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Abstract. The renormalization method of Bogoljubov-Parasiuk-Hepp-Zimmermann (BPHZ) is used in
order to derive the renormalized energy shift due to the gauge invariant Källén-Sabry diagram of the
two-photon vacuum polarization (VPVP) as well as the self energy vacuum polarization S(VP)E beyond
the Uehling approximation. It is outlined, that no outer renormalization is required for the two-photon
vacuum polarization and that only the inner renormalization has to be accomplished. It is shown that the
so-called nongauge invariant spurious term is absent for a wide class of vacuum polarization (VP) diagrams
if one applies the widely used spherical expansion of bound and free-electron propagator. This simplifies
significantly calculations in bound state quantum electrodynamics. As one result of our paper the use of
the BPHZ-approach in bound state QED is established.

PACS. 31.30.Jv Relativistic and quantum electrodynamic effects in atoms and molecules

1 Introduction

Highly charged ions provide an ideal scenario to demon-
strate the validity of QED in strong electric and magnetic
fields by measurements of the Lamb shift at utmost pre-
cision. In this respect the recent experimental progress
made in measurements of the Lamb shift in hydrogen-like
ions [1,2] indicate that calculations of all QED correc-
tions of order α2 (α ≈ 1/137.036 is the fine structure
constant), but exact in the coupling constant Zα become
relevant. The present status of theoretical prediction for
the Lamb shift have been presented in [3,4]. Even the
most difficult gauge invariant set, the second-order elec-
tron self energy correction, have been recently calculated
for the hydrogen-like ions uranium and bismuth [5]. The
renormalization of these diagrams has been carried out
in reference [6] and within a different approach in ref-
erence [7]. At present two of these two-photon diagrams
are known in the Uehling approximation only, namely the
two-photon vacuum polarization VPVP and the effective
self energy S(VP)E (see Fig. 1). Consequently, mainly the
VPVP correction remains an additional source of theoret-
ical uncertainty in the Lamb shift predictions of hydrogen-
like ions [3,4]. The main contribution originates from the
Uehling part of the VPVP diagram (−0.6 ± 0.12 eV for
uranium and −0.34± 0.07 eV for lead). To provide a re-
sult, complete in order α2, for the Lamb shift is indeed a
challenge for theory. As a step towards this goal we derive
the renormalized expression for the two-photon vacuum
polarization. At the same time we derive a renormalized
expression for the higher-order energy shift of the effective

S(VP)EVPVP

Fig. 1. The two-photon vac-
uum polarization (VPVP)
and the effective self energy
S(VP)E.

self energy diagram S(VP)E. This diagram is of special in-
terest not only since its contribution to the Lamb shift is
unknown for all elements in nature but also due to the fact
that it contains the one-loop vacuum polarization (VP) as
a subdiagram. It is well-known that in general the evalua-
tion of VP is connected with a so-called nongauge invari-
ant spurious term. We shall show that this spurious term
is absent for a wide class of diagrams which contain the
VP diagram. This result simplifies essentially evaluations
of such diagrams in bound state QED.

The paper is organized as follows. In Section 2 we ex-
plain the BPHZ-renormalization approach and it’s appli-
cation to bound state QED. The renormalization of the
VPVP diagram is discussed in Section 3. It is shown that
no outer renormalization is required and the renormal-
ized expression is specified in Section 4. In Section 5 we
shall discuss some basic properties of the fourth-rank vac-
uum polarization tensor. In Section 6 the renormalized
expression of higher-order of the S(VP)E diagram is de-
rived. Finally it will be demonstrated that the nongauge
invariant term is absent if one applies the partial wave de-
composition of the electron propagator. The renormalized
expression of S(VP)E diagram is specified in Section 7.



148 The European Physical Journal D

Fig. 2. Potential expansion of the bound-electron propagator.

2 BPHZ-renormalization scheme for QED

The general renormalization scheme of QED is formulated
for graphs with free-electron propagators. Therefore, in
order to isolate the ultraviolet divergencies we first have
to perform a potential expansion [10–12] of the bound
electron-propagator

SF (r1, r2, ω) = S0
F (r1 − r2, ω)

+
∫

d3r S0
F (r1 − r, ω)γ0V (r)S0

F (r− r2, ω)

+
∫

d3r
∫

d3r′S0
F (r1 − r, ω)γ0V (r)

× SF (r, r′, ω)γ0V (r′)S0
F (r′ − r2, ω) (1)

that is represented graphically in Figure 2. After this it is
possible to apply the standard renormalization prescrip-
tion for the free QED. We use the BPHZ-renormalization-
method [13,14]. For any given divergent loop-integral F̂Γ
corresponding to a Feynman diagram Γ this approach al-
lows for a systematic isolation of the divergent parts and
to derive the finite contribution F̂

′

Γ of the loop-integral
under consideration. This procedure is formally expressed
in terms of Bogoljubov’sR-operation acting onto the inte-
grand ÎΓ of the divergent loop-integral F̂Γ . This operation
determines the integrand R̂Γ , which yields the finite inte-
gral F̂

′

Γ :

F̂Γ =
∫

d4q1 ... d4qn ÎΓ −→ F̂
′

Γ =
∫

d4q1 ... d4qn R̂Γ .

(2)

Depending on the superficial degree of divergence ω(Γ ) of
the diagram Γ the action of Bogoljubov’s R-operation is
defined recursively via

R̂Γ =

{
(1− tΓ )R̂Γ if ω(Γ ) ≥ 0

R̂Γ if ω(Γ ) < 0

}
(3)

where Bogoliubov’s recursion formula is given by

R̂Γ = ÎΓ +
∑

{γ1,...,γk}
ÎΓ/{γ1,...,γk}

k∏
τ=1

(−tγτ )R̂γτ . (4)

Here ω(γ) = 4− EB − (3/2)EF defines the superficial de-
gree of divergence for QED where EB and EF denote the
number of external bosonic and fermionic legs, respec-
tively, assigned to an arbitrary diagram or subdiagram
γ. The sum in equation (4) runs over all combinations of
disjunct superficially divergent subdiagrams γi of the di-
agram Γ , and γτ denote the superficially divergent subdi-
agrams of the subdiagrams γi. The mathematical expres-
sions for the subdiagrams are obtained by means of the

usual Feynman rules. The symbol ÎΓ/γ1,...,γk stands for
the integrand of the diagram Γ where the subdiagrams
γ1, ..., γk are merged to a point. The operator tγ denotes
the Taylor expansion with respect to the independent ex-
ternal electron momenta pi and photon momenta kj up
to order ω(γ) of the diagram γ. According to the renor-
malization group equation of QED the reference point of
this Taylor expansion can be chosen arbitrary. However, a
special choice of a renormalization scheme with fixed ref-
erence point implies renormalization conditions which are
kept fixed. Here we employ on-shell-renormalization con-
ditions and utilize the gauge invariance of the coupling be-
tween electron-positron field and the radiation field. This
implies the following conditions for the renormalized elec-
tron self energy, the renormalized vertex function and for
the second- and fourth-rank vacuum polarization tensors
of the photon, respectively, in perturbation theory of order
(α)n (n = 1, 2, 3, ...):

Σ̂(n) ren(p)
∣∣∣∣
p/=m

= 0, Λ̂(n) ren
µ (p1, p2)

∣∣∣∣
p/1=p/2=m

= ieγµ,

Π̂(n) ren
µν (k)

∣∣∣∣
k=0

= 0, Π̂(n) ren
µνρσ (k1, k2, k3)

∣∣∣∣
k1=k2=k3=0

= 0,

(5)

where m denotes the physical electron mass and ki =
0 means actually ki = (0, 0, 0, 0). Therefore from the
renormalization-conditions (5) one can define the Taylor-
Operator tγ up to first order according to the prescription.

The operator tγ expands the integrand belonging to
the diagram γ

(a) with respect to all independent NF external electron
momenta p/i around m

(b) with respect to all independent NB external photon
momenta kj around 0.
In our context here it will be sufficient to perform the

Taylor expansion up to first order in external momenta.
In mathematical terms we can write

tγ Îγ(pi, kj) = Îγ(pi, kj)
∣∣∣∣
p/
i
=m,kj=0

+
NF∑
i=1

(
∂

∂pµi
Îγ(pi, kj)

∣∣∣∣
p/
i
=m,kj=0

)(
pµi −m

γµ

4

)

+
NB∑
j=1

(
∂

∂kµj
Îγ(pi, kj)

∣∣∣∣
p/
i
=m,kj=0

)
kµj + . . . (6)

3 Renormalization of VPVP

The contribution of the Källén-Sabry-diagrams with the
free electron propagator are well-known [8,9]. Accordingly
we subtract these terms from the two-photon vacuum po-
larization diagram and concentrate on the higher-order
contribution of VPVP which is graphically shown in the
Figure 3. As the major result in this chapter we derive the
corresponding renormalized energy shift.
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Fig. 3. Unrenormalized energy shift due to higher-order con-
tribution in (Zα) of the VPVP diagram.

2+2 + 2

+ + + 2

A B C

D E F

Fig. 4. Lowest-order terms of the potential expansion con-
tributing to the energy shift of Figure 3 with ω = 0.

3.1 The outer renormalization

According to the BPHZ-renormalization scheme as de-
fined above the case where the Taylor-Operator tΓ acts
on the whole diagram Γ may be called outer renormal-
ization. From equation (3) it becomes evident that outer
renormalization is always required for a superficial degree
of divergence ω(Γ ) ≥ 0. In the case of the VPVP diagram
we have the following situation.

In the potential expansion of the energy shift in Fig-
ure 3 diagrams with at least four external Coulomb-
photon legs occur. According to the Furry’s theorem dia-
grams with an odd number of external photon or bosonic
potential legs vanish. The superficial degree of divergence
ω is zero for diagrams with four external bosonic legs and
is negative for all diagrams of higher-order in (Zα)n with
n>4. In view of equation (3) outer renormalization is re-
quired if and only if the number of outer bosonic legs is
equal to four. These diagrams have to be considered with
special care.

At this point we note that in the case of the one-loop
vacuum polarization VP one must consider the diagram
with four outer bosonic legs with special care as well (see
for example [16]). Employing any regularization scheme
in the one-loop case VP the corresponding counter term
vanishes. Moreover, if the spherical expansion for the free
and bound electron propagator is used no spurious non-
gauge invariant term occurs in the 1-loop case VP [17].
For detailed discussions we refer to the literature ([16–18]
and [19]). With this in mind one could expect that, af-
ter any regularization is performed, the counter terms re-
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Fig. 5. Diagram ΓA with
ω(ΓA) = 0. ΓA contains a di-
vergent subdiagram γA (= one-
loop self energy). n denotes a
bound electron state.

quired for the outer renormalization may vanish in the
two-loop-case VPVP as well. In any case an explicit proof
is desirable.

We turn to the investigation of the couterterms of the
outer renormalization for the VPVP diagram. Performing
the potential expansion of the energy shift shown in Fig-
ure 3 leads to six diagrams with ω = 0 (see Fig. 4). To
give an explicit example we consider graph ΓA depicted
in Figure 5. This diagram includes the subdiagram γA.
It’s contribution to the energy shift of an arbitrary bound
electron state ϕn reads

∆EΓAn = e2

∫
d3r ϕn(r)

×
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3
ei(k1+k2+k3)r

× V (k1)V (k2)V (k3)
1

02 − (k1 + k2 + k3)2 + iε

× γ0 F̂ΓA(k1,k2,k3) ϕn(r), (7)

where V (kj) (j = 1, 2, 3) is the Fourier-transform of the
Coulomb potential of the nucleus:

V (kj) =
∫

d3r e−ikjr V (r). (8)

The explicit mathematical expression for the Feynman di-
agram is given by (with ki = (0,ki), i = 1, 2, 3)

F̂ΓA(k1,k2,k3) =
∫

d4q1
(2π)4

d4q2
(2π)4

IΓA(q1, q2,k1,k2,k3),

IΓA(q1, q2,k1,k2,k3) =

i Tr

[
γ0

1
q/1 + k/1 + k/2 + k/3 −m+ iε

× γ0
1

q/1 + k/2 + k/3 −m+ iε
γ0

1
q/1 + k/3 −m+ iε

×
(
−ie2 1

q2
2 + iε

γα
1

q/1 − q/2 + k/3 −m+ iε
γα
)

× 1
q/1 + k/3 −m+ iε

γ0
1

q/1 −m+ iε

]
· (9)

In round brackets the mathematical expression of in-
tegrand referring to the subdiagram γA (one-loop-self
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energy) has been inserted. Applying the R-operation
equations (3, 4) yields

R̂ΓA = R̂ inner
ΓA

+ R̂ outer
ΓA

(10)

with

R̂ inner
ΓA

= ÎΓA − ÎΓA/γA

(
tγA ÎγA

)
,

R̂ outer
ΓA

= −tΓA ÎΓA + tΓA

(
ÎΓA/γA

(
tγA ÎγA

))
· (11)

The Taylor-Operator tΓA acts up to zeroth order while
the other one tγA acts up to first order since ω(ΓA) =
0 and ω(γA) = 1. Accordingly, the terms for the outer
renormalization are∫

d4q1
(2π)4

d4q2
(2π)4

tΓA

[
ÎΓA(q1, q2,k1,k2,k3)

]
=∫

d4q1
(2π)4

d4q2
(2π)4

ÎΓA(q1, q2,0,0,0) (12)

and∫
d4q1
(2π)4

d4q2
(2π)4

tΓA

[
ÎΓA/γA(q1,k1,k2,k3)

×
(
tγA ÎγA (q1, q2,k1,k2,k3)

)]
= Σ(1)

∫
d4q1
(2π)4

ÎΓA(q1,0,0,0)

+Σ(1)′
∫

d4q1
(2π)4

(q/1 −m) ÎΓA/γA(q1, q2,0,0,0), (13)

respectively. The denotation (q/1 −m) ÎΓA/γA implies in-
sertion of the Dirac-structure (q/1 −m) at the same place
in the diagram ΓA/γA where there was the subdiagram
γA before. In equation (13) we used the usual definition of
the one-loop-counter terms Σ(1) and Σ(1)′ of free QED:

Σ(1) = −ie2

∫
d4q2
(2π)4

γα
1

q/1 − q/2 −m+ iε
γα

1
q2
2 + iε

∣∣∣∣
q/1=m

(14)

and

γρΣ
(1)′ = −ie2 ∂

∂qρ1

∫
d4q2
(2π)4

γα
1

q/1 − q/2 −m+ iε

× γα 1
q2
2 + iε

∣∣∣∣
q/1=m

· (15)

Similar steps have to be performed in all other diagrams
of Figure 4. With the aid of the one-loop Ward-identity

∂Σ̂(1)ren(q1)
∂q0

1

= Λ̂
(1)ren
0 (q1, q1),

∂Σ̂(1)(q1)
∂q0

1

= Λ̂
(1)
0 (q1, q1),

Σ(1)′ = −Λ(1) (16)

together with the identity

(q/1 −m) ÎΓA/γA = γ0ÎΓB/γB (17)

and the relations between renormalized and unrenormal-
ized vertex and self-energy operator

Λ̂
(1)
0 (q/1 − q/2, q/1 − q/2) = γ0Λ

(1) + Λ̂
(1)ren
0 (q/1 − q/2, q/1 − q/2),

Σ̂(1) (q/1) = Σ(1) + (q/1 −m)Σ(1)′ + Σ̂(1)ren (q/1), (18)

all counter terms referring to the outer renormalization
can be collected. One ends up with the following expres-
sion for the sum of all counter terms generated by the
operator R̂ outer

Γ corresponding to the six diagrams of Fig-
ure 4:∫

d4q1
(2π)4

∫
d4q2
(2π)4

(
2R̂ outer

ΓA
+ 2R̂ outer

ΓB
+ 2R̂ outer

ΓC

+R̂ outer
ΓD

+ R̂ outer
ΓE

+ R̂ outer
ΓF

)
= Tr

∫
d4q1
(2π)4

× ∂

∂q0
1

[
1

q/1 −m+ iε
Λ̂

(1)ren
0 (q/1, q/1)

1
q/1 −m+ iε

γ0

× 1
q/1 −m+ iε

γ0 +
1

q/1 −m+ iε
Σ̂(1)ren(q/1)

× 1
q/1 −m+ iε

γ0
1

q/1 −m+ iε
γ0

1
q/1 −m+ iε

γ0

]
· (19)

The last integral is understood as being regularized. The
renormalized self energy as well as the renormalized vertex
correction do not possess any poles. Therefore the total in-
tegrand has simple poles only at q0

1 = ±
√

q2
1 + (m− iε)2.

Accordingly, a Wick-rotation q0
1 → iq0

1 to Euclidean space
can be carried out and all surface terms vanishes after reg-
ularization. This implies that all counter terms generated
by R̂ outer

Γ cancel each other. Therefore all singularities as-
sociated with the outer renormalization must cancel each
other in the unrenormalized expression of VPVP already.

3.2 The inner renormalization

According to the previous subsection only an inner renor-
malization associated with the action of R̂ inner

Γ is required.
For this purpose we perform the potential expansion of
the bound-electron propagator until three outer bosonic
potential legs. An appropriate potential expansion of the
energy correction of higher-order in equation (3) is given
in Figure 6. For the last two diagrams C2 and C3 an inner
renormalization is not adequate. For the other six dia-
grams A1, A2, A3, B1, B2 and C1 a simple inner renor-
malization is necessary. There are the inner divergencies of
the one-loop-self energy as well as the one-loop-vertex cor-
rection. The renormalization of this one-loop-expressions
has to be carried out using equation (18). Accordingly,
one should perform the replacements of Figure 7 in or-
der to receive the full renormalized expression for VPVP.
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VPVP

++2 2

A1 A2 A3

+ 2 +
B1 B2

2

A0 B0

--

=

2 ++
C2 C3

+
C1

Fig. 6. The potential expansion of the unrenormalized expres-
sion (Fig. 3).

If one uses the Ward-identity equation (16), Furry’s the-
orem and the potential expansion shown in Figure 2, it is
not difficult to realize that all the terms which are pro-
portional to Σ(1)′ are cancelled against the terms which
are proportional to Λ(1). Especially, it holds the following
relations for these counter terms:

2Λ(1) CT(B1) + 2Σ(1)′ CT(A1) = 0,

Λ(1) CT(B2) + Λ(1) CT(C1) + 2Σ(1)′ CT(A2)

+Σ(1)′ CT(A3) = 0. (20)

Finally, if one collects all terms proportional to Σ(1) and
retransforms the potential expansion one ends up with the
renormalized expression for the total energy shift of the
VPVP, see Figure 8.

4 The renormalized expression of VPVP

Now we proceed to write down the mathematical expres-
sion of the renormalized vacuum polarization correction.
The energy shift in higher-order reads:

∆EVPVP ren h.o.
n =

∫
d3r1 ϕn(r1) γ0 ϕn(r1)

×
[
ÛVPVP(r1)− 2ÛA0(r1)− ÛB0(r1)

−Σ(1)
(
ÛCT1(r1)− 2ÛCT2(r1)

)]
· (21)

2

A1

2

A1

2

2

2

2

2 2 2

A2

2

A2

A3 A3

B1 B1

B2 B2

C1 C1

-

- -

-
(1)

(1)

-

-

-

-

(1)

(1)

(1)

(1)

(1) '

2
(1) '

-
(1) '

CT1 (A1) CT2 (A1)

CT2 (A2)CT1 (A2)

CT1 (A3) CT2 (A3)

CT1 (B1)

CT1 (B2)

CT1 (C1)

Fig. 7. The inner renormalization according to equation (18).

Fig. 8. This is the final expression for the renormalization of
the VPVP diagram if one subtracts the Källén-Sabry-terms.
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It is depicted in Figure 8. The potentials are given by
(note that Σ(1) is proportional to e2)

ÛVPVP(r1) = e4

∫
d3r2

∫
d3r3

∫
d3r4

∞∫
−∞

dE1

2π

×
∞∫
−∞

dE2

2π
D00(E1, r1 − r2)Dαβ(E2, r3 − r4)

× Tr [γ0SF (E1, r2, r3)γαSF (E1 −E2, r3, r4)
×γβSF (E1, r4, r2)] . (22)

ÛA0(r1) = e4

∫
d3r2 d3r3 d3r4 d3r5

∞∫
−∞

dE1

2π

∞∫
−∞

dE2

2π

×D00(r1 − r2, 0)Dαβ(r3 − r4, E2)V (r5)

× Tr
[
S0
F (r2 − r3, E1)γαS0

F (r3 − r4, E1 −E2)

× γβS0
F (r4 − r5, E1)S0

F (r5 − r2, E1)
]
, (23)

ÛB0(r1) = e4

∫
d3r2 d3r3 d3r4 d3r5

∞∫
−∞

dE1

2π

∞∫
−∞

dE2

2π

×D00(r1 − r2, 0)Dαβ(r3 − r4, E2)V (r5)

× Tr
[
S0
F (r2 − r3, E1)γαS0

F (r3 − r5, E1 −E2)

× S0
F (r5 − r4, E1 −E2)γβS0

F (r4 − r2, E1)
]
,

(24)

ÛCT1(r1) = e2

∫
d3r2 d3r3

∞∫
−∞

dE
2π

D00(r1 − r2, 0)

× Tr [SF (r2, r3, E)γ0SF (r3, r2, E)] , (25)

ÛCT2(r1) = e2

∫
d3r2 d3r3 d3r4

∞∫
−∞

dE
2π

D00(r1 − r2, 0)

× V (r3)Tr
[
γ0S

0
F (r2 − r3, E)S0

F (r3 − r4, E)

×S0
F (r4 − r2, E)

]
· (26)

In the expressions above SF denotes the bound-electron
propagator and S0

F denotes the free-electron propagator,
respectively, and Dµν is the photon propagator (see Ap-
pendix).

5 The fourth-rank vacuum polarization tensor

In order to derive a renormalized expression for the self
energy vacuum polarization S(VP)E it is useful to men-
tion some properties of the fourth-rank vacuum polariza-
tion tensor. Especially we reexamine some features of this
tensor which are related to the gauge invariance of the

real photon

E =_0E =_0

a ba) b)

Fig. 9. The dia-
grams of Delbrück
scattering (a) and
energy splitting (b).
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Fig. 10. The diagrams of light-light scattering.

vacuum polarization diagram VP. The fourth-rank vac-
uum polarization tensor is defined as amplitude of the
light-light scattering which is shown in Figure 10. The ex-
pression of the unrenormalized tensor reads:

Π̂unren
µ,ν,σ,λ(k1, k2, k3,m) = 2

[
T̂ unren
µ,ν,λ,σ(k1, k2, k3,m)

+ T̂ unren
µ,ν,σ,λ(k1, k2,−k1 − k2 − 2k3,m)

+ T̂ unren
µ,λ,ν,σ(k1, k3, k2,m)

]
, (27)

where the single three tensors T̂ unren are corresponding
to the expressions belonging to the diagrams depicted in
Figure 10 and they are defined by

T̂ unren
µ,ν,λ,σ(k1, k2, k3,m) =

∫
d4q

(2π)4
Tr
(
γµ

1
q/+ k/1 −m+ iε

× γν
1

q/+ k/1 + k/2 −m+ iε
γλ

1
q/+ k/1 + k/2 + k/3 −m+ iε

× γσ
1

q/−m+ iε

)
· (28)

For our purposes it is necessary to consider the general
case where the external momenta ki are not on mass shell
(k2
i 6= 0). The general structure of the solution for this

tensor is complicated and was derived at the first time by
Karplus, Neumann in [20]. For our intension here it is only
important that the single tensors T̂ unren

µ,ν,σ,λ are logarithmi-
cally divergent but their sum Π̂unren

µ,ν,σ,λ is convergent. This
surprising behaviour of Π̂unren

µ,ν,σ,λ has been proven a long
time ago [21,22], see also [18]. Therefore a renormaliza-
tion of Π̂unren

µ,ν,σ,λ seems to be not necessary, which, how-
ever, is not true. The vacuum polarization tensor Π̂unren

µ,ν,σ,λ
is not gauge invariant and therefore a renormalization is
necessary. Following the BPHZ-renormalization method
described in Section 2, we obtain the renormalized ex-
pression

Π̂ren
µ,ν,σ,λ(k1, k2, k3,m) = Π̂unren

µ,ν,σ,λ(k1, k2, k3,m)

− Π̂unren
µ,ν,σ,λ(0, 0, 0,m). (29)
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Fig. 11. The potential expansion of the S(VP)E diagram. The diagrams A3, B2, C2 and D are convergent. The diagrams A2,
B1 and C1 are separately divergent but their sum is convergent but not gauge invariant. Diagram A1 is the so-called Uehling
contribution of the S(VP)E.

Gauge invariance implies (see for example [14,18,22,23]
and references therein)

kµ1 Π̂
ren
µ,ν,σ,λ(k1, k2, k3,m) = 0,

kν2 Π̂
ren
µ,ν,σ,λ(k1, k2, k3,m) = 0,

kσ3 Π̂
ren
µ,ν,σ,λ(k1, k2, k3,m) = 0. (30)

In other words the counter term Π̂unren
µ,ν,σ,λ(0, 0, 0,m) ensure

the gauge invariance of the fourth-rank vacuum polariza-
tion tensor. We note that the regularized tensor

Π̂reg
µ,ν,σ,λ(k1, k2, k3,m,M) = Π̂unren

µ,ν,σ,λ(k1, k2, k3,m)

− Π̂unren
µ,ν,σ,λ(k1, k2, k3,M), (31)

is also gauge invariant (M denotes a large electron mass
of the Pauli-Villars-regularization). A renormalization of
the regularized tensor in equation (31) is not necessary
because the counter term Π̂unren

µ,ν,σ,λ(0, 0, 0,m) would van-
ish if one performs such a regularization. Sometimes the
subtracted term Π̂unren

µ,ν,σ,λ(k1, k2, k3,M) in equation (31),
which ensures the gauge invariance like the counter term
in equation (29), is called spurious term. Similarly we
can consider the counter term Π̂unren

µ,ν,σ,λ(0, 0, 0,m) in equa-
tion (29) as a spurious term.

There are regularization methods, in which the counter
term Π̂unren

µ,ν,σ,λ(0, 0, 0,m) in equation (29) or the subtracted
term Π̂unren

µ,ν,σ,λ(k1, k2, k3,M) in equation (31) will van-
ish [17,19]. It means that these terms are not necessary in
such cases in order to ensure gauge invariance. Because of
this it is important to note that both approaches alone,
equation (29) as well as equation (31), ensure the gauge
invariance of the fourth-rank vacuum polarization tensor.

Therefore is does not play any role which term will van-
ish. However, because of the simpler mathematical struc-
ture of the spurious term of equation (29) in comparison
with the spurious term of equation (31) it turns out to
be much easier to use the approach of equation (29) in-
stead of equation (31). As we will see in the next section
the spherical expansion of electron propagator is such a
special condition where the counter term in equation (29)
will vanish.

6 Renormalization of the S(VP)E diagram
and disappearance of the spurious term

In order to isolate the ultraviolet divergencies of the
S(VP)E diagram we first have to perform a potential ex-
pansion of the bound electron-propagator according to
equation (1) as we have seen already in the case of the
VPVP. For the diagram of the S(VP)E such an appropri-
ate potential expansion is shown in Figure 11. The dia-
grams A3, B2, C2 and D are convergent. The sum of dia-
grams A2, B1 and C1 are nothing else but the fourth-rank
vacuum polarization tensor. Therefore they are separately
divergent but their sum is convergent but not gauge in-
variant as we have discussed in the previous section. It
should be mention here that only for hydrogen an eval-
uation of the diagrams A2, B1 and C1 was performed
(see [24] and references therein). At present, for all other
elements of the periodic system their contribution is un-
known. Diagram A1 is the so-called Uehling contribution
of the S(VP)E. This Uehling contribution was evaluated
for low- and high-Z atomic systems few years ago [25] and
gave the leading contribution at least for high-Z-systems
like uranium and lead.
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Now we proceed to prove the disappearance of counter
terms of diagrams A2, B1 and C1 if one uses the spherical
expansion of the free-electron propagator (see Appendix).
Their corresponding energy shift is given by:

E(A2)+(B1)+(C1)
n = e4

∞∫
−∞

dE1

2π

∫
d3k1

(2π)3

∫
d3k3

(2π)3
V (k3)

×
∫

d3k4

(2π)3
V (k4)

1
E2

1−k1
2+iε

1
E2

1−(k1−k3−k4)2 + iε

× 1
En−E1−Em(1−iε)

∑
m

∫
d3r1 ϕn(r1)αµeik1r1ϕm(r1)

×
∫

d3r2 ϕm(r2)ανe−i(k1+k3+k4)r2ϕn(r2)

× Π̂µ,ν,0,0(E1,k1;E1,k1 + k3 + k4; 0,k3; 0,k4;m). (32)

Using the free-electron propagator

S0
F (E, r1 − r2) =

∫
d3k

(2π)3

4∑
i=1

ϕi(k)eik r1ϕ†i (k)e−ik r2

E −Ek(1− iε)
,

(33)

where the functions ϕi(k) are the solutions of the free
Dirac equation in momentum space:

(k/−m)ϕi(k) = 0, ϕ†i1(k)ϕi2(k) = δi1,i2 , (34)

(here the indices i indicate the four linear independent
solutions of the free Dirac equation) one may derive the
relation

1
E2γ0 − k2γ −m+ iε

=
4∑
i=1

ϕi(k2)ϕ†i (k2)
E2 −Ek2,i(1− iε)

· (35)

The last three equations lead immediately to the following
expression for the counter term of the fourth-rank vacuum
polarization tensor in equation (32):

Π̂µ,ν,0,0(0, 0, 0, 0,m) =
1
2

∞∫
−∞

dE2

2π

∫
d3(r1 − r2)

× Tr
[
∂2

∂E2
2

(
αµS

0
F (E2, r1 − r2)ανS0

F (E2, r2 − r1)
) ]
·

(36)

Using the identity (ĤDirac
0 is the free Dirac operator with-

out Coulomb potential)

αj =
(
ĤDirac

0 −E
)
rj − rj

(
ĤDirac

0 −E
)
, j = 1, 2, 3

(37)

and the relation(
ĤDirac

0 −E
)
S0
F (E, r1 − r2) = δ(r1 − r2), (38)

and their conjugate version, respectively, it is not difficult
to see that the spatial components in equation (36) do not
contribute. Finally, with α0 = 11 we get

Π̂µ=0,ν=0,0,0(0, 0, 0, 0,m) =

1
6

∞∫
−∞

dE2

2π
Tr
[
∂3

∂E3
2

(
S0
F (E2, r1 − r1)

) ]
· (39)

If one inserts the spherical expansion of the free-electron
propagator (see Appendix) one ends up with

Π̂µ=0,ν=0,0,0(0, 0, 0, 0,m) =
1
6

∑
κ

|κ|
2π

∞∫
−∞

dE2

2π
∂3

∂E3
2

×
[
G11

0,κ(E2, r1, r1) +G22
0,κ(E2, r1, r1)

]
· (40)

The same expression was derived and investigated already
in [17] where it has been shown that this expression van-
ishes if the summation over κ is restricted to a finite num-
ber of terms. This can be seen by inserting the explicit
expression of the spherical expansion where one gets after
a Wick-rotation the following expression:

Π̂µ=0,ν=0,0,0(0, 0, 0, 0,m) =
1
6

∑
κ

|κ|
2π

∞∫
−∞

dE2

2π
∂3

∂E3
2

×Re
(
i
[
G11

0,κ(iE2) +G22
0,κ(iE2)

])
= −1

6

∑
κ

|κ|
2π

∂2

∂E2
2

×
[

(iE2 + 1)
√

1 +E2
2 j|κ+1/2|−1/2

(
i
√

1 + E2
2 r1

)
× h(1)
|κ+1/2|−1/2

(
i
√

1 +E2
2 r1

)
+ (iE2 − 1)

√
1 +E2

2

× j|κ−1/2|−1/2

(
i
√

1 +E2
2 r1

)
h

(1)
|κ−1/2|−1/2

×
(

i
√

1 +E2
2 r1

)]E2=∞

E2=−∞

· (41)

Here j|κ±1/2|−1/2(z) and h
(1)
|κ±1/2|−1/2(z) are the spheri-

cal Bessel function and spherical Hankel function of first
kind, respectively. In the last line we used the Gauss law
in Euclidean space. It can readily be seen that the last
expression vanishes if one performs both derivations. So
it has been proven that the counter term is zero if one
uses the spherical expansion of the electron propagator
where one has to sum over κ in the last step. This result
simplifies essentially the evaluation of arbitrary diagrams
of bound-state-QED which include the one-loop-vacuum
polarization.

7 The renormalized expression of S(VP)E

As we have seen in the previous section the counter term
vanishes and therefore it is only necessary to subtract the
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Fig. 12. The renormalized expression of energy shift of higher-
order of the self energy vacuum polarization.

known Uehling contribution of the S(VP)E diagram. The
renormalized expression of the energy correction of higher
order is shown in Figure 12 and the corresponding energy
shift reads:

∆ES(VP)E
n = e4

∞∫
−∞

dE1

2π

∞∫
−∞

dE2

2π

∫
d3r1

(2π)3

∫
d3r2

(2π)3

×
∫

d3r3

(2π)3

∫
d3r4

(2π)3
ϕ†n(r1)αµSF (En −E1, r1, r2)ασϕn(r2)

×Dµν(E1, r1, r3)Dρσ(E1, r4, r2)
× Tr [ανSF (E1 +E2, r3, r4)αρSF (E2, r4, r3)] · (42)

The mathematical expression for the subtracted Uehling-
diagram can be obtained from equation (42) by the re-
placement of the bound-electron propagator under the
trace by the free-electron propagator.

8 Summary

In this article, using the Bogoljubov-Parasiuk-Hepp-
Zimmermann (BPHZ)-renormalization method, we de-
rived renormalized expressions for the energy shift of
higher-order for the last two unknown second-order di-
agrams of bound state QED, the two-photon vacuum
polarization VPVP and self energy vacuum polarization
S(VP)E, respectively. It was shown in some detail that
counter terms of the outer renormalization for the VPVP
diagram are cancelled against each other. This result sim-
plifies significantly numerical evaluations of this diagram.

In a second part of this paper it has been proven
for a wide class of diagrams for bound-state-QED which
contains the one-loop vacuum polarization VP that the
counter term of the fourth-rank vacuum polarization ten-
sor vanishes since the sum over the quantum number κ
has been performed until a finite κmax and as the last
step in the spherical expansion of the electron propaga-
tor. It has been discussed in some detail that gauge in-
variance is not broken in such cases. The disappearance
of the counter term simplify essentially the evaluation of
such diagrams which contain the diagram VP. The investi-
gations presented here are to be considered as generaliza-
tion of corresponding investigations presented in [17,19].
We also mention that the numerical evaluation of VPVP
and S(VP)E for hydrogen-like ions has to be consider as
important step in the future to reduce the uncertainty in
Lamb shift predictions and still is under consideration. Si-
multaneously, the results of this paper establish the use of
the BPHZ-approach in bound state QED.
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Appendix

The bound-electron propagator is given by

SF (E, r1, r2) =
∑
n,κ,µ

ϕn,κ,µ(r1)ϕn,κ,µ(r2)
E −En,κ(1− iε)

, (43)

where ϕ are solutions of the Dirac equation with Coulomb
potential:

(−iα∇+ β + V (r))ϕ(r) = Eϕ(r). (44)

The free-electron propagator of equation (33) can be
rewritten in a similar form as the bound-electron prop-
agator:

S0
F (E, r1 − r2) =

∞∫
0

dp
∑
κ,µ

2∑
s=1

ψs,κ,µ(r1)ψs,κ,µ(r2)
E −Es,p(1− iε)

,

(45)

where the index s signifies the positive and negative energy
states of a free electron

Es,p = ±
√
m2 + p2, (s = 1, 2), (46)

and Ψ are the solutions of the free Dirac equation:

(−iα∇+ β)Ψ(r) = E Ψ(r). (47)

The free-electron propagator in spherical expansion can
be written as [26]:

S0
F (E, r1 − r2) =∑
κ

G11
0,κ(E, r1, r2) π11

κ G12
0,κ(E, r1, r2) π12

κ

G21
0,κ(E, r1, r2) π21

κ G22
0,κ(E, r1, r2) π22

κ

 , (48)

with the radial components (for r1 > r2)

G11
0,κ(E, r1, r2) = − (iE + 1)

√
E2 + 1j|κ+1/2|−1/2

×
(

ir1
√
E2 + 1

)
h

(1)
|κ+1/2|−1/2

(
ir2
√
E2 + 1

)
,

G12
0,κ(E, r1, r2) = − i

(
E2 + 1

)
sign(κ) j|κ+1/2|−1/2

×
(

ir1
√
E2 + 1

)
h

(1)
|κ−1/2|−1/2

(
ir2
√
E2 + 1

)
,

G21
0,κ(E, r1, r2) = − i

(
E2 + 1

)
sign(κ) j|κ−1/2|−1/2

×
(

ir1
√
E2 + 1

)
h

(1)
|κ+1/2|−1/2

(
ir2
√
E2 + 1

)
,

G22
0,κ(E, r1, r2) = − (iE − 1)

√
E2 + 1 j|κ−1/2|−1/2

×
(

ir1
√
E2 + 1

)
h

(1)
|κ−1/2|−1/2

(
ir2
√
E2 + 1

)
·

(49)
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For the case r2 > r1 one simply can employ the symmetry
relations:

G11
0,κ(E, r1, r2) = G11

0,κ(E, r2, r1),

G12
0,κ(E, r1, r2) = G21

0,κ(E, r2, r1),

G21
0,κ(E, r1, r2) = G12

0,κ(E, r2, r1),

G22
0,κ(E, r1, r2) = G22

0,κ(E, r2, r1). (50)

In equation (48) πijκ denote the spin-angular functions
which are given by:

π11
κ =

∑
µ

χµκ(θ1, ϕ1) χµ †κ (θ2, ϕ2)

π12
κ =

∑
µ

χµκ(θ1, ϕ1) χµ †−κ(θ2, ϕ2)

π21
κ =

∑
µ

χµ−κ(θ1, ϕ1) χµ †κ (θ2, ϕ2)

π22
κ =

∑
µ

χµ−κ(θ1, ϕ1) χµ †−κ(θ2, ϕ2), (51)

and χµκ is defined as:

χµκ(θ, φ) =


− κ

|κ|

√
κ+ 1

2 − µ
2κ+ 1

Y|κ+ 1
2 |− 1

2 ,µ− 1
2
(θ, φ)

√
κ+ 1

2 + µ

2κ+ 1
Y|κ+ 1

2 |−
1
2 ,µ+ 1

2
(θ, φ)

 ,

(52)

where Y|κ+ 1
2 |− 1

2 ,µ± 1
2
(θ, φ) are the spherical harmonics.

The photon propagator reads in Feynman gauge:

Dµν(t1 − t2, r1 − r2) = −gµν
∞∫
−∞

dE
2π

×
∫

d3k
(2π)3

e−i[E(t1−t2)−k(r1−r2)]

E2 − k2 + iε
· (53)
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