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Evidence for the absence of regularization corrections to the partial-wave renormalization
procedure in one-loop self-energy calculations in external fields
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The equivalence of the covariant renormalization and the partial-wave renormali@iR) approaches is
proven explicitly for the one-loop self-enerd$E) correction of a bound electron state in the presence of
external perturbation potentials. No “spurious” correction terms to the noncovariant PWR scheme are gener-
ated for Coulomb-type screening potentials and for external magnetic fields. It is shown that in numerical
calculations of the SE with Coulombic perturbation potential spurious terms result from an improper treatment
of the unphysical high-energy contribution. A method for performing PWR utilizing the relatiBssipline
approach for construction of the Dirac spectrum in external magnetic fields is proposed. This method is applied
for calculating QED corrections to the bound-electgfactor in H-like ions. Within a level of accuracy of
about 0.1% no spurious terms are generated in numerical calculations of the SE in magnetic fields.
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[. INTRODUCTION Although for the particular situation under consideration the
correction term cancels because it occurs with opposite sign
The partial-wave renormalizatioPWR) approach was in different subgroups of diagrams, the authors conjectured
proposed a few years agjb,2] as a convenient but noncova- that this may not always be the case in calculations of
riant method to perform renormalization numerically in higher-order QED effects and that the PWR and covariant
bound-state QED calculations. It was successfully app“edenormallzatlon could lead to results tha_t differ generically
first in exact numerical calculations of the self-energy andPy terms of the form of E(1). The conclusions drawn 8]
vacuum-polarization correction of order[1,3,4) and further ~ '€ceived further support from numerical results for the self-
applied in exact calculations of QED corrections of orgdr ~ €N€rgy(SE) including a perturbing 1/potential{10].
[5,6] (« is the fine-structure constanA fair agreement be- In this paper we W'Sh to address first the question about
tween the results obtained within different numerical ap—flt]: ocfcurrence c_)f spl:.no%[ls ttr?rms %‘; the gen_((ajrlc g(p)e Ref
proaches can be statéske, e.g., the results for the effective erefore, we reinvestigate the probiem considered in <et.

self-energy correction in Refgs,7]). Nevertheless, questions [ﬂﬁérrlafgg%u?r?g nvtjliwzzga?lc;\ll\r;glcrra:g?hnogoirnstﬂlér?;ssetgfm(:rS]e-
about the equivalence between the covariant renormalizatiop, y

and the numerical PWR scheme and conjectures about tﬁoo?,vﬁlztocgﬂﬁgigsaw i?tfgnzlrft'igfmgﬁc;otrgicggh;f sical
possible occurrence apurious termsn numerical calcula- Prop phy

tions of higher-order QED effects have been raised in th@gg-en?rg?/ gontnrt])utmn to tlhe SI.E' in REFO find
past[8,9]. In Ref.[9] this issue was anticipated qualitatively h t?ﬁa culating t te exampies tglven in ¢ £10], we 'Iln

in connection with problems encountered in the numericaf ha . el rs]puhnous erms Of'bg'r!a € agan from a similar un-
evaluation of the screened Lamb shift when noncovariant, ysical high-energy contribution. .

numerical renormalization schemes are employed. Persson Finally, we investigate _the problem 9f the spurious terms
et al.[8] made an attempt to derive such spurious correctio ! an external magnetic field. In RE{.B] It was cqnjectured .
terms to the PWR analytically. To our knowledge this is thethat in the case of external magnetic perturbation the spuri-

first and only reference in which corresponding terms have S contribution to SE should remain. Employing an ap-

been presented explicitly. They considered the exact selif-)roaCh developed here for the PWR in a magnetic field that

. : based on the basis set expansion for the Dirac equation due
energy correction of a bound electron state in the presence i i
an additional Coulomb-type screening potentialwhich is 0 Chen and GoldmafiL1] we prove the absence of the spu

treated perturbatively. Formulating the PWR by employing;g)cligrtﬁLTnse:?geﬁreanEaDlgvoélr %(;t:gcsu:gctheofbgggst'%elcogon
the Pauli-Villars regularization, a generic, regulator- y y 70

independent correction term that could contribute to the level Il. EQUIVALENCE BETWEEN THE COVARIANT

shift of a bound statda) is derived from corresponding AND PARTIAL-WAVE RENORMALIZATIONS
countertermgsee Eq.(44) of Ref.[8]]:
In Ref. [8] a generic correction term between the PWR

a _ and covariant renormalization contributing to the energy
E3(A—»)=— ﬁ<al[vc(r)—vc]ln(r)|a>, shift of a bound-electron stata) interacting with a spheri-
cally symmetric perturbation potentigll, was derived within
. the Pauli-Villars regularization scheme. The authors obtain a
V.=(a|V(r)|a). (1)  spurious correction term to the PWR from both the
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A-dependent wave-function correction and the vertex correcafter the integration over is performed. Accordingly, the

tion [see Eqs(36) and(39) of Ref. [8]]: PWR approach and the covariant renormalization would be
equivalent, leading to identical results for the renormalized

ca energy shift. Thus, one could try to prove explicitly whether
EAN)= 2 f m<a“l (kD[Ve(r)=Vella)  or not Weierstrass’ theorem for uniformly convergent func-
tional series holds in the case of the generic correction term

20 > [ (2). In the following we shall demonstrate that the functional
= IZO JO dkfi(k,A), (2)  series(2) is uniformly convergent.

where A denotes the Pauli-Villars regulator an&’ A. Proof of uniform convergence

= Jk?+ AZ. Without going through the details of the deriva- ~ The infinite summation over partial wavésnay be de-
tions given in Ref[8] we take Eq(2) as the starting point of composed into a finite sum<9l<L—1, with L>1 and the
the following considerations. Note that the integral over theremaining infinite sum ovdr=L. Accordingly, it is sufficient
momentunk will be finite for each partial waveé Thekand  to focus on the remaining infinite sum. For this purpose we
r dependence of the integrand ensures a sufficient convemay substitutek=t/(1—t), which transforms the indefinite
gence of both integrals, which allows one to interchange théntegral overk involved in the generic expressidg) into a
order of integrations. For any finite value-0 the integral definite integral:

overk is3 sufficiently convergent, i.e., the integrand falls off

as~1/k* for asymptotic values ofk. On the other hand the a

contribution to the matrix element arising from the integra- EL(AN)= — Z,L fo dtfa(t/(1—t),A). (4
tion overr from r=0 to some arbitrarily small value=rg

will be negligible. In the following consideratiorfSec. Il A)  As the next step we have to find an upper boumajorante
we keep the usual order of integrations as dictated by the? for each termf{ of the functional series for atle[0,1]
PWR approach(see, e.g.[1]), i.e., the matrix element is and for a fixed but large\>1 such that f(t/(1—t),A)|
evaluated before the integration oveis performed. <u?(A) and3;, u}(A)=C3A)<e hold.

Suppose we could interchange the summation bveth If Weierstrass’ criterion of uniform convergence is valid,
all the integrations involved, then the correction term €. e can interchange the summation oiith the integration
evidently vanishes in view of the identity overt and thus over as well. One key point for finding a

w0 convergent majorante series is to estimate appropriately the
2 (214 1)] ,Z(kr)z 1 3) square .of the spher!cal Bessel functions involved. We rewrite
=0 Eq. (4) in the following form:

1dt 278 21+ )@{([(A-0/rt)? jJArt/(1—0)rP[Ve(r) -V ]|a)
(1-t)**F VE+(1—1)2A2 [t+ 2+ (1-1)%A%)?

, ®

2 o)

0

12(z>

wheres>0. Note that the integrand of the integt8) has a i(a ] 1) 1)\ 53-8
<(1+p) B(I )

complicated analytical structure when extended into the |F(z,B8)|= =
complext plane. Accordingly, the integral overmust be (ay, 1)B 2
understood as being performed along a suitably chosen con- X[1=O(179)], €e>0. )
tour from the very beginning. The choice of the contour of
integration will be done below. The integr@) is difficult to
handle analytically in closed form. Therefore, we may now
employ the following estimates for the two factors involved
in the integrand:

Here a/, denotes the position of the first maximum of the
spherlcal Bessel functiojj andc, denotes some finite con-
stant. We should point out that the second inequdlity
strongly overestimates the functidf) by a constant value,
which is even larger than the firghe largest maximum of

the function itself. Although the integral ovein Eq. (5) is

{2+ (1-0)2At+ 2+ (1-1)2A%]% < 5 ,A> 1, convergent, one should be careful when treating the high-
(6) energy €—1) region, which can actually now generate un-

physical spurious terms as a consequence of the approxima-

tions performed above. We could restore or simulate the
and for alll=L>1 and for all complex argumentsinside a asymptotics by introducing some appropriately chosen con-
bounded region of the complexplane (see Appendix A vergence factor, e.gg “Y(~Y with x>0, if needed.

042110-2



EVIDENCE FOR THE ABSENCE OF REGULARIZATION . .. PHYSICAL REVIEW A5 042110

Taking the absolute value of E@5) together with the for the functional serie#) is proved. This indeed allows the

approximationg6) and(7) we can write interchange of the summation ovewith all the integrations
involved. As result the generic correction te(® is equal to
200 & | (1 t27F ey 1\ 2%k zero. Thus, the spurious logarithmic terms derived by Pers-
[ER(A)[<s— 2 j dt——-— _< _) sonet al.[8] do not occur. This demonstrates the equivalence
m =L |Jo (1-t)1TF|2 2 : _ : T q .
between the covariant renormalization and the noncovariant
X |<a|rﬁ[Vc(r)—Vc]|a)|. (8) Pt\'NR approach when applied to the problem under consider-
ation.
We observe the occurrence of Euler’s Beta function in the
expression above as a consequence of the estimates per- B. Comment on the missing term

formed. The Beta function is defined via the integrsée We would like to point out that the evaluation of the cor-

formulas(6.2.3 and(6.2.2 in Ref. [12]] rection term(2) as it has been performed in R¢8] is in-
T(2)T(w) complete and that the logarithmic correction term ED).
w. 9 appears as an artifact of the way the expression has been

evaluated. In Ref.8], Eq.(2) was evaluated according to the
limiting process

B(z,w):= foldttzfl(l—t)wflz

Note that for certain values of the argumenmtand w the
integration ovet has to be extended into the complex plane. e
Keeping in mind the analytical continuation, we can write g‘i‘(A)Jrgg(A)_ E lim {f dkfi(k,A)

0 Koo

1 t2+8 ‘
Ld STEEr Jdt|'3 (3+8,~B) + | dkfak,A) |, (13
Kr/r
1 TE+pI'(1-p) -
= fo d BT (3) . (10 wherer is some average value of the coordinat€ollowing

the arguments in Ref8] the second ternd'’§ vanishes in the

The analytical continuation of the Beta function is prowded“m't K—c0, while the first parte} generates the spurious
(6.1.17 in Ref. [12]]: ['(1—w)=—wI'(—w)=a/sin(mw) the th|rd term, which is supposed to be zero whetends to
for 0<Re{w}< 1. The rigorous treatment of the integt8), infinity,
when evaluating it for the particular values-3+ 8 andw

=—f, is provided by contour integratiofsee, e.g., Ref. _cx fm a

[13)). It is performed along Pochhammer’s closed contéur £5(A) E lim | fiGA). (149
on the Riemann surface of the integrad*(1—t)"~* and

relates the integral in E8) and the Beta functiont9) for ~ Consider the sum of the second and third terms, i.e.,
arbitrary argumentzandw to a product of Gamma functions

according to w
ES(A)+EYN) =— 2 lim nmf dke “KF3(k,A).
Kr/r

z-1 =0 Kop—0
efrri(erw)é L (15
cp(1-t)t v

0 Koo

The regulatoe™#K is introduced for reasons of simplicity in
1 dttz ! order to guarantee a finite integral oveat the upper inte-
o m gration limit, if the factorj? is absent. For finite values of the
parametef this regularization will generate some large but
=—4 sin(7z)sin(7w)B(z,w). (11 r-independent constant, which, however, cancels in the ma-

trix element. Similarly, one may include the regulagor*/¥
Thus, we are led to the final expression for the finite majoin £2 to derive the same result).

e 7Ti(z+w)[1_ eZvTiW+ eZﬂ'i(Z+W) _ eZﬂ'iZ]

rante series: Now we can employ the same arguments that were used
- in Ref.[8] for calculating€$. The authors of8] argue that
2 f?<L A) < F(3+B)I'(1-B)cg lalrBVo(r) the order between the integration oveand the summation
=L 1-t’ 45 ¢ overl can be interchanged for the following reasofas:the

r-independent part of thke integrand does not contribute to
the matrix elementa| - - - |a), and(b) the convergence of the
k integral thus does not depend on the Bessel funq'tfron

The rigorous treatment of interchanging summations and
For 1/3< 8<1 the sum ovet is convergent and can be ex- integrations requires the validity of Weierstrass’ criterion as
pressed in terms of incomplete Zeta functions. Having dewe demonstrated in Sec. Il A. Employing the argumeajs
rived a convergent majorante series the uniform convergencand(b) above, we assume that in E45) the summation can

—-2/3-8
(12

Vell)l 2

+_
I2
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be interchanged with all integrations and limits involved. Us-
ing the identity Eq(3) we arrive at

ES(N)+ES(N)
20 < —
=—1im lim { a|[V(r)—V¢]
K—ou—0
fw dge_§
> a
Kl E1+ (uATE)Z[1+ 1+ (uAl€)?T?
= lim i v, { i
_EKIELMITO a|[Ve(r)—Ve] Ep T
,u,4AK?

(16)

I

To obtain this result we performed the limit—0 in the

PHYSICAL REVIEW A 65 042110

TABLE I. AESF and AESFYF for UM as a function of the
energy cutoffk of the negative and the positive Dirac spectriigee
Egs.(19) and(20)]. All energy values in a.u.

Covariant k=5 k=10 k= PWR
AESE 13.0714 12.9781 13.2190 13.2114
AESEWF  0.4626° 04671 04914 0.5695 0.5598
3Referencd22].
bReferencd 16].
‘Referencd 10].

where3 denotes the nonlocal electron self-energy operator
and the labels run over the complete Dirac spectrum. The
SE correction in the external field together with an additional
perturbation potential can be divided into three parts: the
wave-function correction, the vertex correction, and the de-
rivative (or reference stajecorrection[8]. We will concen-
trate here on the wave-function correction due to the self-

integrand first. Expanding the exponential integral for Sma”energy(SE,WF). This correction can be obtained from the

arguments E (KT u/r)=[—y—In(Kru/r]+O(Kru/r) and

taking the limit A —cc of Eq. (16) one ends up with
a a_ ¢ \/

E3+E3=5(al[Ve(r) = Vclin(r)[a). 17

Thus, we obtain the logarithmic potential term as the remain

lowest-orderA EEE correction by a replacement of the unper-
turbed wave function|a) by its first-order perturbation
theory correction

[n}(n|V|a)
E,—E, '

ja)— 2

n

ing cutoff-independent contribution. It carries an opposite

overall sign and will cancel in the total sum. Moreover, we
could introduce a unique regulater “***X in expression
(2) and thus avoid anyunnecessapydecomposition of thé

integral and the introduction of. Interchanging and per-
forming the summation ovdrfirst one is left with

£3(A)= {%Iim0<a|[vc<r>—Vc]z{Ko<2m—A2K2<2m
i

+ 13K (20) + - Ha)=0. (a8

All terms in the curly brackets vanish when the matrix ele-

whereV denotes the perturbation potential. The prime indi-
cates that the term with,= E, is omitted from the sum. The
energy correctiol ES=F can be written as

(an|Snm)(m|V|a)
E.—E.

Within the B-spline approximation the complete Dirac spec-

AESEWR- nzm ' [

(alV|m)(mn2|na)
Em_ Ea

(20

ment is evaluated. The calculation performed above indicatel§um is represented by a purely discrete one and terminates at

that the occurrence of the spurious logarithmic tefand
maybe others as welstrongly depends on the analytical and

some large numbeN=4L(v+s—2), which is determined
by the number of partial wavds the orders of the B-spline

numerical treatment of the high-energy contribution to thefunctions, and the number of grid points We may restrict

SE.

IIl. ANUMERICAL ANALYSIS OF SPURIOUS TERMS

the summation over the energy of the intermediate states in
both Egs.(19) and (20) by the condition|E,|<kmc. The
numerical results for the energy corrections as a function of
the cutoff parametek are shown in Table I. Where the

In Ref.[10] the occurrence of spurious terms was reportedowest-order SEEQ. (19)] is concerned its exact value in
in connection with numerical evaluations of the SE correcy%* (z=92) is already obtained fdt=>5 within an accu-

tion in one-electron ions with nuclear chargen the pres-

racy of about 0.7%. Any further enlargement of the summa-

ence of additional Coulombic perturbation potentials. Wetion interval does not lead to any improvement of the accu-
will show, however, that this is due to an improper treatmenfacy. We should note that the accuracy also depends on the
of the high-energy contribution to the SE. The total expresnumber of partial waves taken into account and on the num-
sion for the SE correction of a bound-electron sfaecan  per of grid points. In our case we typically uskd 6, and
always be represented in the folsee[14] for detail9 v=140 together with spline functions of order=9. The
quoted accuracy is sufficient for our purposes since the con-
tribution of the spurious term obtained|[ih0] is supposed to

(19
be much largefabout 20%.

AESE=Y (an|3|na),

042110-4
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From Table | we conclude that the summation interval TABLE Il. VP corrections to the electrog factor for the ground
with k=5 for H-like U®* provides a sufficient approxima- state of hydrogenlike ions.
tion (about 2% deviationfor AES=F. However, we have — —
found that any further enlargement of this interval generates < 9915 , this work 6915 , Ref.[16]
the spurious contribution as obtained [ii0]. From the

: ; . N o 1 —-3.0x10 1
physpal point o_f view a 20% contribution that ongmates 5 —4.0x10°° —4.2%10°°
from high energies larger thamtc®> (compared to the bind- 10 6.4x10°8 6.37%10°8
ing energy 0.81¢) is hardly understandable. Therefore, we _ _7 _ 7
- o - 0 9.37x10 9.41x10
conclude that the occurrence of the spurious contribution in 50 332¢10°5 332¢10°5
the numerical calculations reported in Rlf0] has a similar I -
90 —4.3991x 10 * —4.3995<10*

origin as the spurious terr(l) derived analytically in Ref.
[8], i.e., an improper treatment of the high-energy contribu-
tion to the SE within the PWR approach.

and « denotes the fine-structure constéint atomic unitsa

=1/c). Then the correction to thg factor results as

IV. CALCULATION OF QED CORRECTIONS
TO THE g FACTOR

_ 2[AEY(B)-AER(0)]

5q'P
g B

a

(23
Now we show that the conclusion drawn in Rgd] con-

cerning the inapplicability of the PWR approach to SE cal-

culations in external magnetic fields also does not strictlywhere ug is Bohr's magnetoriin atomic unitsug=3).

hold. For this purpose we employ an approach to the evalu- The results of the calculations for thes round state of

ation of the SE that includes an external magnetic field in thed-like ions in comparison with perturbation-theory results

Dirac equation from the beginning. obtained within the Uehling approximati¢t6] are given in
Accordingly, the problem reduces again to the evaluationrable II. An agreement better than 0.01% was found foZall

of the lowest-order SEEq. (19)]. The Dirac equation with values from 5 to 90. In these calculations values for the

an external magnetic field is solved by means of an approachagnetic field strengtl8=|B| within the range of 1.0 a.u.
due to Chen and Goldman which we describe briefly in Ap-<B<100.0 a.u. have been used. The numerical results are

pendix B. o stable within this range dB values.
Within this approach the vacuum-polarization and self-

energy corrections to the electrgnfactor in hydrogenlike
heavy ions will be calculated. First we calculate the vacuum- - X :
polarization effect in order to determine the values of the in hydrogenlike heavy ions
magnetic field strength where this method remains stable. For the evaluation of the self-energy correction in the ex-
After this we turn to the calculation of the self-energy cor-ternal magnetic field we employ the original PWR scheme
rection in an external magnetic field within the PWR developed in1,2] in combination with the approach due to
method. Chen and Goldmail1] for solving the Dirac equation in
cylindrically symmetric external magnetic fields.

The formula for the SE correction in an external magnetic
field for the statea(B) reads

B. Self-energy correction to the electrong factor

A. Vacuum-polarization corrections to the electrong factor
of hydrogenlike heavy ions

Vacuum-polarization(VP) corrections to the electrog ~ AESTB)
factor for H-like highly charged ionfHCls) have been cal-

culated within the the Uehling approximati¢h5]. For cal- 1 Gt . d

culations of the energy level of HClIs this approximation is _e ( alazf Sm(Krlz_) K

valid with an accuracy of about 10% for @lvalues. Within T A(B) iz Jok=Ea(1=-10)%Ea] o o e)ae)
the Uehling approximation the VP correction of a bound-

electron statéa(B)) including the external magnetic field is — 6my(B), (24)

determined by the matrix element
7 where the sum runs over the total Dirac spectrﬁm:ienote
a(B)>E( ——S(r)) , the Dirac matricest ,=|r;—r,|, and 5m, abbreviates the
a(B)a(B) counterterm. According td1,2] this counterterm follows
(21 from Eq.(24) by replacing the summation over bound states
n(B) by a corresponding integration over free-electron Dirac
where states and by replacing the bound-state ené&g{B) in the
denominator by the free-electron energyThe bound states

a(B) are expanded in free-electron Dirac stdﬁg&) (where

AEZP<B>=<a(B>—§s<r>

o] N 2 -
— 2a —arxlal q i X +1d 29 p is the electron momentumThe correction to the factor
S(r) e +— >—dx (22 _ .
3m)1 X X that arises from the SE contribution reads

042110-5
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TABLE lll. Self-energy corrections to the electrgnfactor for the ground state of H-like ions.

z 595, this work 595F, Ref.[16] 5955 aZ expansiol, Ref.[16]
1 (2.31-0.01)x 103 2.32284x 103 2.32284x 103
5 (2.32-0.01)x 1073 2.323389% 1073 2.323388 1073
10 (2.321-0.009)x 102 2.32547X% 103 2.3249028 1073
20 (2.332-0.007)x 103 2.3369 1073
50 (2.469-0.012)x 103 2.47162<10°3
90 (2.997-0.011)x 10 2 3.04516<10 3
2[AESHB)—AESH0)] visit. The work of I.G. and L.L. was supported by the RFBR
595F= B . (25  Grant No. 99-02-18526 and by the grant Minobrazovanija
KB E00-3.1.-7. G.S. and G.P. acknowledge financial support

Numerical results for the ground states of H-like ions with from BMBF, DFG, and GSIDarmstadk
different Z values are given in Table Ill in comparison with
data obtained via perturbation thedi6] and from theaZ APPENDIX A: THE UPPER LIMIT
expansion(for low Z). As for the VP corrections, numeri- FOR BESSEL FUNCTIONS
cally stable_re§ults are provided for values of magnetic field | ot us consider first the real functions, (x, 8)
strengths within the same range l.0a&B=< 100..0 a.u. For :jIZ(X)/XB for values8>0 and|=L>1 over the interval
all Z values the deviations from the perturbation-theory re- - [0 1]. We adopt the notation of Ref12]. Let a, ; and
sults turn out to be smaller than 0.1%. a/; denote the location of the first zero and the first maxi-

.mum of the spherical Bessel functigf{x), respectively. We

numerical evidence for the absence of the spurious terms i )
calculations of the SE correction in external magnetic fieldsgmploy the formulag10.1.59 and (10.1.63 of Ref. [12]

performed within the PWR approach at a level of accuracy

better than 0.1%. a1~
We should note that the accuracy achieved in our ap-

proach will not be sufficient for obtaining accurate values for

bound-state QED corrections to electrgriactors. The rea-

son traces back to the fact that bound-state QED corrections j.(a|',1)~0.8452{ I+5

are obtained via subtraction of the free-electron QED correc-

tions from the values given in Tables Il and IIl. This leads towith e>0. Obviously, the zeros of the functiofg and j,

severe numerical cancellations that diminish the accuracy dfoincide. For any>0 andB>0 the functionF; has exactly

the net result significantly. However, it does not effect ourone maximum within the intervake[0,a, ;] located atx

~23
}[1_006)],

1+0.808f< [+ =

|+1
2 2

—5/6
[1-0("9] (A2)

conclusions concerning the spurious terms. =b/,, i.e, F/(b/;,8)=0 andF{(b/,,B)<0. Derivatives
with respect tox are indicated by primes. For the first deriva-
V. CONCLUSIONS tive F| evaluated a# ,, we find
Summarizing, we have provided evidence for the absence 2%, ()i (X) = BiA(X)
of the “renormalization corrections” for the particular case F((afla,@):( ! ! )
of the SE in external fields. Contrary to the statements made ' xPr x—a’
in [8,10] we have found that via a proper treatment of the b
high-energy contribution to the SE such corrections can be J'|2(a|' ) Fi(al1.8)
avoided numerically and analytically. However, the proof =— - é+1:_ - 0. (A3)
presented here cannot exclude the possible existence of spu- (a1 a

rious corrections in more complicated situations, e.g., incon=_, . . . , ,
nection with high-order QED corrections. In the particularTh'f5 |r|r|1plles thﬁt(l_) b,'1<ba}|]1 arf (?) FL'J Qecrehas?ﬁmono-
case of the “loop after loop” second-order electron self-tonically over the intervab; ;<x=<ay,. Using the difteren-
energy correction a discrepancy between results obtaindéft €quation forj; we derive for the second derivative
within the PWR[17] approach and from the covariant renor- jz(x) 11(0i(X)

: : 1 it | l !
malization schemgL8] and[19] has been reported. This may Fl(a/,,8)=| B(B+1) Nz +2 )

indicate that this problem requires further investigation. xP cea’
1,1
ACKNOWLEDGMENTS ={B(B+1)—2[(a/ P>~ 1(I+1)]}
Valuable discussions with S. Salomonson and A. Ne- i2al,)
fiodov are gratefully acknowledged. I.G. is grateful to the x',—"1+2<0, (A4)
Technical University of Dresden for hospitality during his (a/y)”

042110-6



EVIDENCE FOR THE ABSENCE OF REGULARIZATION . .. PHYSICAL REVIEW A5 042110
Im(t) APPENDIX B: FINITE BASIS SET SOLUTION OF THE

@ DIRAC EQUATION FOR ATOMIC ELECTRONS
IN EXTERNAL MAGNETIC FIELDS

The Dirac equation for a bound electron in an additional
external magnetic field reads
A f%\w

!

H=Ho+Hp (B2)
FIG. 1. The region of the complebplane for which the approxi- and
mation Eq.(A6) is valid. It includes Pochhammer’s contour as de- . o _
picted. Ho=a-p+B8m+V(r), (B3)
which holds for all values & B<L, sincel>1. The fact that I
Fi'(a/1,8)<0 reveals thatF| has its point of inflection Hm:i“‘ [BXr], (B4)

somewhere betweea ; anda, ,, i.e.,F, is a convex func-

tion over the intervalby ;,a/;]. Accordingly, we can esti- wherea, denote the Dirac matrices)is the electron mass,
mate the value oF, at the positiorby , of its first maximum,  and B is the magnetic field strength. The magnetic field is
which finally provides an upper bound for the functiép supposed to be directed along thexis: B=B&,. V(F) is

throughout the whole rangee [0,): the Coulomb potential of &ointlike or extendednucleus.
In Egs.(B1)—(B4) atomic units are used.

Fi(bf1.8)<Fi(aj1,8)+[F/(a]1.B)[[b],—a/4 According to Ref.[11] the variational solution of the
<(1+p)Fi(a/1.8). (a5)  Dirac equation(B1) is obtained by means of trial functions
I'max Kmax
Here we used Eq(A3) and the fact thatb/;—a/,|<a/;. VA =D >, a*Pra(r). (B5)
Finally, we arrive at =1 «
i2(al,) 1\ 53-8 The electron wave functionﬁ’“(F) in the magnetic field
Fi(x,8)<(1+p) ' - "1ﬁ =< B(' 5) [1-0(79]. possess cylindrical symmetry and can be expanded with re-
(&) spect to a finite basis set of the functioh$”(F) of spherical

(A6) symmetry. The index denotes the Dirac angular quantum

Where the proof is concerned we shall restrict consideratiorqumber’_'“ cprresponds to the .tot.al eIectron'a'nguIar momen-

to values 6<3<1 only. tum projection,a” are the variational coefficients, andN2
To provide the functiorF as required along Pochham- defines the number of basis set functions. _

mer’s contour we need to extend the considerations above The next step employs tr#-spline representation of the

into the complex plane. The functiof is analytic in the functionsW¥ *(r):

complex plane=x+i{. A suitable region of the compleix

plane[see Eq.(4)] that includes Pochhammer’s contour is 2N
depicted in Fig. 1. “’f‘“(f)zgl biy®5*(r). (B6)
For small imaginary partsQe<1 all steps of the deri-
vation go through for complex arguments=x+i¢ with  with
|{|<e. The Taylor expansion yields
1.
4 PN |FXKM(r/r)
IF(Z,B)|=‘F(X,B)+I§ a—gF(z,B)) +0(22)] Pat(r)=n * ®7)
(=0 0
<I|F(x,B)|+&|F'(x,8)|+O(&?), (A7) 0
where  0<x<1. Now we might define D (1) = 1 AR (B8)
SURocx<w|F'(X,B)| =M< together  with &=l X =ulTT)
+1/2)" 5% A In view of Eq.(A6) we can write
wheren=1,... N, ¢, denote theB-spline representa-
F <(cptM |+1 “53-p L-0(-9]. (A8) tions of the finite basis set of radial function20], and
(zp)l=(cgtM){1+3 [ (1791 X.«u(r/1) are the usual spherical spinors.
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The variational solution of the Dirac equatioBl) with TABLE IV. Results for the Zeeman splittin E, for the ground
the trial functions(B5) reduces to the diagonalization of the state in neutral hydrogen obtained in the Chen and Goldman ap-
Hamiltonian(B4) within the finite basis set defined by Eqgs. Proach(CGA) [11] and in perturbation theoryPT). All values are
(B5)—(B8). As a result one obtains the full set of solutions of given in atomic unitga.u. For the magnetic field strength 1 a.u.
the Dirac equation for the atomic electron in an external=2-35<1C° T.
magnetic field.

In particular, the matrix elements of the operathy, with B AE; (CGA) AE; (PD)
the wave function$B6)—(B8) are given by 0 0.500 006 656 6 0.500 006 656 6
. ., B 1075 0.500 011 656 5 0.500 011 656 5
(W HR W)= 5T A s (B9) 1073 0.500 506 398 0.500 506 647 7
10! 0.5497433 0.550 005 769 1
where 1 0.872133 0.999997 7813

r§§f=f LAQUAIGEIS (B10) o |
0 of grid points wasN,= 150 and the order of splinds=8.

This corresponds to=2(Ngy+k—2)=314 energy levels
A= —if dQ(XK,J[t;X F]z|X—K',u> that. approxilmately represent the.Dirac spectrum. With this

choice the inaccuracy of the spline approximation for the
1s,), state compared to the Chen and Goldman variational

4k
> . for «k'=«k solution[11] becomes less than 18. To test the accuracy of
= 4x"=1 ] our approach we have calculated the Zeeman splitting of the
[(| |+ 1/2)2— u?]¥? 1s,, state in the hydrogen atom for different field strengths
K) , for k'=—«
2|k|+1 B.
(B11) In Table IV the results for the corresponding Zeeman

splittings are compared as evaluated within the approach

It is convenient to rearrange the summations in EqsChen and Goldman and by means of perturbation theory. The
(B5)—(B6) in such a way that the summation over partial latter have been obtained employing the standard formula
wavesL will be performed as the last one. In tiieespline  [21]. The comparison reveals that for field strenggsp to
approach one starts to count the states from the lowest negax 10 T the deviation from the perturbation-theory results
tive energy stateJ=1). Then the state witd=N-+1 cor- is about 108 while for a field strength of about>210* T
responds to the positive energy ground stagg,1 the deviation increase up to 18 The latter is due to the

Within the B-spline approach the H-like ion is included strong distortion of the atomic structure by the magnetic
inside a spherical box of radid,,,~50/Z a.u. The number field.
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