equilibrium is reached very rapidly, for instance, at
RHIC or LHC incident energies within (0.3–0.5) fm/c for glu-
ons, and (0.5–1.0) fm/c for quarks [1–4]. It has been proposed
that since the heavy quark flavor production is dominated by
the relatively slow gluon-gluon fusion, chemical equilibration
of the heavy quark flavors (strangeness, charm, etc.) might stay
incomplete during the entire collision evolution, so that there
is a need to implement a strangeness suppression factor γs [5].
Nevertheless, chemical equilibration of gluons and light quark
flavors is believed to be reached around 2 fm/c [6].

In spite of the nature of the produced medium, a large
pressure gradient perpendicular to the collision axes drives
the system to expand rapidly and to cool down. In heavy-ion
collisions, below the critical temperature Tc � 175 MeV
several hundred hadrons emerge, forming a strongly inter-
acting resonance gas. As the fireball cools further, below
the chemical freeze-out temperature Tch, inelastic collisions
cease, and hadronic abundances become fixed. This process
is usually called the chemical freeze-out (cFO). Later, when
the hadron gas becomes more dilute, below the thermal
freeze-out temperature Tth, the elastic interactions cease as
well. This stage of the collision is usually called kinetic
freeze-out (kFO). Finally, the formed hadrons of the thermal
freeze-out spectrum propagate freely toward the detectors.
In Ref. [7] both the chemical freeze-out temperature Tch

and thermal freeze-out temperature Tth were determined for
several collision scenarios and baryon densities. Nonetheless,
the sharp distinction between chemical and thermal freeze-out
is an idealization, while in a real collision, because of the short
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time scales, both processes become mixed with each other.
Therefore, one sometimes calls it a freeze-out process without
further distiction between chemical and thermal freeze-out,
which implies Tch � Tth.

Many kinds of approach have been applied for the de-
scription of the freeze-out of strongly interacting matter.
Statistical models [7–14] can reproduce the measured particle
multiplicities well in most of the collision experiments done
so far. Kinetic models [15,16] as well as hydrodynamical
approaches [17] have proved to be able to describe most of
the collective phenomena, like the different flow components
in heavy-ion reactions. However, despite the success in
comparison with experiments, the in-medium modifications
of the hadrons during the freeze-out process have not been
taken into account yet. In most of the previous evaluations the
vacuum parameters of the particles have been implemented.
To the best of our knowledge, Refs. [18,19] seem to be the
only investigations in which the effect of in-medium hadron
masses (mesons and baryons) on the particle ratios during the
chemical freeze-out has been studied. A systematic study of the
effect of in-medium hadron masses on the kinetic freeze-out
process has not been performed yet.

But implementing the vacuum parameters of hadrons for
describing the kinetic freeze-out process is an approximation
that may or may not work, depending on the physical system
under consideration. For instance, both experiments [20] and
theoretical investigations [21–23] suggest that pions embedded
in a hot and dense medium suffer only a small mass change.
Accordingly, the description of the freeze-out process of a
purely pion gas by means of their vacuum parameters seems
to be a reliable approximation. On the other hand, the mass of
kaons can be shifted considerably in a hot and dense medium
[24–26], so that taking into account in-medium modifications
for the kaon component seems to be compelling.

In this work we study a nucleon gas and investigate how
strong the effect of an in medium mass shift of nucleons on the
freeze-out profile is. We compare the results with calculations
using a vacuum nucleon mass.

The paper is organized as follows: The freeze-out process
within a finite time-like layer is considered in Sec. II. The
nucleon mass shift and its implementation in the freeze-out
process are outlined in Sec. III. The results of our study are
presented in Sec. IV. Finally, in Sec. V a summary and outlook
are given. Further notation and a brief mathematical remark
can be found in the appendix.

II. FREEZE-OUT PROCESS WITHIN A FINITE LAYER

In this section we are focusing on the last stage of the
collision, the freeze-out process; i.e., we start our investigation
from the time of the collision where the expanding and
cooling system reaches a temperature T � Tc and where the
hadronization of the primary parton gas is almost completed.

The frozen-out particles are formed in a layer of finite
thickness L, bounded by two hypersurfaces: the pre-freeze-out
hypersurface with TpreFO � Tc and a post-freeze-out hyper-
surface with Tpost FO � Tch � Tth. These surfaces are defined
by the normal dσµ, which in general can be a spacelike

dσµdσµ < 0 or a timelike four-vector, dσµdσµ > 0. The
diameter L of the layer is of the order of a few mean free
paths of the particle under consideration. To get an idea about
the scales, we recall that for nucleons at ground-state saturation
density the mean free path is about 1 fm [27,28].

Dynamical models, like hydrodynamic or transport models,
allow us to describe such freeze-out processes through the
layer. In doing so, the hydrodynamic models have certain
advantages over transport model calculations. An important
one is that once the equation of state and initial conditions of
the hadronic matter are specified, the space time evolution of
the system is uniquely determined by the hydrodynamic differ-
ential equations. This effect that the impact of several equations
of state may be investigated in a very direct way. Even more,
uncertainties or assumptions made in the underlying kinetic
theory of the particles under consideration are circumvented.
In addition, the use of familiar thermodynamic concepts, like
temperature, flow velocity, pressure, and energy density also
provide a transparent physical picture of the evolution. Of
course, the basis of applicability of hydrodynamics is the
assumption of local thermal and chemical equilibrium. In the
following we will assume the validity of these conditions and
will apply the theory of hydrodynamics for describing the
thermal freeze-out process in a finite space-time layer.

The theoretical description of the kinetic freeze-out within a
hydrodynamic approach was worked out some years ago [29–
33]. Very recently, in Refs. [34] and [35], the formalism has
been applied to the case of a finite freeze-out layer, separately
for both spacelike and timelike normals. While the formalism
in Refs. [34,35] has been developed for the general case of a
massive particle, the calculations have been performed for a
massless pion gas. Here, we will use the outlined formalism
of Ref. [35] for a timelike layer for the case of a massive
nucleon. In particular, we will implement the in-medium mass
modification of nucleons traveling through the freeze-out layer.
It is not necessary to repeat the formalism of Ref. [35] in detail.
Instead, we shall restrict our explanations of the basic concept
and will give only the equations relevant for our study.

Local equilibrium implies that the thermodynamical param-
eters inside the layer become space-time dependent; i.e., we
have a space-time dependent temperature T (x), flow velocity
v(x), energy density e(x), and nucleon density n(x). For
evaluating these functions we need the basic equations of
hydrodynamics,

∂µNµ(x) = 0 and ∂µT µν(x) = 0, (1)

where

Nµ(x) =
∫

d3k
k0

kµf (x, k) (2)

is the particle current and

T µν(x) =
∫

d3k
k0

kµkνf (x, k) (3)

is the energy momentum tensor. Here, xµ = (t, r) is the
four-coordinate and kµ = (Ek, k) is the four-momentum of the
nucleon. While the first relation in Eqs. (1) is valid only when
the total number of particles is conserved, the second relation in
Eqs. (1) is always satisfied and asserts energy and momentum
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conservation. The one-particle distribution function f (x, k) is
an invariant Lorentz scalar and is normalized to the invariant
number of particles N (in our case the nucleons), i.e., N =∫

d3r d3k f (x, k).
While the components of the tensors Eqs. (2) and (3),

depend on the Lorentz frame chosen, two Lorentz invariant
scalars can be obtained, the invariant scalar energy density e
and invariant scalar particle density n:

e(x) = uµ(x)T µν(x)uν(x), (4)

n(x) = uµ(x)Nµ(x). (5)

We note that these invariant scalars have to be distinguished
from the noninvariant energy density ẽ = E/V and particle
density ñ = N/V , where E is the noninvariant total energy
and v is the noninvariant volume of the system.

While the invariant relations (d4) and (5) are valid in any
Lorentz frame, in a concrete evaluation one has to specify the
frame in which the components of the four-current, energy
momentum tensor and the (always timelike) four-velocity uµ

are evaluated. Any Lorentz frame can be defined by a Lorentz
boost with respect to the local rest frame of the nucleon
gas, RFG, on which the condition u

µ

RFG(x) = (1, 0, 0, 0) is
imposed; obviously, in the RFG we have ẽ = eRFG and
ñ = nRFG. However, this condition does not define the RFG
uniquely. There are, in general, several possibilities to define
such a rest frame. Here we will take Eckart’s definition [36],
which is the most appropriate one for heavy-ion reactions with
high baryon densities. According to this definition the local rest
frame is tied to conserved particles, which can be achieved by
equating the unit vector of the particle four-current with the
four-velocity of the particle flow,

uµ(x) = Nµ(x)√
Nν(x)Nν(x)

. (6)

Accordingly, in the RFG there is no particle flow in spatial
directions. It is straightforward to recognize that the Lorentz
invariant denominator in Eq. (6) is just the invariant scalar
particle density of Eq. (5). And, while the components of
four-vectors uµ and Nµ depend on the Lorentz frame chosen,
the tensor relation (6), which connects these frame-dependent
components, remains valid in any frame.

From the definitions (4), (5), and (6) one obtains the
following set of three coupled differential equations, which, by
means of Eckart’s definition, are valid in any Lorentz frame:

de(x) = uµ(x)dT µν(x)uν(x) + 2duµ(x)T µν(x)uν, (7)

dn(x) = uµ(x)dNµ(x), (8)

duµ(x) = 1

n(x)
[gµν − uµ(x)uν(x)]dNν. (9)

Since there are four unknowns in the problem under consider-
ation, namely, T , v, e, n, an additional constraint is necessary
to get a complete system of equations that uniquely determines
these four unknowns. That constraint is provided by the
equation of state (EoS) for the nucleon gas [37–39], which
is assumed to be valid at any space-time point of the reaction

zone after hadronization,

e(x) = n(x)

{
MN (n(x), T (x)) − E0

+ K

18

[
n(x)

n0
− 1

]2

+ 3

2
T (x)

}
. (10)

The term E0 = 16 MeV accounts for the nuclear binding
energy among the nucleons, and the term proportional to
the compressibility constant K = 9(∂p/∂n)n=n0 � 235 MeV
accounts for the dependence of compressibility on density.
Since we are aiming at investigating the effect of in-medium
nucleon mass shift on the freeze-out process, we have already
implemented a density-and temperature-dependent nucleon
pole mass in Eq. (10). The given EoS (10) is a generalization
of the EoS for the ideal nucleon gas, which is valid in the
rest frame, i.e., eRFG = nRFG[MN + 3/2TRFG]. There are other
generalizations for the nucleonic EoS [36]. However, we
have confirmed that in the energy and temperature region we
are exploring here the results obtained are insensitive to the
specific choice of the nucleonic EoS. The EoS (10) is used to
determine the temperature T (x) of the interacting component
of the nucleon gas during the freeze-out process. Accordingly,
the four Eqs. (7), (8), (9) and (10) represent a closed set for
evaluating the four unknowns T , v, e, n of the one-particle
system.

Now we will turn to the explicit evaluation of components
for the energy momentum tensor and nucleon four-current.
In line with Ref. [35], we will perform all evaluations in the
Lorentz rest frame of the freeze-out front, RFF, so that in our
study all tensor components in Eqs. (7)–(9) can be labeled
RFF. The Lorentz frame RFF is defined as follows.

At a given instant in space-time the expanding hot and
dense hadronic system reaches a certain freeze-out temperature
Tpost FO, where all constituents of the system are assumed to
become frozen out; i.e., no hadrons interact anymore. In an
arbitrary but fixed direction ex = rT/|rT| transverse to the
beam, the rest frame of the gas RFG moves with a velocity
vT relative to the freeze-out front RFF. Then, by means of
a Lorentz transformation, the particle four-velocity in RFF
becomes u

µ

RFF = γ (1, v, 0, 0), where v = sign(vT)|vT| and
γ = 1/

√
1 − v2. The velocity v is called the flow velocity

and, in general, can be positive, negative, or even zero.
Furthermore, as the system expands and cools, the number

of interacting particles decreases to the post freeze-out surface
of the finite layer, where by definition the density of interacting
particles vanishes. Accordingly, the thermal freeze-out process
inside the layer can be described by decomposing the particle
distribution function into two components of the matter, an
interacting part fi and a noninteracting free part ff ; thus

f (x, k) = fi(x, k) + ff (x, k). (11)

According to Eq. (11) and by means of Eqs. (2), (5), and (6),
we have an interacting and a noninteracting particle density,

ni(x) = √
Nν i(x)Nν

i (x),
(12)

nf (x) =
√

Nν f (x)Nν
f (x),
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with n = nf + ni . For the pre-freeze-out we assume thermal
equilibrium, i.e., we have a Jüttner distribution for fi as the
starting one-particle distribution function, while by definition
ff is zero on the pre-freeze-out hyper surface. The space-time
evolution of the interacting and noninteracting components
inside the layer is governed by the following differential
equations [35]:

∂tfi = − 1

τ

(
L

L − t

) (
kµdσµ

kµuµ

)
fi + 1

τ0
[feq(t) − fi], (13)

∂tff = + 1

τ

(
L

L − t

) (
kµdσµ

kµuµ

)
fi, (14)

with the time τ between collisions. The Jüttner distribution is
given as [40]

feq(t) = 1

(2πh̄)3
e(µ−kµuµ)/T , (15)

with the chemical potential µ; for the interacting component
it is determined by Eq. (33) given below. The second term in
Eq. (13) is the rethermalization term [29,30,32,33,35], which
describes how fast the interacting component approaches the
Jüttner distribution within a relaxation time τ0. Here we
will use the immediate rethermalization limit τ0 → 0, which
implies fi → feq faster than τ0 → 0, i.e., local equilibrium at
all times during the freeze-out in the following way.

First, the layer is subdivided into small intervals. Then
we calculate the changes dT µν and dNµ based on their
kinetic definitions (2) and (3), respectively, with the freeze-
out distribution fi . At the beginning of a time step this is
considered to be a flux coming from a Jüttner distribution
and continues during the length of the whole time step
according to the kinetic differential equation (13) (without
the rethermalization term). Then the remaining distribution is
not of the Jüttner type anymore. Nevertheless, the losses dT

and dN are calculated based on the initial Jüttner distribution
and the escape probability. When we are at the end of the time
step of such a small interval of the layer, we have a change
in all thermodynamic variables T , v, e, n. With τ0 → 0 we
assume an immediate rethermalization of T µν and Nµ, i.e.,
we define a new Jüttner distribution with the new values for
T , v, n at the end of the time step. At the next time step we
use this new Jüttner distribution to calculate the its changes
in the next small time interval, and so on. Accordingly, the
last term in Eq. (7) vanishes, as can be seen as follows. Since
at the beginning of a time step we take a Jüttner distribution
according to the immediate rethermalization limit, the second
term of Eq. (7) is zero (see the appendix). Then, during a time
step the energy momentum tensor (3) of a Jüttner distribution
is changed by an amount of dT µν ∼ dt , governed by Eq. (13).
That means the second term in Eq. (7) is of order O(du dt),
i.e., of second order in the differentials, so that the second term
in Eq. (7) has to be neglected. For more details about relations
(13) and (14) and about the rethermalization limit we refer the
interested reader to Refs. [29,30,33,35].

By means of the microscopic definitions (2) and (3),
one obtains for the change of the four-current and energy
momentum tensor the following general expressions for the

interacting component;

dN
µ

i = dt

∫
d3k
k0

kµ[∂tfi], (16)

dT
µν

i = dt

∫
d3k
k0

kµkν[∂tfi]. (17)

Since we are interested mainly in the freeze-out of the
interacting nucleons, we will write the interacting component
of these tensors and drop the index i in the following.
The noninteracting components can be deduced from the
interacting components by changing the sign in front. We will
write these expressions explicitly for the change of dN and
dT as given in Ref. [35] for the RFF, as previously mentioned,
they are related to the RFG by a Lorentz boost:

dN0(t, v, T ,MN, n)

dt
= 1

τ

L

L − t

n

4
[G−

1 (MN, v, T )

−G+
1 (MN, v, T )], (18)

dNx(t, v, T ,MN, n)

dt
= 1

v

dN0(t, v, T ,MN, n)

dt
+ 1

τ

L

L − t

n

4

×
[

4aK1(a)

v
+ 2a2K0(a)

v

]
, (19)

dT 00(t, v, T ,MN, n)

dt
= 1

τ

L

L − t

nT

4

1

γ v
[G−

2 (MN, v, T )

−G+
2 (MN, v, T )], (20)

dT 0x(t, v, T,MN, n)

dt
= 1

v

dT 00(t, v, T,MN, n)

dt
+ 1

τ

L

L − t

nT

2

× b2

v
[(3 + v2)K2(a) + aK1(a)], (21)

dT xx(t, v, T,MN, n)

dt
= 1

v

dT 0x(t, v, T ,MN, n)

dt
− T

γ v

×
[
dNx(t, v, T ,MN, n)

dt
− 1

v

× dN0(t, v, T,MN, n)

dt

]
+ 1

τ

L

L−t

nT

2
ab

×
[

1

v2
(1+3v2)K2(a) +bK1(a)

]
. (22)

Here a = MN/T and b = γ a. The functions G±
n and Kn are

defined in the appendix. The set of equations (7)–(10) and
(18)–(22) allows us to evaluate the basic thermodynamic func-
tion T (x), v(x), e(x), and n(x) during the freeze-out process
for a particle with a constant mass MN . However, as mentioned
in the Introduction we are aiming at an implementation of
in-medium mass shift to look for its impact on the freeze-out
process. Therefore we will first evaluate the equation with the
vacuum nucleon pole mass MN (0), and afterward replace it
by a density- and temperature-dependent nucleon pole mass
MN (n, T ).
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III. NUCLEON MASS SHIFT

During the freeze-out process, the temperature and particle
densities are presumably close to the deconfinement phase
transition critical values [7]. Therefore the in-medium values
of masses, decay widths, coupling constants, and all other
physical quantities characterizing the particles under con-
sideration have to be taken into account. In our study we
examine a purely nucleon gas and consider the in-medium
mass modification of nucleons located in a hot and dense
nuclear enviroment.

We start with a brief reconsideration of the nucleon mass
in vacuum. The nucleon derives its vacuum mass, MN (0) =
939 MeV, from the quark-gluon interaction of its underlying
substructure, consisting of valence quarks, sea quarks, and
gluons. However, although there has been considerable success
in reproducing the vacuum mass of nucleons on the basis
of their microscopic quark and gluon substructure (lattice
evaluations [41]), a rigorous use of the fundamental theory
of QCD in this respect is not yet in reach. Therefore our
understanding of the nucleon’s mass structure comes mostly
from models. From a hadronic field theoretical point of view
the nucleon mass MN (0) can be defined as the pole mass of
the nucleon propagator in vacuum,

�N (k) = i

∫
d4xeikx〈0|T�̂N (x)�̂N (0)|0〉

= 1

γµkµ− o
MN −	N (k) + iε

, (23)

where T is the Dirac time ordering, �̂N is the nucleon field

operator, �̂N = �̂
†
Nγ0, γµ are the Dirac matrices, and 	N (k)

is the nucleon self-energy in vacuum. The parameter
o

MN is
called the bare nucleon mass, i.e., the mass parameter entering
the Lagrangian that describes the interaction between the nu-
cleons and other hadrons (e.g., the nucleon-pion interaction).

In general, the mass parameter
o

MN has to be distinguished
from the vacuum pole mass of the nucleon, MN (0) = 939 MeV,
defined by

MN (0) = o
MN +Re 	N (γµkµ = MN (0)). (24)

As mentioned, there are several models that allow one to
calculate the pole mass from a QCD-based microscopic point
of view. Among them is the extension of the QCD sum rule
approach [42] to the case of baryons [43], which provides
a look into the relation between the nucleon pole mass and
QCD based quantities, the so called QCD condensates. Within
the QCD sum rule approach the nucleon field operator �̂N in
Eq. (23) is expressed by an interpolating field η̂N [43], which is
made of up and down quark field operators and which has the
quantum numbers of a nucleon (charge, spin, isospin, parity).
Along this line, in Ref. [43] the so-called Ioffe formula for the
nucleon pole mass in vacuum has been obtained,

MN (0) = −8π2

M2
〈0|qq|0〉, (25)

providing a link between the pole mass and the chiral
condensate, 〈0|qq|0〉 = −(0.250 GeV)3; M � 1.15 GeV is

the Borel mass parameter determined by stability constraint
of the nucleon sum rule approach [43].

Now we will turn to the in-medium nucleon pole mass
MN (n, T ), which represents the very characteristics that enter
into the EoS (10) [44]. In general, a nucleon propagating in
a hot and dense hadronic enviroment can be regarded as a
quasiparticle, described by the in-medium nucleon correlator

�N (k, n, T ) = i

∫
d4x eikx 〈�|T�̂N (x)�̂N (0)|�〉,

= 1

γµkµ− o
MN −	N (k, n, T ) + iε

. (26)

The nucleon self-energy 	N (k, n, T ) in the medium depends
on the density and temperature of the surrounding hadronic
medium inside the freeze-out layer; the hadronic medium is
described by the state |�〉. In the generalization of Eq. (24) the
in-medium nucleon pole mass is defined by

MN (n, T ) = o
MN +Re 	N (γµkµ = MN (n, T ), n, T ). (27)

From this point of view it becomes obvious that the pole mass
will be modified in a hot and dense hadronic matter simply
because the self-energy of a nucleon in the medium will be
different from a nucleon in vacuum.

In general, the particle pole mass in Eq. (27) for a nucleon
at rest (RFG), embedded in a hot and dense hadronic medium,
is given by [45,46]

MN (n, T ) = MN (0) + Re 	S(n, T ) + Re 	V (n, T ), (28)

with the attractive scalar part (Re 	S < 0) and the repulsive
vector part (Re 	V > 0) of nucleon self-energy in the medium.
It is a result of several theoretical models applied so far that
the individual contributions of scalar and vector self-energy
are large, but they are canceled by each other to a large
extent; typical values at saturation density are Re 	S =
−400 MeV, Re 	V = +300 MeV [45–47]. In particular,
several theoretical approaches predict a mass dropping of
the nucleon pole mass in a hadronic enviroment of about
MN (n0, 0) − MN (0) � −(80 ± 20) MeV at the ground-state
nuclear saturation density n0 = 0.17 fm−3 and at vanishing
temperature. Here, we will take the QCD sum rule results for
a nucleon in matter, given by [45,46]

Re 	S(n, T ) = +MN (0)

( 〈�|qq|�〉
〈0|qq|0〉 − 1

)
, (29)

Re 	V (n, T ) = −8

3
MN (0)

〈�|q†q|�〉
〈0|qq|0〉 , (30)

where we have accounted for the lowest mass dimension
condensates only; gluon condensate and higher mass dimen-
sion condensates give only small corrections due to large
cancellations between their individual contributions. We recall
that the part M∗

N ≡ MN (0) + Re 	S of Eq. (28) resembles
what is termed effective mass in the Walecka model [48] and
the Skyrme model [49] and which has also been evaluated
by means of a mean-field approach in Ref. [50]. For a more
detailed clarifying of the term “effective mass,” often used
with a different meaning, we refer to Ref. [51], where M∗

N is
called the Dirac mass.
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The chiral condensate at finite temperature and density,
〈�|qq|�〉, has been evaluated within the Nambu-Jona-Lasinio
(NJL) model in Ref. [52]. Later, in Ref. [53] the in-medium
chiral condensate was evaluated at finite densities and tempera-
tures by means of a pion-nucleon gas, yielding good agreement
with the results of Ref. [52]. Here the condensates (29) and (30)
have to be evaluated for a purely nucleon gas to be consistent
within the whole approach presented. According to Eqs. (11)
and (13) there are two components inside the finite layer: an
interacting component with density ni and a noninteracting
component with density nf . For evaluating the condensates
(29) and (30) we approximate the interacting component by a
Fermi gas with chemical potential µi and temperature T. On the
other side, the temperature for the noninteracting component
becomes ill defined. Nonetheless, a relevant physical param-
eter for describing the noninteracting component remains the
density nf . Accordingly, the condensates in the one-particle
approximation are given as follows [53]:

〈�|qq|�〉 = 〈0|qq|0〉 + 4
∫

d3k
(2π )3

1

2Ek

NF 〈N (k)|qq|N (k)〉

+ nf

2MN (0)
〈N (k)|qq|N (k)〉, (31)

〈�|q†q|�〉 = 4
∫

d3k
(2π )3

1

2Ek

NF 〈N (k)|q†q|N (k)〉

+ nf

2MN (0)
〈N (k)|q†q|N (k)〉. (32)

where NF = [e(Ek−µi )/T + 1]−1 is the Fermi distribution
and the nucleon energy is Ek =

√
MN (0)2 + k2. Note

that 〈0|q†q|0〉 = 0. Here the relativistic normalization
〈N (k1)|N (k2)〉 = 2Ek1 (2π )3δ(3)(k1 − k2) is used. In Eqs. (31)
and (32) the spin (up, down) and isospin (proton, neutron)
degeneracy of nucleon states has been taken into account by
the factor 4 in front of the momentum integrals. The chemical
potential for the interacting component can be evaluated via

ni = 4
∫

d3k
(2π )3

1

e(Ek−µi )/T + 1
. (33)

The condensates in Fermi gas approximation are given by [54]

〈N (k)|qq|N (k)〉 = MN (0)σN

mq

, (34)

〈N (k)|q†q|N (k)〉 = 3MN (0). (35)

The nucleon sigma term is σN � 50 MeV [55], and mq �
5 MeV is the averaged current quark mass of the up and
down quark flavor [56,57]. Inserting these parameters into
Eqs. (29) and (30), we obtain Re 	S = −390 MeV and
Re 	V = +315 MeV at ground-state saturation density n0.
Equations (28)–(35) summarize our propositions made for
obtaining the in-medium nucleon pole mass MN (n, T ) that
enters into the EoS (10). Figure 1 shows the dropping of
the in-medium nucleon pole mass. The slight increase of
the in-medium nucleon pole mass with temperature is an
artifact of the purely nucleon gas approximation. That means
an implementation of pions in Eqs. (31) and (32), which
govern the mass relation (28), would cause a temperature

FIG. 1. Effective in-medium nucleon pole mass MN (n, T ) ac-
cording to Eq. (28) (for more details see main text).

decrease of these condensates [53] and then of the in-medium
nucleon pole mass. Here, in a baryon-dominated system, this
artificial increase of MN (n, T ) with temperature is obscured
by the much stronger downshift of the pole mass with nucleon
density.

IV. RESULTS AND DISCUSSION

In this section we represent and discuss the results of the
coupled set of differential equations (7)–(9) in combination
with the EoS (10) and the in-medium nucleon mass shift re-
lations (28)–(35). The differential equations have been solved
by means of Runge-Kutta method [58–60] on the IBM 1300
cluster at Bergen Center for Computational Science (BCCS).
For all of the calculations, we have taken Tpre FO = 150 MeV,
npre FO = 1.5n0 (corresponding to µpre FO � 615 MeV), and
vpre FO = 0.5 c as starting values on the pre-freeze-out hyper-
surface. These values are, for instance, in line with typical
parameters that have been reached within the Alternating-
Gradient Synchrotron (AGS) at Brookhaven National Labo-
ratory (BNL) in Brookhaven, New York; cf. Ref. [61]. Higher
baryonic densities can be reached within the Schwer-Ionen-
Synchrotron (SIS) at Gesellschaft für Schwerionenforschung
(GSI) in Darmstadt, Germany, cf. Ref. [62]. Note that Tpre FO

and npre FO are pre- freeze-out values, and therefore, they are
larger than typical post freeze-out values given, for instance,
in Ref. [7].

In Figs. 2 and 3 the time evolution of the primary
thermodynamical functions through the finite freeze-out layer
are shown in terms of the proper time τ . Note that the densities
n = ni + nf and e = ei + ef are kept constant inside the layer.

We find a substantial effect of in-medium mass modification
on the freeze-out process within the purely nucleon gas model.
Furthermore, Figs. 2 and 3 also show that the freeze-out
process proceeds faster for all thermodynamic quantities
T , v, e, n when taking into account the dropping mass of the
nucleons. The physical reason for a faster freeze-out originates
from a smaller energy density of the nucleon system due to a
smaller nucleon mass MN (n, T ) compared with the vacuum
nucleon mass MN (0).

The given functions for T , v, e, n are not directly accessible.
In experiments the way to study the hot and dense hadronic
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FIG. 2. Top, temperature of the interacting component. Bottom,
flow velocity parameter v of the interacting component. The solid
curves are with a constant nucleon mass MN (0) = 939 MeV, while
the dashed curves are evaluated with a density- and temperature-
dependent nucleon mass MN (n, T ).

matter produced in heavy-ion collisions is to measure the
distributions of final-state particles, which reach the detectors
a long time after their last interaction. Accordingly, next we
consider the one-particle freeze-out distribution function at
ky = 0, i.e., ff (kx) ≡ ff (kx, ky = 0), and consider the impact
of the evaluated thermodynamical functions T , v, e, n on it.
The results are shown in Fig. 4 for different instants during
the freeze-out process. The function ff (kx) is determined at
point A [63] of the freeze-out front; see also Ref. [35] for
more details. The function ff (kx) is obtained by solving the
differential equation (14), where for fi the Jüttner distribution
(15) is used, but with the parameters T and v as determined
previously and given in Fig. 2.

The logarithmic scale in Fig. 4 disguised the strong modi-
fication of these distribution functions. For small moments up
to kx � 1 GeV, at the very beginning of the freeze-out process
at t = 0.1τ there is a change of ff (kx), which remains up
to the end of the freeze-out process at t = 9.0τ . A contour
plot of the freeze-out particle distribution functions ff (kx, ky)
over their transversal and longitudinal momenta kx and ky ,
respectively, shown in Fig. 5, illustrates this statement. We
observe a remarkable change, by a factor �2, for momenta
kx, ky � 1 GeV.

A few remarks are in order about the starting values used
for density and temperature. First, formulas (29) and (30) have,
like other theoretical approaches, a limited range of validity
with respect to the density; n � 1.5n0. Second, according to
Eq. (13) the rethermalization is assumed within a time step
dt . Numerical accuracy for solving the set of differential

FIG. 3. Top nucleon energy density of the interacting component.
Bottom, nucleon particle density of the interacting component. The
solid curves are with a constant nucleon mass MN (0) = 939 MeV,
while the dashed curves are evaluated with a density- and temperature-
dependent nucleon mass MN (n, T ).

equations (7)–(9) requires sufficiently small time intervalls
dt . However, a smaller starting temperature Tpre FO implies a
longer rethermalization time τ0 < dt , so that Tpre FO cannot be
taken arbitrary small. In addition, these two boundaries have
to be adjusted to be in a region of the QCD phase diagram
where we are inside the hadronization region and above the
kinetic freeze-out. The parameter choice of the starting values,
npre FO = 1.5n0, Tpre FO = 150 MeV, are an optimal compro-
mise for these borderlines. Within the approach presented we
have a common way to model the kinetic freeze-out process,
and which can let us implement the nucleon mass shift by
means of a purely nucleon gas model. Nevertheless, one has
also to be aware that the pion-nucleon ratio becomes small only
for high enough nucleon densities n = (1.5–2)n0 and moderate
temperatures T � 100 MeV, e.g. Ref. [8]. Our starting values
for density and temperature on the pre-freeze-out hypersurface
deviate from these values. Therefore a more sophisticated
model requires the implementation of pions and maybe even
heavier mesons. However, due to different freeze-out scenarios
between nucleons and mesons (cf. [64]), such a procedure
would require the use of a two-fluid or even three-fluid model,
which is a highly involved tool, cf. Ref. [65]. Therefore, for
the time being it is difficult to say how strong the effect of
mesons is. Therefore we were aiming at a description that
allows us to account for the nucleon mass shift scenario during
the freeze-out process in a more common way.

Finally, we remark that in-medium modifications have
actually to be previously taken into account before and during
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FIG. 4. Top, freeze-out distribution function ff (kx, ky = 0), at
different instants t, evaluated with a constant nucleon mass MN (0) =
939 MeV. Bottom, freeze-out distribution function ff (kx, ky = 0)
at different instants t, evaluated with the density- and temperature-
dependent nucleon mass MN (n, T ). The curves are as in the top panel.
The freeze-out distribution function increased by a factor of �2 when
density- and temperature-dependent nucleon masses were taken into
account.

the hadronization process. This points to an even stronger
impact of in-medium modifications on the final particle
spectrum than presented.

V. SUMMARY

We have investigated a freeze-out scenario within a finite
layer for a massive nucleon gas. Special attention has been
drawn to how strong the impact of the in-medium nucleon
mass modification of the thermal freeze-out process is. By
focusing on a purely nucleon gas, we have found a substantial
effect on the thermodynamical quantities such as temperature
T, flow velocity v, particle density n, and energy density e
of the interacting component. All of these thermodynamical
functions have revealed a faster freeze-out compared with a
scenario without an in-medium nucleon mass shift. These
modifications have a sizable implication for the freeze-out
particle distribution function, which is a basic observable in
heavy-ion collision experiments. For small momenta around
the nucleon mass a strong change of about a factor �2 has
been found (see Fig. 4). A contour plot of the particle dis-
tribution function in the transversal-longitudinal momentum
plane (kx, ky) illustrates this effect (see Fig. 5). From these
results we conclude that in-medium modifications of nucleons
have a significant consequence on the freeze-out process.
This reasoning is certainly valid for heavy-ion collisions,
which produce sufficiently high nucleon particle densities; in

FIG. 5. Freeze-out distribution functions ff (kx, ky) over their
transversal and longitudinal momenta kx and ky , respectively, at
t = 9.0τ in RFF. Top, evaluation with a vacuum nucleon mass
MN (0) = 939 MeV. Bottom, evaluation with the density- and
temperature-dependent nucleon mass MN (n, T ). The overall norm of
the freeze-out distribution function increased by a factor of �4 when
density- and temperature-dependent nucleon masses were taken into
account.

particular for experiments like the compressed baryonic matter
project (CBM Collaboration) planned at the GSI facility in
Darmstadt, Germany.

For a more realistic description of heavy-ion collisions
one should include in the analysis at least the low-lying
mesons and baryons as well. All hadrons suffer in-medium
modifications of their masses and widths, but there are strong
differences among them. For instance, while the pion mass
remains almost unaffected by the hadronic medium even at
very high temperatures and densities, this is not the case
for nucleons, kaons, and � resonances. Taking into account
the pions and the in-medium modifications of other hadrons
in the fireball produced in nucleus-nucleus reactions could
modify our results in the details, but not the general statement
that in-medium modifications have some relevance for the
freeze-out process. For example, including the pions leads to a
stronger temperature dependence of the chiral condensate [53],
which causes a stronger downshift of the nucleon mass with
increasing temperature. Then, our results might even be more
pronounced. In addition, the implementation of in-medium
modifications has to be taken into account before and during
the hadronization, which also leads to an amplification of their
impact on the whole freeze-out process.
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In summary, our findings for a purely nucleon gas suggest
that taking into account in-medium modifications of nucleons
seems to be a necessary and interesting phenomenon, in
particular for collision scenarios with high baryonic densities.
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APPENDIX

The functions G±
n (n = 1, 2) are defined as

G±
n (MN, v, T ) = 1

T n+2

∫ ∞

0
dk k

(√
k2 + M2

N

)n

×E1

(
γ

T

√
k2 + M2

N ± γ vk

T

)
, (A1)

where E1 is a special case of incomplete � function [66] and
is defined as

E1(x) =
∫ ∞

x

dt t−1 e−t . (A2)

The function Kn is the Bessel function of the second kind [66],
defined as

Kn(z) = 2nn!

(2n)!
z−n

∫ ∞

x

dx e−x(x2 − z2)n−1/2. (A3)

Finally, we prove the vanishing of the second term in Eq. (7).
First, we note explicitly the relevant four-current and energy

momentum tensor components as deduced directly from the
microscopic kinetic definitions (2) and (3), respectively. We
recall that due to the immediate rethermalization limit during
the freeze-out there is actually a Jüttner type distribution for fi ,
but with the thermodynamical functions T and v as evaluated
with the approach presented and given in Fig. 2. Therefore, at
the beginning of the timestep for fi one has to insert the Jüttner
distribution (15), but with the evaluated functions T and v, into
the microscopic definitions (2) and (3), getting the following
components in RFF:

N0 = n

4
[2abK0(a) + 4bK1(a)] , (A4)

Nx = n

4
[2vabK0(a) + 4vbK1(a)] , (A5)

T 00 = nT

4
[2ab2K1(a) + 2b2(3 + v2)K2(a)], (A6)

T 0x = − T

γ v
N0 + nT

4

[
2ab2vK1(a) + 2

b2

v
(1 + 3v2)K2(a)

]
,

(A7)
T xx = −2

T

γ v
Nx + nT

4
[2a b2v2K1(a) + 2b2(3 + v2)K2(a)].

(A8)

We recall that a = M/T , and b = γ a with γ = (1 − v2)−1/2.
The second term in Eq. (7) is given as

duµT µνuν = du0T
00uo + du0T

0xux

+ duxT
x0u0 + duxT

xxux. (A9)

With uµ = γ (1,−v, 0, 0) we get du0 = γ 3vdv and dux =
−γ 3dv. By using these relations and inserting the components
(A4)–(A8) into Eq. (A9), we immediately find duµT µνuν = 0.
We recall that aK2(a) = aK0(a) + 2K1(a).
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B459, 33 (1999).

[31] C. Anderlik, L. P. Csernai, F. Grassi, W. Greiner, Y. Hama,
T. Kodama, Zs. I. Lázár, V. K. Magas, and H. Stöcker, Phys.
Rev. C 59, 3309 (1999).

[32] V. K. Magas, C. Anderlik, L. P. Csernai et al., Heavy Ion Phys.
9, 193 (1999).

[33] V. K. Magas, A. Anderlik, Cs. Anderlik, and L. P. Csernai, Eur.
Phys. J. C 30, 255 (2003).

[34] E. Molnár, L. P. Csernai, V. K. Magas, A. Nyı́ri, and
K. Tamosiunas, arXiv:nucl-th/0503047.

[35] E. Molnár, L. P. Csernai, V. K. Magas, Zs. I. Lázár, A. Nyı́ri,
and K. Tamosiunas, arXiv:nucl-th/0503048.

[36] L. P. Csernai, Introduction to Relativistic Heavy Ion Collisions
(Wiley, Chichester, 1994).

[37] J. Kapusta, Phys. Rev. C 29, 1735 (1984).
[38] C. Grant and J. Kapusta, Phys. Rev. C 32, 663 (1985).
[39] T. S. Olson and W. A. Hiscock, Phys. Rev. C 39, 1818 (1989).
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and W. Greiner, Phys. Rev. C 26, 149 (1982).

[66] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1970).

064909-10


