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Evidence for the absence of regularization corrections to the partial-wave renormalization
procedure in one-loop self-energy calculations in external fields
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The equivalence of the covariant renormalization and the partial-wave renormalization~PWR! approaches is
proven explicitly for the one-loop self-energy~SE! correction of a bound electron state in the presence of
external perturbation potentials. No ‘‘spurious’’ correction terms to the noncovariant PWR scheme are gener-
ated for Coulomb-type screening potentials and for external magnetic fields. It is shown that in numerical
calculations of the SE with Coulombic perturbation potential spurious terms result from an improper treatment
of the unphysical high-energy contribution. A method for performing PWR utilizing the relativisticB-spline
approach for construction of the Dirac spectrum in external magnetic fields is proposed. This method is applied
for calculating QED corrections to the bound-electrong factor in H-like ions. Within a level of accuracy of
about 0.1% no spurious terms are generated in numerical calculations of the SE in magnetic fields.
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I. INTRODUCTION

The partial-wave renormalization~PWR! approach was
proposed a few years ago@1,2# as a convenient but noncova
riant method to perform renormalization numerically
bound-state QED calculations. It was successfully app
first in exact numerical calculations of the self-energy a
vacuum-polarization correction of ordera @1,3,4# and further
applied in exact calculations of QED corrections of ordera2

@5,6# (a is the fine-structure constant!. A fair agreement be-
tween the results obtained within different numerical a
proaches can be stated~see, e.g., the results for the effectiv
self-energy correction in Refs.@6,7#!. Nevertheless, question
about the equivalence between the covariant renormaliza
and the numerical PWR scheme and conjectures abou
possible occurrence ofspurious termsin numerical calcula-
tions of higher-order QED effects have been raised in
past@8,9#. In Ref. @9# this issue was anticipated qualitative
in connection with problems encountered in the numer
evaluation of the screened Lamb shift when noncovaria
numerical renormalization schemes are employed. Per
et al. @8# made an attempt to derive such spurious correc
terms to the PWR analytically. To our knowledge this is t
first and only reference in which corresponding terms h
been presented explicitly. They considered the exact s
energy correction of a bound electron state in the presenc
an additional Coulomb-type screening potentialVc which is
treated perturbatively. Formulating the PWR by employi
the Pauli-Villars regularization, a generic, regulato
independent correction term that could contribute to the le
shift of a bound stateua& is derived from corresponding
counterterms@see Eq.~44! of Ref. @8##:

E a~L→`!52
a

2p
^au@Vc~r !2V̄c# ln~r !ua&,

V̄c5^auVc~r !ua&. ~1!
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Although for the particular situation under consideration t
correction term cancels because it occurs with opposite
in different subgroups of diagrams, the authors conjectu
that this may not always be the case in calculations
higher-order QED effects and that the PWR and covari
renormalization could lead to results that differ generica
by terms of the form of Eq.~1!. The conclusions drawn in@8#
received further support from numerical results for the se
energy~SE! including a perturbing 1/r potential@10#.

In this paper we wish to address first the question ab
the occurrence of spurious terms of the generic type~1!.
Therefore, we reinvestigate the problem considered in R
@8#. In conclusion we find no indication for spurious term
generated by the numerical PWR method in the case of o
loop SE calculations in external fields. The correction~1! is
shown to be due to an improper treatment of the unphys
high-energy contribution to the SE.

Recalculating the examples given in Ref.@10#, we find
that the spurious terms originate again from a similar u
physical high-energy contribution.

Finally, we investigate the problem of the spurious ter
in an external magnetic field. In Ref.@8# it was conjectured
that in the case of external magnetic perturbation the sp
ous contribution to SE should remain. Employing an a
proach developed here for the PWR in a magnetic field t
is based on the basis set expansion for the Dirac equation
to Chen and Goldman@11# we prove the absence of the sp
rious terms for the QED corrections to the bound-electrog
factor numerically on a level of accuracy of about 0.1%.

II. EQUIVALENCE BETWEEN THE COVARIANT
AND PARTIAL-WAVE RENORMALIZATIONS

In Ref. @8# a generic correction term between the PW
and covariant renormalization contributing to the ener
shift of a bound-electron stateua& interacting with a spheri-
cally symmetric perturbation potentialVc was derived within
the Pauli-Villars regularization scheme. The authors obta
spurious correction term to the PWR from both t
©2002 The American Physical Society10-1



re

a-
f
th

v
th

ff

ra

th

be
ed
er
c-

erm
al

we

d,

the
rite

IGOR GOIDENKOet al. PHYSICAL REVIEW A 65 042110
L-dependent wave-function correction and the vertex cor
tion @see Eqs.~36! and ~39! of Ref. @8##:

E a~L!5
2a

p (
l 50

` E
0

`

dk
k2~2l 11!

k8~k1k8!2
^au j l

2~kr !@Vc~r !2V̄c#ua&

5
2a

p (
l 50

` E
0

`

dk fl
a~k,L!, ~2!

where L denotes the Pauli-Villars regulator andk8
5Ak21L2. Without going through the details of the deriv
tions given in Ref.@8# we take Eq.~2! as the starting point o
the following considerations. Note that the integral over
momentumk will be finite for each partial wavel. Thek and
r dependence of the integrand ensures a sufficient con
gence of both integrals, which allows one to interchange
order of integrations. For any finite valuer .0 the integral
over k is sufficiently convergent, i.e., the integrand falls o
as;1/k3 for asymptotic values ofk. On the other hand the
contribution to the matrix element arising from the integ
tion over r from r 50 to some arbitrarily small valuer 5r 0
will be negligible. In the following considerations~Sec. II A!
we keep the usual order of integrations as dictated by
PWR approach~see, e.g.,@1#!, i.e., the matrix element is
evaluated before the integration overk is performed.

Suppose we could interchange the summation overl with
all the integrations involved, then the correction term Eq.~2!
evidently vanishes in view of the identity

(
l 50

`

~2l 11! j l
2~kr !51 ~3!
th

co
o

ow
ed
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after the integration overr is performed. Accordingly, the
PWR approach and the covariant renormalization would
equivalent, leading to identical results for the renormaliz
energy shift. Thus, one could try to prove explicitly wheth
or not Weierstrass’ theorem for uniformly convergent fun
tional series holds in the case of the generic correction t
~2!. In the following we shall demonstrate that the function
series~2! is uniformly convergent.

A. Proof of uniform convergence

The infinite summation over partial wavesl may be de-
composed into a finite sum 0< l<L21, with L@1 and the
remaining infinite sum overl>L. Accordingly, it is sufficient
to focus on the remaining infinite sum. For this purpose
may substitutek5t/(12t), which transforms the indefinite
integral overk involved in the generic expression~2! into a
definite integral:

E L
a~L!5

2a

p (
l 5L

` E
0

1

dt f l
a
„t/~12t !,L…. ~4!

As the next step we have to find an upper bound~majorante!
ul

a for each termf l
a of the functional series for alltP@0,1#

and for a fixed but largeL@1 such thatu f l
a
„t/(12t),L…u

,ul
a(L) and( l 5L

` ul
a(L)5Ca(L),` hold.

If Weierstrass’ criterion of uniform convergence is vali
we can interchange the summation overl with the integration
over t and thus overr as well. One key point for finding a
convergent majorante series is to estimate appropriately
square of the spherical Bessel functions involved. We rew
Eq. ~4! in the following form:
E L
a~L!5

2a

p (
l 5L

` E
0

1

dt
t21b

~12t !11b

~2l 11!^au$~@~12t !/rt # !b j l
2~rt /~12t !!%r b@Vc~r !2V̄c#ua&

At21~12t !2L2 @ t1At21~12t !2L2#2
, ~5!
the
n-

,

igh-
un-
xima-
the

con-
whereb.0. Note that the integrand of the integral~5! has a
complicated analytical structure when extended into
complex t plane. Accordingly, the integral overt must be
understood as being performed along a suitably chosen
tour from the very beginning. The choice of the contour
integration will be done below. The integral~5! is difficult to
handle analytically in closed form. Therefore, we may n
employ the following estimates for the two factors involv
in the integrand:

u$At21~12t !2L2@ t1At21~12t !2L2#2%21u< 1
4 ,L@1,

~6!

and for alll>L@1 and for all complex argumentsz inside a
bounded region of the complext plane~see Appendix A!
e

n-
f

uFl~z,b!u5U j l
2~z!

zb U<~11b!
j l
2~al ,18 !

~al ,18 !b
<cbS l 1

1

2D 25/32b

3@12O~ l 2e!#, e.0. ~7!

Here al ,18 denotes the position of the first maximum of
spherical Bessel functionj l andcb denotes some finite co
stant. We should point out that the second inequality~7!
strongly overestimates the functionFl by a constant value
which is even larger than the first~the largest! maximum of
the function itself. Although the integral overt in Eq. ~5! is
convergent, one should be careful when treating the h
energy (t→1) region, which can actually now generate
physical spurious terms as a consequence of the appro
tions performed above. We could restore or simulate
asymptotics by introducing some appropriately chosen
vergence factor, e.g.,e2mt/(12t) with m.0, if needed.
0-2
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Taking the absolute value of Eq.~5! together with the
approximations~6! and ~7! we can write

uE L
a~L!u<

2a

p (
l 5L

` U E
0

1

dt
t21b

~12t !11b Ucb

2 S l 1
1

2D 22/32b

3u^aur b@Vc~r !2V̄c#ua& z. ~8!

We observe the occurrence of Euler’s Beta function in
expression above as a consequence of the estimates
formed. The Beta function is defined via the integral@see
formulas~6.2.1! and ~6.2.2! in Ref. @12##

B~z,w!ªE
0

1

dttz21~12t !w215
G~z!G~w!

G~z1w!
. ~9!

Note that for certain values of the argumentsz and w the
integration overt has to be extended into the complex plan
Keeping in mind the analytical continuation, we can write

U E
0

1

dt
t21b

~12t !11bU5E
0

1

dtuB~31b,2b!u

5E
0

1

dt
G~31b!G~12b!

bG~3!
. ~10!

The analytical continuation of the Beta function is provid
by the reflection formula for the Gamma function@see
~6.1.17! in Ref. @12##: G(12w)52wG(2w)5p/sin(pw)
for 0,Re$w%,1. The rigorous treatment of the integral~9!,
when evaluating it for the particular valuesz531b andw
52b, is provided by contour integration~see, e.g., Ref.
@13#!. It is performed along Pochhammer’s closed contourCP
on the Riemann surface of the integrandtz21(12t)w21 and
relates the integral in Eq.~8! and the Beta function~9! for
arbitrary argumentsz andw to a product of Gamma function
according to

e2p i (z1w) R
C P

dttz21

~12t !12w

5e2p i (z1w)@12e2p iw1e2p i (z1w)2e2p iz#E
0

1 dttz21

~12t !12w

524 sin~pz!sin~pw!B~z,w!. ~11!

Thus, we are led to the final expression for the finite ma
rante series:

(
l 5L

` U f l
aS t

12t
,L DU< G~31b!G~12b!cb

4b
z^aur b@Vc~r !

2V̄c#ua& z(
l 5L

` S l 1
1

2D 22/32b

. ~12!

For 1/3,b,1 the sum overl is convergent and can be ex
pressed in terms of incomplete Zeta functions. Having
rived a convergent majorante series the uniform converge
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for the functional series~4! is proved. This indeed allows th
interchange of the summation overl with all the integrations
involved. As result the generic correction term~2! is equal to
zero. Thus, the spurious logarithmic terms derived by Pe
sonet al. @8# do not occur. This demonstrates the equivalen
between the covariant renormalization and the noncovar
PWR approach when applied to the problem under consi
ation.

B. Comment on the missing term

We would like to point out that the evaluation of the co
rection term~2! as it has been performed in Ref.@8# is in-
complete and that the logarithmic correction term Eq.~1!
appears as an artifact of the way the expression has b
evaluated. In Ref.@8#, Eq. ~2! was evaluated according to th
limiting process

E 1
a~L!1E 2

a~L!5
2a

p (
l 50

`

lim
K→`

F E
0

Kr̃ /r
dk fl

a~k,L!

1E
Kr̃ /r

K

dk fl
a~k,L!G , ~13!

wherer̃ is some average value of the coordinater. Following
the arguments in Ref.@8# the second termE 2

a vanishes in the
limit K→`, while the first partE 1

a generates the spuriou
term ~1!. In contrast to Ref.@8# let us now take into accoun
the third term, which is supposed to be zero whenK tends to
infinity,

E 3
a~L!5

2a
p (

l 50

`

lim
K→`

E
K

`

f l
a~k,L!. ~14!

Consider the sum of the second and third terms, i.e.,

E 2
a~L!1E 3

a~L!5
2a
p (

l 50

`

lim
K→`

lim
m→0

E
Kr̃ /r

`

dke2mkf l
a~k,L!.

~15!

The regulatore2mk is introduced for reasons of simplicity in
order to guarantee a finite integral overk at the upper inte-
gration limit, if the factorj l

2 is absent. For finite values of th
parameterm this regularization will generate some large b
r-independent constant, which, however, cancels in the
trix element. Similarly, one may include the regulatore2m/k

in E 1
a to derive the same result~1!.

Now we can employ the same arguments that were u
in Ref. @8# for calculatingE 1

a . The authors of@8# argue that
the order between the integration overr and the summation
over l can be interchanged for the following reasons:~a! the
r-independent part of thek integrand does not contribute t
the matrix element̂au•••ua&, and~b! the convergence of the
k integral thus does not depend on the Bessel functionj l

2 .
The rigorous treatment of interchanging summations a

integrations requires the validity of Weierstrass’ criterion
we demonstrated in Sec. II A. Employing the arguments~a!
and~b! above, we assume that in Eq.~15! the summation can
0-3
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be interchanged with all integrations and limits involved. U
ing the identity Eq.~3! we arrive at

E 2
a~L!1E 3

a~L!

5
2a

p
lim

K→`

lim
m→0

K aU@Vc~r !2V̄c#

3E
Kr̃m/r

` dje2j

jA11~mL/j!2@11A11~mL/j!2#2UaL
5

a

2p
lim

K→`

lim
m→0

K aU@Vc~r !2V̄c#FE1S Kr̃m

r
D

1OS m4LKr̃

r
D GUaL . ~16!

To obtain this result we performed the limitm→0 in the
integrand first. Expanding the exponential integral for sm
arguments E1(Kr̃m/r )5@2g2 ln(Kr̃m/r#1O(Kr̃m/r) and
taking the limitL→` of Eq. ~16! one ends up with

E 2
a1E 3

a5
a

2p
^au@Vc~r !2V̄c# ln~r !ua&. ~17!

Thus, we obtain the logarithmic potential term as the rema
ing cutoff-independent contribution. It carries an oppos
overall sign and will cancel in the total sum. Moreover, w
could introduce a unique regulatore2m(1/k1k) in expression
~2! and thus avoid any~unnecessary! decomposition of thek
integral and the introduction ofr̃ . Interchanging and per
forming the summation overl first one is left with

E a~L!5
a

2p lim
m→0

^au@Vc~r !2V̄c#2$K0~2m!2L2K2~2m!

1 15
16 L4K4~2m!1•••%ua&50. ~18!

All terms in the curly brackets vanish when the matrix e
ment is evaluated. The calculation performed above indic
that the occurrence of the spurious logarithmic term~and
maybe others as well! strongly depends on the analytical an
numerical treatment of the high-energy contribution to
SE.

III. A NUMERICAL ANALYSIS OF SPURIOUS TERMS

In Ref. @10# the occurrence of spurious terms was repor
in connection with numerical evaluations of the SE corr
tion in one-electron ions with nuclear chargeZ in the pres-
ence of additional Coulombic perturbation potentials. W
will show, however, that this is due to an improper treatm
of the high-energy contribution to the SE. The total expr
sion for the SE correction of a bound-electron stateua& can
always be represented in the form~see@14# for details!

DEa
SE5(

n
^anuŜuna&, ~19!
04211
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whereŜ denotes the nonlocal electron self-energy opera
and the labelsn run over the complete Dirac spectrum. Th
SE correction in the external field together with an additio
perturbation potential can be divided into three parts:
wave-function correction, the vertex correction, and the
rivative ~or reference state! correction@8#. We will concen-
trate here on the wave-function correction due to the s
energy~SE,WF!. This correction can be obtained from th
lowest-orderDEa

SE correction by a replacement of the unpe
turbed wave functionua& by its first-order perturbation
theory correction

ua&→(
n

8
un&^nuVua&

Ea2En
,

whereV denotes the perturbation potential. The prime in
cates that the term withEa5En is omitted from the sum. The
energy correctionDEa

SE,WF can be written as

DEa
SE,WF5(

n,m
8 H ^anuŜunm&^muVua&

Ea2Em

1
^auVum&^mnuŜuna&

Em2Ea
J . ~20!

Within the B-spline approximation the complete Dirac spe
trum is represented by a purely discrete one and terminate
some large numberN54L(n1s22), which is determined
by the number of partial wavesL, the orders of theB-spline
functions, and the number of grid pointsn. We may restrict
the summation over the energy of the intermediate state
both Eqs.~19! and ~20! by the conditionuEnu<kmc2. The
numerical results for the energy corrections as a function
the cutoff parameterk are shown in Table I. Where th
lowest-order SE@Eq. ~19!# is concerned its exact value i
U911 (Z592) is already obtained fork55 within an accu-
racy of about 0.7%. Any further enlargement of the summ
tion interval does not lead to any improvement of the ac
racy. We should note that the accuracy also depends on
number of partial waves taken into account and on the nu
ber of grid points. In our case we typically usedL56, and
n.140 together with spline functions of orders59. The
quoted accuracy is sufficient for our purposes since the c
tribution of the spurious term obtained in@10# is supposed to
be much larger~about 20%!.

TABLE I. DEa
SE and DEa

SE,WF for U911 as a function of the
energy cutoffk of the negative and the positive Dirac spectrum@see
Eqs.~19! and ~20!#. All energy values in a.u.

Covariant k55 k510 k5` PWR

DEa
SE 13.0714a 12.9781 13.2190 13.2114

DEa
SE,WF 0.4626b 0.4671 0.4914 0.5695 0.5598c

aReference@22#.
bReference@16#.
cReference@10#.
0-4
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From Table I we conclude that the summation inter
with k55 for H-like U911 provides a sufficient approxima
tion ~about 2% deviation! for DEa

SE,WF. However, we have
found that any further enlargement of this interval genera
the spurious contribution as obtained in@10#. From the
physical point of view a 20% contribution that originat
from high energies larger than 5mc2 ~compared to the bind
ing energy 0.3mc2) is hardly understandable. Therefore, w
conclude that the occurrence of the spurious contribution
the numerical calculations reported in Ref.@10# has a similar
origin as the spurious term~1! derived analytically in Ref.
@8#, i.e., an improper treatment of the high-energy contrib
tion to the SE within the PWR approach.

IV. CALCULATION OF QED CORRECTIONS
TO THE g FACTOR

Now we show that the conclusion drawn in Ref.@8# con-
cerning the inapplicability of the PWR approach to SE c
culations in external magnetic fields also does not stric
hold. For this purpose we employ an approach to the ev
ation of the SE that includes an external magnetic field in
Dirac equation from the beginning.

Accordingly, the problem reduces again to the evaluat
of the lowest-order SE@Eq. ~19!#. The Dirac equation with
an external magnetic field is solved by means of an appro
due to Chen and Goldman which we describe briefly in A
pendix B.

Within this approach the vacuum-polarization and se
energy corrections to the electrong factor in hydrogenlike
heavy ions will be calculated. First we calculate the vacuu
polarization effect in order to determine the values of
magnetic field strength where this method remains sta
After this we turn to the calculation of the self-energy co
rection in an external magnetic field within the PW
method.

A. Vacuum-polarization corrections to the electrong factor
of hydrogenlike heavy ions

Vacuum-polarization~VP! corrections to the electrong
factor for H-like highly charged ions~HCIs! have been cal-
culated within the the Uehling approximation@15#. For cal-
culations of the energy level of HCIs this approximation
valid with an accuracy of about 10% for allZ values. Within
the Uehling approximation the VP correction of a boun
electron stateua(B)& including the external magnetic field i
determined by the matrix element

DEa
VP~B!5 K a~B!U2 Z

r
S~r !Ua~B!L [S 2

Z

r
S~r ! D

a(B)a(B)

,

~21!

where

S~r !5
2a

3pE1

`

e22rx/aS 11
1

x2DAx211

x2
dx ~22!
04211
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anda denotes the fine-structure constant~in atomic unitsa
51/c). Then the correction to theg factor results as

dga
VP5

2@DEa
VP~B!2DEa

VP~0!#

mBB
, ~23!

wheremB is Bohr’s magneton~in atomic unitsmB5 1
2 ).

The results of the calculations for the 1s ground state of
H-like ions in comparison with perturbation-theory resu
obtained within the Uehling approximation@16# are given in
Table II. An agreement better than 0.01% was found for aZ
values from 5 to 90. In these calculations values for
magnetic field strengthB5uBW u within the range of 1.0 a.u
<B<100.0 a.u. have been used. The numerical results
stable within this range ofB values.

B. Self-energy correction to the electrong factor
in hydrogenlike heavy ions

For the evaluation of the self-energy correction in the e
ternal magnetic field we employ the original PWR sche
developed in@1,2# in combination with the approach due t
Chen and Goldman@11# for solving the Dirac equation in
cylindrically symmetric external magnetic fields.

The formula for the SE correction in an external magne
field for the statea(B) reads

DEa
SE~B!

5
a

p (
n(B)

S 12aW 1aW 2

r 12
E

0

` sin~kr 12! dk

k2En~12 i0!1Ea
D

a(B)n(B)n(B)a(B)

2dma~B!, ~24!

where the sum runs over the total Dirac spectrum,aW denote
the Dirac matrices,r 125urW12rW2u, and dma abbreviates the
counterterm. According to@1,2# this counterterm follows
from Eq. ~24! by replacing the summation over bound sta
n(B) by a corresponding integration over free-electron Dir
states and by replacing the bound-state energyEn(B) in the
denominator by the free-electron energye. The bound states
a(B) are expanded in free-electron Dirac statesupW ,e& ~where
pW is the electron momentum!. The correction to theg factor
that arises from the SE contribution reads

TABLE II. VP corrections to the electrong factor for the ground
state of hydrogenlike ions.

Z dg1s
VP , this work dg1s

VP , Ref. @16#

1 23.0310211

5 24.031029 24.231029

10 26.431028 26.3731028

20 29.3731027 29.4131027

50 23.3231025 23.3231025

90 24.399131024 24.399531024
0-5
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TABLE III. Self-energy corrections to the electrong factor for the ground state of H-like ions.

Z dg1s
SE, this work dg1s

SE, Ref. @16# dg1s
SE(aZ expansion!, Ref. @16#

1 (2.3160.01)31023 2.32284031023 2.3228431023

5 (2.3260.01)31023 2.32338931023 2.32338831023

10 (2.32160.009)31023 2.32547231023 2.324902831023

20 (2.33260.007)31023 2.3369231023

50 (2.46960.012)31023 2.4716231023

90 (2.99760.011)31023 3.04 51631023
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Numerical results for the ground states of H-like ions w
different Z values are given in Table III in comparison wit
data obtained via perturbation theory@16# and from theaZ
expansion~for low Z). As for the VP corrections, numeri
cally stable results are provided for values of magnetic fi
strengths within the same range 1.0 a.u.<B<100.0 a.u. For
all Z values the deviations from the perturbation-theory
sults turn out to be smaller than 0.1%.

Thus, contrary to the statement made in@8#, this provides
numerical evidence for the absence of the spurious term
calculations of the SE correction in external magnetic fie
performed within the PWR approach at a level of accura
better than 0.1%.

We should note that the accuracy achieved in our
proach will not be sufficient for obtaining accurate values
bound-state QED corrections to electrong factors. The rea-
son traces back to the fact that bound-state QED correct
are obtained via subtraction of the free-electron QED corr
tions from the values given in Tables II and III. This leads
severe numerical cancellations that diminish the accurac
the net result significantly. However, it does not effect o
conclusions concerning the spurious terms.

V. CONCLUSIONS

Summarizing, we have provided evidence for the abse
of the ‘‘renormalization corrections’’ for the particular cas
of the SE in external fields. Contrary to the statements m
in @8,10# we have found that via a proper treatment of t
high-energy contribution to the SE such corrections can
avoided numerically and analytically. However, the pro
presented here cannot exclude the possible existence of
rious corrections in more complicated situations, e.g., in c
nection with high-order QED corrections. In the particu
case of the ‘‘loop after loop’’ second-order electron se
energy correction a discrepancy between results obta
within the PWR@17# approach and from the covariant reno
malization scheme@18# and@19# has been reported. This ma
indicate that this problem requires further investigation.
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APPENDIX A: THE UPPER LIMIT
FOR BESSEL FUNCTIONS

Let us consider first the real functionsFl(x,b)
5 j l

2(x)/xb for valuesb.0 and l>L@1 over the interval
xP@0,al ,1#. We adopt the notation of Ref.@12#. Let al ,1 and
al ,18 denote the location of the first zero and the first ma
mum of the spherical Bessel functionj l(x), respectively. We
employ the formulas~10.1.59! and ~10.1.61! of Ref. @12#:

al ,18 'S l 1
1

2D F110.8086S l 1
1

2D 22/3G@12O~ l 2e!#,

~A1!

j l~al ,18 !'0.8458S l 1
1

2D 25/6

@12O~ l 2e!# ~A2!

with e.0. Obviously, the zeros of the functionsFl and j l
coincide. For anyl .0 andb.0 the functionFl has exactly
one maximum within the intervalxP@0,al ,1# located atx
5bl ,18 , i.e., Fl8(bl ,18 ,b)50 and Fl9(bl ,18 ,b),0. Derivatives
with respect tox are indicated by primes. For the first deriv
tive Fl8 evaluated atal ,18 , we find

Fl8~al ,18 ,b!5S 2x j l~x! j l8~x!2b j l
2~x!

xb11 D U
x5a

l ,18

52b
j l
2~al ,18 !

~al ,18 !b11
52b

Fl~al ,18 ,b!

al ,18
,0. ~A3!

This implies that~1! bl ,18 ,al ,18 and ~2! Fl decreases mono
tonically over the intervalbl ,18 ,x<al ,18 . Using the differen-
tial equation forj l we derive for the second derivative

Fl9~al ,18 ,b!5S b~b11!
j l
2~x!

xb12
12

j l~x! j l9~x!

xb D U
x5a

l ,18

5$b~b11!22@~al ,18 !22 l ~ l 11!#%

3
j l
2~al ,18 !

~al ,18 !b12
,0, ~A4!
0-6
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which holds for all values 0,b,L, sincel @1. The fact that
Fl9(al ,18 ,b),0 reveals thatFl has its point of inflection
somewhere betweenal ,18 andal ,1 , i.e., Fl is a convex func-
tion over the interval@bl ,18 ,al ,18 #. Accordingly, we can esti-
mate the value ofFl at the positionbl ,18 of its first maximum,
which finally provides an upper bound for the functionFl
throughout the whole rangexP@0,̀ ):

Fl~bl ,18 ,b!<Fl~al ,18 ,b!1uFl8~al ,18 ,b!uubl ,18 2al ,18 u

<~11b! Fl~al ,18 ,b!. ~A5!

Here we used Eq.~A3! and the fact thatubl ,18 2al ,18 u<al ,18 .
Finally, we arrive at

Fl~x,b!<~11b!
j l
2~al ,18 !

~al ,18 !b
<cbS l 1

1

2D 25/32b

@12O~ l 2e!#.

~A6!

Where the proof is concerned we shall restrict considera
to values 0,b,1 only.

To provide the functionF as required along Pochham
mer’s contour we need to extend the considerations ab
into the complex plane. The functionF is analytic in the
complex planez5x1 i z. A suitable region of the complext
plane @see Eq.~4!# that includes Pochhammer’s contour
depicted in Fig. 1.

For small imaginary parts 0,«!1 all steps of the deri-
vation go through for complex argumentsz5x1 i z with
uzu<«. The Taylor expansion yields

uF~z,b!u5UF~x,b!1 i zS ]

]z
F~z,b! D U

z50

u1O~z2!u

<uF~x,b!u1«uF8~x,b!u1O~«2!, ~A7!

where 0,x,1. Now we might define
sup(0,x,`)uF8(x,b)u[M,` together with «5( l
11/2)25/32b. In view of Eq. ~A6! we can write

uF~z,b!u<~cb1M !S l 1
1

2D 25/32b

@12O~ l 2e!#. ~A8!

FIG. 1. The region of the complext plane for which the approxi-
mation Eq.~A6! is valid. It includes Pochhammer’s contour as d
picted.
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APPENDIX B: FINITE BASIS SET SOLUTION OF THE
DIRAC EQUATION FOR ATOMIC ELECTRONS

IN EXTERNAL MAGNETIC FIELDS

The Dirac equation for a bound electron in an addition
external magnetic field reads

ĤC5EC, ~B1!

with

Ĥ5Ĥ01Ĥm ~B2!

and

Ĥ05aW •pW 1bm1VC~rW !, ~B3!

Ĥm5
1

2
aW •@BW 3rW#, ~B4!

whereaW ,b denote the Dirac matrices,m is the electron mass
and BW is the magnetic field strength. The magnetic field
supposed to be directed along thez axis: BW 5BeW z . VC(rW) is
the Coulomb potential of a~pointlike or extended! nucleus.
In Eqs.~B1!–~B4! atomic units are used.

According to Ref. @11# the variational solution of the
Dirac equation~B1! is obtained by means of trial functions

Cm~rW !5(
I 51

I max

(
k

kmax

akC I
km~rW !. ~B5!

The electron wave functionsCm(rW) in the magnetic field
possess cylindrical symmetry and can be expanded with
spect to a finite basis set of the functionsC I

km(rW) of spherical
symmetry. The indexk denotes the Dirac angular quantu
number,m corresponds to the total electron angular mom
tum projection,ak are the variational coefficients, and 2Ñ
defines the number of basis set functions.

The next step employs theB-spline representation of th
functionsC I

km(rW):

C I
km~rW !5 (

J51

2N

bIJ
k FJ

km~rW !, ~B6!

with

Fn
km~rW !5cn

kS i
1

r
xkm~rW/r !

0
D , ~B7!

FN1n
km ~rW !5cn

kS 0

2 i
1

r
x2km~rW/r !D , ~B8!

where n51, . . . ,N, cn
k denote theB-spline representa

tions of the finite basis set of radial functions@20#, and
xkm(rW/r ) are the usual spherical spinors.
0-7
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The variational solution of the Dirac equation~B1! with
the trial functions~B5! reduces to the diagonalization of th
Hamiltonian~B4! within the finite basis set defined by Eq
~B5!–~B8!. As a result one obtains the full set of solutions
the Dirac equation for the atomic electron in an exter
magnetic field.

In particular, the matrix elements of the operatorĤm with
the wave functions~B6!–~B8! are given by

^Cn
kmuĤmuCN1n8

k8m8 &5
B

2
r nn8

kk8Akk8 , ~B9!

where

r nn8
kk85E

0

`

rcn
k~r !cn8

k8~r !dr, ~B10!

Akk852 i E dV^xkmu@sW 3rW#zux2k8m8&

55
4km

4k221
, for k85k

sgn~k!
@~ uku11/2!22m2#1/2

2uku11
, for k852k

.

~B11!

It is convenient to rearrange the summations in E
~B5!–~B6! in such a way that the summation over part
wavesL will be performed as the last one. In theB-spline
approach one starts to count the states from the lowest n
tive energy state (J51). Then the state withJ5N11 cor-
responds to the positive energy ground state 1s1/2.

Within the B-spline approach the H-like ion is include
inside a spherical box of radiusRbox;50/Z a.u. The number
an

ab

er

ntu

s.
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of grid points wasNg5150 and the order of splinesk58.
This corresponds to 2N52(Ng1k22)5314 energy levels
that approximately represent the Dirac spectrum. With t
choice the inaccuracy of the spline approximation for t
1s1/2 state compared to the Chen and Goldman variatio
solution@11# becomes less than 1028. To test the accuracy o
our approach we have calculated the Zeeman splitting of
1s1/2 state in the hydrogen atom for different field strengt
B.

In Table IV the results for the corresponding Zeem
splittings are compared as evaluated within the appro
Chen and Goldman and by means of perturbation theory.
latter have been obtained employing the standard form
@21#. The comparison reveals that for field strengthsB up to
23102 T the deviation from the perturbation-theory resu
is about 1028 while for a field strength of about 23104 T
the deviation increase up to 1023. The latter is due to the
strong distortion of the atomic structure by the magne
field.

TABLE IV. Results for the Zeeman splittingDEZ for the ground
state in neutral hydrogen obtained in the Chen and Goldman
proach~CGA! @11# and in perturbation theory~PT!. All values are
given in atomic units~a.u!. For the magnetic field strength 1 a.u
52.353105 T.

B DEZ (CGA) DEZ (PT)

0 0.500 006 656 6 0.500 006 656 6
1025 0.500 011 656 5 0.500 011 656 5
1023 0.500 506 398 0.500 506 647 7
1021 0.549 743 3 0.550 005 769 1
1 0.872 133 0.999 997 781 3
i,

s.

un-
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