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I. INTRODUCTION

One ultimate goal of contemporary strong interaction
physics is to find a comprehension of the physical proper-
ties of hadrons by means of the underlying theory of
quantum chromodynamics (QCD). Among several meth-
ods which provide a link between QCD (quark and gluon)
degrees of freedom and the hadronic spectrum are the QCD
sum rules which have to be considered as important non-
perturbative approach in understanding the physical ob-
servables of hadrons. The sum rule method, first developed
for the vacuum [1], has later been extended to finite density
[2–4], finite temperature [5,6], and mixed finite density
and finite temperature [7]. Within the QCD sum rule
approach, and more generally in hadron physics, pions
and nucleons have to be considered as important degrees
of freedom because the pion is the lightest (Goldstone)
meson, while the nucleon is the lightest baryon. In-medium
QCD sum rules provide a direct way to relate changes of
hadronic properties to changes of the various condensates,
i.e. nucleon and pion expectation values of quark and gluon
fields. Therefore, expectation values of a local operator Ô
taken between these states, h�physjÔj�physi and

hNphysjÔjNphysi, need to be known. However, the predic-
tive power of the QCD sum rule method in matter meets
uncertainties when evaluating condensates, especially
higher mass dimension condensates inside the nucleon.
Accordingly, the exploration of nucleon matrix elements
is presently an active field of hadron physics, cf. [8,9].

If the operator Ô consists of hadronic fields, then in
principle one needs an effective hadronic theory which
decribes the interaction between pions and nucleons, re-
spectively, and the hadrons from which the operator Ô is
made of for evaluating these matrix elements. However, if
one is concerned with pion matrix elements then the use of
05=72(1)=014005(17)$23.00 014005
soft pion theorems [10–14] gives in general good estimates
for such expressions, which are related to several so called
low-energy theorems like Goldberger-Treiman relation
[15], Adler-Weisberger sum rule [16] or Cabibbo-
Radicati sum rule [17]. These soft pion theorems as alge-
braic tools are based on the hypothesis of partially con-
served axial vector current (PCAC) [18–20] and postulated
current algebra commutation relations [12,13], and allow
in general to trace the pion matrix elements of operators
made of effective hadronic fields back to vacuum matrix
elements. A feature of the soft pion theorems is that they
can also be deduced within quark degrees of freedom.
Accordingly, pion matrix elements of quark field operators
have also been evaluated by means of the soft pion theorem
(if we speak about the soft pion theorem then we mean the
special theorem considered in the Appendix A which is the
relevant one in our context) expressing the pion field and
axial vector current, respectively, by interpolating fields
made of quark degrees of freedom [21,22].

After discovering the powerful method of current alge-
bra for mesons several attempts have been made to inves-
tigate the possibilities for extending this algebra to the case
of baryons. Especially, the analog hypothesis of a partially
conserved baryon current (PCBC) and the related (and
postulated) baryon current algebra has been investigated
long time ago [23–28]. These attempts focussed on the
construction of baryon currents by products of nucleon
fields. Furthermore, in [29] this procedure has been studied
by considering baryon currents made of quark degrees of
freedom where several relations between form factors, e.g.
baryon-meson vertex form factors, have been obtained.
However, it turned out that, while the PCAC directly leads
to the mentioned soft pion theorems for evaluating pion
matrix elements, the PCBC does not provide a comprehen-
sive algebraic theorem for evaluating nucleon matrix ele-
ments. Therefore, up to now for evaluating nucleon matrix
-1  2005 The American Physical Society
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elements of an operator Ô consisting of quark fields more
involved tools are needed like chiral quark model [8],
lattice evaluations [9], or Nambu-Jona-Lasinio model
[30]. From this point of view it seems very tempting to
look for an algebraic approach for evaluating nucleon
matrix elements in analogy to the soft pion theorem.
Here, by using directly the nucleon field instead the nu-
cleon current, we propose such an algebraic approach for
evaluating matrix elements of quark operators taken be-
tween a bare nucleon, i.e. the valence quark contribution.

To clarify what the terminology ‘‘bare nucleon’’ means
we recall the basic QCD structure of nucleons. From deep
inelastic lepton-nucleon scattering (DIS) experiments we
know that nucleons are composite color-singlet systems
made of partons. In the language of QCD these are three
valence quarks with a current quark mass, accompanied by
virtual sea quarks and gluons. Accordingly, the physical
nucleon state jNphysi is a highly complicated object con-
sisting of many configurations in the Fock space. For
instance, in the case of the proton, the Fock expansion
begins with the color-singlet state juudi consisting of three
valence quarks which is the so called bare proton state, and
continues with juudgi, juudqqi and further sea quark and
gluon states that span the degrees of freedom of the proton
in QCD.

In the low-energy region, many properties of the nucleon
can rather successfully be described by approximating the
virtual sea quarks and gluons by a cloud of mesons, espe-
cially pions, surrounding the bare valence quark core.
Accordingly, in the pion cloud model, which resembles
the Tamm-Dancoff method [31–36] the physical nucleon is
viewed as a bare nucleon, which accounts for the three
valence quarks, accompanied by the pion cloud which
accounts for the virtual sea quarks and gluons. Then the
Fock representation for the physical nucleon reads
[33,34,37–40]

jNphysi � Z1=2
N �jNi �	1jN�i �	2jN��i � :::�; (1)

where the Fock state jNi represents a bare nucleon state,
jN�i and jN��i represent a bare nucleon with one pion
and two pions, respectively, and the dots stand for all of the
Fock states consisting of one bare nucleon with more than
one pion or heavier mesons. The probability amplitudes	n
to find the nucleon in the state jNn�i can be evaluated by
using a Hamiltonian which describes the pion-nucleon
interaction [31–34,37]. Then the bare nucleon probability
can also be determined and turns out to be ZN ’ 0:9
[32,38]. Since the deviation of ZN from 1 comes from
pion-nucleon interaction one has to put ZN � 1 if the
pion cloud is not taken into account. By using the Fock
expansion (1) the expectation value of an observable Ô
taken between the physical nucleon states is given by
[32,33,41],
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hNphysjÔjNphysi � ZN�hNjÔjNi �	2
1hN�jÔjN�i

�	2
2hN��jÔjN��i � . . .�: (2)

The first term on the right side of (2), i.e. the contribution
of the bare nucleon without pions, plays an important role
for two reasons. First, the bare nucleon is expected to give
the main contribution in many cases [42]. And second, for
the leading chiral correction one needs only the contribu-
tions of the lowest-momentum pions in the cloud allowing
an application of the soft pion theorem (see Appendix A),
which then reduces the pion cloud terms in (2) also to bare
nucleon matrix elements [43,44]. Accordingly, in this pa-
per we focus on bare nucleon matrix elements and propose
an algebraic method for evaluating them. This approach
seems capable to estimate nucleon matrix elements of
quark operators in a straightforward way. We also note
that within the algebraic approach new parameters are not
necessary since the bare nucleon matrix elements are
traced back to vacuum matrix elements, like in the soft
pion theorem. We apply the method on two-quark, four-
quark and, finally, on six-quark operators inside the nu-
cleon which so far have not been evaluated.

The paper is organized as follows. In Sec. II we derive an
algebraic formula for evaluating matrix elements taken
between the state of a bare nucleon. In Sec. III a valence
quark field operator with the quantum numbers of a bare
nucleon is introduced. A few tests of the nucleon formula
on well known bare nucleon matrix elements of two-quark
operators are given in Sec. IVA (currents) and IV B (chiral
condensate). In Sec. IV C we explore the valence quark
contribution of four-quark condensates within the alge-
braic method developed and assert an interesting agree-
ment with the results of groundstate saturation
approximation when taking properly the valence quark
contribution. We also compare our findings for the valence
quark contribution of four-quark condensates with recently
obtained results within a chiral quark model. In Sec. V we
evaluate six-quark condensates inside the bare nucleon. A
summary of the results and an outlook can be found in
Sec. VI. In Appendix A a derivation of the soft pion
theorem is given which shows the similarity of it with
our algebraic approach. Details of some evaluations are
relegated to the Appendix B.
II. NUCLEON FORMULA

Let Ô�x� be a local operator which may depend on space
and time, x � �r; t�. We are interested in matrix elements
taken between two bare nucleon states jN�k;��i with four-
momentum k and spin � (i.e. jNi is either a bare proton jpi
or a bare neutron jni state, which are considered as QCD
eigenstates). To derive a formula for such matrix elements
between bare nucleons with finite nucleon masses and
momenta we first apply the Lehmann-Symanzik-
Zimmermann (LSZ) reduction [45,46] on one nucleon
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state,
hN�k2; �2�jÔ�x�jN�k1; �1�i � iZ	1=2
�

Z
d4x1hN�k2; �2�jTW�Ô�x��̂

�
N�x1��j0i�i��@�

�
x1
�MN���u

�
N�k1; �1�e

	ik1x1 ; (3)
where the greek letters �;� are Dirac indices. The nor-
malization of the nonperturbative QCD vacuum is h0j0i �
1, and the normalization for the nucleon state reads
hN �k2; �2� jN �k1; �1� i � 2Ek1

�2��3��3� �k1 	 k2���1�2
,

where Ek1
�

��������������������
k2

1 �M2
N

q
. Throughout the paper we take

the sum convention: If two Dirac (or later color) indices are
equal or not given explicitly, then a sum over them is
implied. The four-momenta are on-shell, k2

1 � k2
2 � M2

N;
for noninteracting nucleons the bare nucleon mass equals
the physical nucleon mass, MN � 938 MeV. The field
�̂N�x1� is the interacting (adjoint) nucleon field operator.
i.e. off-shell. The equal-time anticommutator for the inter-
acting nucleon field operator is the same as for the free
fields and reads


�̂�
N�r1; t�; �̂

�y
N �r2; t��� � ��3��r1 	 r2��

��: (4)

For the wave function renormalization constant we have
0 
 Z	1=2

� 
 1. The free nucleon spinor satisfies ���k� 	
MN�uN�k;�� � 0, with normalization uN�k;�2��
uN�k;�1� � 2MN��1�2

. The operator Ô is, for physical
reasons, assumed to consist of an even number of fermionic
fields, i.e. a bosonic operator, according to which the Wick
014005
time-ordering, TWÂ�x1�B̂�x2� � Â�x1�B̂�x2���t1 	 t2� �
B̂�x2�Â�x1���t2 	 t1�, has been taken in Eq. (3).

We approximate Eq. (3) by introducing a noninteracting
nucleon field operator given by

�̂ �
N�x� �

Z d3k
�2��3

1

2Ek

X2
��1

�âN�k; ��u�N�k;��e
	ikx

� b̂yN�k;��v
�
N�k;��e

ikx�; (5)

with the corresponding anticommutator relations in mo-
mentum space


âN�k1; �1�; â
y
N�k2; �2��� � 
b̂N�k1; �1�; b̂

y
N�k2; �2���

� 2Ek1
�2��3��3��k1 	 k2�

� ��1�2
: (6)

Accordingly, jN�k;��i � âyN�k;��j0i. For the noninteract-
ing nucleon field operator Z	1=2

� � 1, and the equation of
motion follows from (5), �i�� ~@

�
x 	MN��̂N�x� � 0, and

for the adjoint noninteracting nucleon field operator it

reads �̂N�x��i@�
�
x �� �MN� � 0, respectively. Then one

arrives at
hN�k2; �2�jÔ�x�jN�k1; �1�i �
Z
d4x1e

	ik1x1��t	 t1�hN�k2; �2�j
Ô�x�; �̂
�
N�x1��	j0i��0���u

�
N�k1; �1�: (7)

Applying this procedure on the left nucleon state yields

hN�k2; �2�jÔ�x�jN�k1; �1�i �
Z
d4x1

Z
d4x2e

	ik1x1eik2x2��t	 t1���t	 t2�u
�2
N �k2; �2���0��2�2

�h0j
�̂�2
N �x2�; 
Ô�x�; �̂

�1

N �x1��	��j0i��0��1�1
u�1
N �k1; �1�; (8)
which is symmetric under the replacement
h0j
�̂; 
Ô; �̂�	��j0i ! h0j

�̂; Ô�	; �̂��j0i.
Equation (8) is the central point of our investigation and we
call it nucleon formula. This formula resembles the soft
pion theorem given in Appendix A. It is worth to underline
that, due to the �-functions in (8), only the equal-time
commutator and anticommutator occur. The anticommuta-
tor comes into due to the fact that the commutator in (7)
between the operator Ô (consisting of an even number of
fermionic operators) and the (adjoint) fermionic field op-
erator �̂N yields an operator consisting of an odd number
of fermionic field operators. Therefore, when applying
LSZ [cf. Equation (3)] on the other nucleon state a Dirac
time-ordering, TDÂ�x1�B̂�x2� � Â�x1�B̂�x2���t1 	 t2� 	
B̂�x2�Â�x1���t2 	 t1�, is needed.

The nucleon formula is valid for a noninteracting nu-
cleon with finite mass MN and finite three momentum k,
and in this respect it goes beyond the soft pion theorem,
which is valid for pions with vanishing four-momentum
only. In the next section we supplement the nucleon for-
mula with a nucleon field operator expressed by quark
fields, which allows then the algebraic evaluation of bare
nucleon matrix elements of quark operators.

We note a remarkable advantage of the algebraic ap-
proach. The operator Ô is a composite operator, i.e. a
product of field operators taken at the same space-time
point. As it stands, such a composite operator needs to be
renormalized. Therefore, a renormalization Ôren

�

Ô	 hÔi0 (we abbreviate hÔi0 � h0jÔj0i), which applies
for products of noninteracting field operators, has to be
implemented [46]. However, the term hÔi0 is a c-number
and, according to Eq. (8), does not contribute because of


hÔi0; �̂N�	 � 0. Another kind of renormalization for
-3
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products of interacting field operators is also based on
subtracting of c-numbers (so called renormalization con-
stants) which vanish when applying the commutator in the
nucleon formula. Therefore, one may consider the com-
posite operator Ô�x� in Eq. (8) as a renormalized operator.
This feature is also known within PCAC and PCBC alge-
bra, and, in particular, within the soft pion theorem.

III. CHOICE OF NUCLEON FIELD OPERATOR

The nucleon formula (8) can directly be applied on a
local operator Ô which consists of bare nucleonic degrees

of freedom, e.g. Ô � �̂N�̂N; �̂N���̂N , etc. However, we
are interested in operators basing on quark degrees of
freedom, e.g. Ô � q̂ q̂; q̂��q̂, etc. To make the relation
(8) applicable for such cases one needs to decompose the
bare nucleon field operator �̂N into the three valence
quarks, yielding a composite operator  ̂N to be specified
by now [47]. Although there has been considerable success
in understanding the properties of nucleons on the basis of
their quark substructure as derived within QCD, a rigorous
use of QCD for the nucleons is not yet in reach. Therefore,
in order to gain a nucleon field operator which shows up the
main features (quantum numbers) of the bare nucleon a
more phenomenological approach on the basis of the
quark-diquark picture of baryons [48] is used.

To be specific we consider the proton. The bare proton
state juudi is defined by the SU(2) flavor, SU(2) spin
wavefunction of three valence quarks. In the quark-diquark
model of the bare proton two of these valence quarks are
regarded as a composite colored particle (diquark) which
obeys the Bose statistic and which has a mass of the
corresponding meson (e.g. for QCD with Nc � 2 Pauli-
Gürsey symmetry [49]), i.e. a mass which is significantly
larger than the current quark mass. Within quark degrees of
freedom the general expression for such a diquark can be
written as [29,50]

�̂ ab
q1q2

�x� � q̂aT
1 �x�C�q̂b

2�x�: (9)

Here, q̂a
1 and q̂b

2 are quark field operators of flavor u or d
with color index a and b, respectively. Throughout the
paper all quark field operators are solutions of the full
Dirac equation, �i��D̂� 	mq�q̂�x� � 0 with D̂� � @� 	

igsÂ
a
�)

a=2, where Âa� are the gluon fields and Tr�)a)b� �
2�ab (a; b � 1; . . . ; 8 are Gell-Mann indices, which should
not be confused with the color indices (in roman style)
a; b; c (later also i . . . ; n) of quark fields). The equal-time
anticommutator for these interacting quark fields is the
same as for free quark fields and reads


q̂a
��r1; t�; q̂

by
� �r2; t��� � ��3��r1 	 r2�����

ab: (10)

The charge conjugation matrix is C � i�0�2, and � �

f1; �5; ��; ���5; ��*g is an element of the Clifford alge-
bra. C changes the parity of �, e.g. C�5 has positive parity.
014005
The diquark (9), considered as a composite operator made
of quark fields, does generally not commute with quark
field operators. On the other side, if the diquark is regarded
as an effective boson, it commutes with the fermionic
quark fields. This feature of the diquark, considered as a
bosonic quasiparticle, can be retained on quark level when
neglecting the quantum corrections for the quark fields
which are participants of the diquark. Accordingly, the
diquark is separated into a classical part and a quantum
correction

�̂ ab
q1q2

�x� � qaT
1 �x�C�qb

2�x� � ��̂ab
q1q2

�x�: (11)

The classical Dirac spinors qa
1; q

b
2 are solutions of the full

Dirac equation �i��D� 	mq�q�x� � 0. The classical part
in (11), �ab

q1q2
� qaT

1 C�qb
2, commutes with quark field

operators. To specify the diquark relevant for a proton we
note that there are only two structures, � � �5 and � �
�5�0, which have positive parity and vanishing total spin,
JP � 0� [50]. This is in line with [51], where it was found
that the proton has indeed a large overlap with the inter-
polating field -̂p � .abc�ûaTC�5d̂

b�ûc, where .abc is the
total antisymmetric tensor. We also remark that in lattice
calculations the field -̂p is usually used [52,53] since this
interpolating field has an appropriate nonrelativistic limit.
In addition, the field -̂p is also a part of the so called Ioffe
interpolating field, which for the proton is given by
-̂Ioffe � 2.abc��ûaTCd̂b��5û

c 	 �ûaTC�5d̂
b�ûc� [54]. The

Ioffe interpolating field is usually used in QCD sum rule
evaluations; for a more detailed motivation see also [55].
These properties in mind, we take -̂p as a guide for
constructing a proton field operator and obtain a semiclas-
sical interpolating proton field by neglecting the quantum
correction of the diquark. Further, we assume that any
quark of the nucleon can either be a participant of the
diquark or can be located outside the diquark. In this line
only two different structures for a semiclassical interpolat-
ing proton field may occur and, according to this, the
general semiclassical field operator for a bare proton is a
linear combination of both of them:

 ̂ �
p�x� � .abc
Ap�uaT�x�C�5db�x��ûc��x�

� Bp�u
aT�x�C�5u

b�x��d̂c��x��: (12)

The colorless operator (12) leads to the quantum numbers
of a proton (charge, parity, spin, isospin). In the following
we evaluate proton matrix elements on quark level by
means of the nucleon formula (8) where the field operator
�̂p�x� is replaced by  ̂p�x� given in Eq. (12).

Before going further we have to comment on the nor-
malization of the field operator (12), i.e. on the determi-
nation of the coefficients Ap and Bp which, in general, are
complex quantities. With the relativistic normalization
for the nucleon state and taking into account that there
are two u quarks inside the proton we demand [56]
-4
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hp�k;�1�jû
iy
� �0�ûi

��0�jp�k;�2�i � 4Ek��1�2
. Evaluating

this term using the nucleon formula (8) with (12) we find
the normalization, at x � 0, to be [57]

jApj
2.abc.a0b0c0�cc0ua0TC�5d

b0uaTC�5d
b � 2: (13)

From hp�k;�1�jd̂
iy
� �0�d̂

i
��0�jp�k;�2�i � 2Ek��1�2

we de-
duce

jBpj
2.abc.a0b0c0�cc0ua0TC�5u

b0uaTC�5u
b � 1: (14)

Formula (8) in combination with the field operator (12) and
the normalizations (13) and (14) summarizes our proposi-
tions made for obtaining bare proton matrix elements for
quark operators.

For neutron matrix elements in Eq. (8) we have to insert
the semiclassical field operator for the bare neutron,  ̂n�x�,
which is achieved from (12) by interchanging u$ d, û$

d̂ and by the replacements Ap ! An, Bp ! Bn. The corre-
sponding normalizations for the bare neutron field opera-
tor, i.e. the determination of An and Bn, are obtained from
Eqs. (13) and (14) by interchanging the up and down
quarks, and Ap ! An, Bp ! Bn .

IV. TESTING THE NUCLEON FORMULA

In the following we will test the outlined formula,
Eq. (8) with field operator Eq. (12), and compare with
known bare nucleon matrix elements. Throughout the pa-
per we evaluate matrix elements of a composite operator
Ô�x� at x � 0 and therefore omit the argument x in matrix
elements.

A. Electromagnetic and axial vector current

The electromagnetic current for the noninteracting
pointlike neutron on hadronic level is zero, due to the
vanishing electric charge of the neutron. For the noninter-

acting pointlike proton it is given by Ĵem
� �x� �

ep�̂p�x����̂p�x�, where the electric charge of proton
equals the elementary electric charge, ep � e. Now there
are two possibilities to evaluate such a matrix element on
hadronic level: either by means of the algebraic approach
Eq. (8) and the anticommutator relation (4), or the usual
way by means of the field operator Eq. (5) and the anti-
commutator relations (6). In both cases it is straightforward
to show that hp�k2; �2�jĴ

em
� jp�k1; �1�i � epup�k2; �2��

��up�k1; �1� on effective hadronic level. As a first test of
the nucleon formula we verify this relation on quark level

where the electromagnetic current is given by Ĵem
� �x� �

2
3 eû�x���û�x� 	

1
3 ed̂�x���d̂�x�. Indeed, by using

Eqs. (B5) and (B6) from Appendix B for the bare proton
we get on quark level

hp�k2; �2�jĴ
em
� jp�k1; �1�i � epup�k2; �2���up�k1; �1�:

(15)
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Similarly, for the bare neutron, with Eqs. (B7) and (B8)
from Appendix B, we obtain on quark level
hn�k2; �2�jĴ

em
� jn�k1; �1�i � 0. Both of these findings are

in agreement with the results on effective hadronic level.
Now we look at the axial vector current which on

hadronic level for a noninteracting pointlike nucleon is

given by Âa��x� � gvA�̂N�x����5
0a
2 �̂N�x� [58], where gvA

is the axial charge of a bare nucleon. For the moment being
in this paragraph up to Eq. (16) a � 1; 2; 3 are isospin
indices, and �̂N , jNi and uN are isoduplets. The isospin
matrices 0a coincide with Pauli’s spin matrices with nor-
malization Tr�0a0b� � 2�ab.

Similar to the case of electromagnetic current, there are
two possibilities to evaluate this matrix element on had-
ronic level: by means of the algebraic approach Eq. (8)
and the anticommutator relation (4), or directly by means
of the field operator Eq. (5) and the anticommutator rela-
tions (6). In both cases one obtains on effective hadronic
level the well known result for pointlike nucleons,
hN�k2;�2�jÂ

a
�jN�k1;�1�i�gvAuN�k2;�2����5

0a
2 uN�k1;�1�.

We will verify this relation on quark level, where the axial

vector current is defined as Âa��x� � �û�x�d̂�x�����5
0a
2 �

�û�x�d̂�x��T. To operate with matrix elements between
either bare proton states or bare neutron states we use for
the nondiagonal cases �a � 1; 2� the assumed isospin sym-

metry relations, cf. [59], hpjû���5d̂jni � hpjû���5û 	

d̂���5d̂jpi and hnjd̂���5ûjpi � hnjd̂���5d̂ 	

û���5ûjni [60]. Then, taking the solutions of nucleon
formula for two-quark operators, Eqs. (B5) and (B6) for
proton states, and Eqs. (B5) and (B6) for neutron states (see
Appendix B), yields on quark level for the bare (isoduplet)
nucleon

hN�k2; �2�jÂ
a
�jN�k1; �1�i � uN�k2; �2����5

0a

2
uN�k1; �1�:

(16)

Comparison of (16) with the result on effective hadronic
level yields for the axial charge gvA � 1, in fair agreement
with the value gvA ’ 0:84 deduced from MIT Bag model
evaluations and neutron �-decay experiment [61].

B. Chiral condensate in nucleon

The chiral condensate inside the nucleon is related to the
pion-nucleon sigma term [62],

�N �
mq

2MN
hNphys�k;��jû û�d̂ d̂ jNphys�k;��i; (17)

where 2mq � mu �md. A typical value for the pion-
nucleon sigma term is �N � 45 MeV [63,64]. The sigma
term can be decomposed, according to Eq. (2), into a
valence quark contribution (bare nucleon) and a pion cloud
contribution (sea quarks and gluons): �N � �vN � ��N . To
evaluate �vN we first consider the u quark chiral condensate
-5
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inside the bare proton. With Eqs. (B5) and (B6) one obtains

hp�k2; �2�jû û jp�k1; �1�i � 2up�k2; �2�up�k1; �1�;

hp�k2; �2�jd̂ d̂ jp�k1; �1�i � 1up�k2; �2�up�k1; �1�:
(18)

These relations show the momentum and spin dependence
of the chiral condensate inside the bare proton. Of course,
for a finite-size nucleon there are additional momentum
dependences for which is accounted for by nucleon form-
factors. An application of the nucleon formula to the bare
neutron reveals the isospin symmetry relations

hn�k2;�2�jû û jn�k1;�1�i � hp�k2;�2�jd̂ d̂ jp�k1;�1�i;

hn�k2;�2�jd̂ d̂ jn�k1;�1�i � hp�k2;�2�jû û jp�k1;�1�i:
(19)

Accordingly, it is only necessary to compare the findings
for the proton with results reported in the literature. For the
special case k1 � k2 and �1 � �2 Eq. (18) simplifies to

1

2MN
hp�k;��jû û jp�k;��i � 2 �2:1�;

1

2MN
hp�k;��jd̂ d̂ jp�k;��i � 1 �1:4�:

(20)

The parenthesized values are the findings of Ref. [65] for
the valence quark contribution which well agree with our
results. From (20) and isospin symmetry relations (19) one
may now deduce the valence quark contribution to the
nucleon sigma term within the algebraic approach,

�vN �
mq

2MN
hN�k;��jû û�d̂ d̂ jN�k;��i � 3mq: (21)

We compare this result with Ref. [66], where the valence
quark contribution to the sigma term has been estimated to
be �vN � �N=�1 �GSf2

��. By using the given valuesGS �
7:91 GeV	2 and f� � 0:393 GeV one obtains �vN �
20 MeV. Accordingly, our result (21) is, for mq ’

7 MeV, in good numerical agreement with [66].
Finally, by assuming that the contribution of the pion

cloud for the physical proton is the same for the chiral u
and d quark condensates one can get rid of the term ��N by
subtracting the chiral d quark from the chiral u quark
condensate. That means the following approximation
should be valid

hpphys�k;��jû û	d̂ d̂ jpphys�k;��i

’ hp�k; ��jû û	d̂ d̂ jp�k;��i � 2MN; (22)

where we have used (18). Indeed, the result (22) is in fair

agreement with hpphys�k;��jû û	d̂ d̂ jpphys�k;��i �
2MN�M$ 	M%�=ms � 1:3 GeV obtained in [65].

C. Four-quark condensates

Four-quark condensates seem to be quite important in
predicting the properties of light vector mesons within the
014005
QCD sum rule method [67]. This is related to the fact that
in leading-order the chiral condensate is numerically sup-
pressed since it appears in a renormalization invariant
contribution mqhq̂ q̂i. Therefore, the gluon condensate
and four-quark condensates become numerically more im-
portant. However, the numerical values of four-quark con-
densates are poorly known, and up to now it remains a
challenge to estimate their magnitude in a more reliable
way. Accordingly, the evaluation of four-quark conden-
sates inside the nucleon is an important issue. Such quan-
tities have been evaluated in [64] within the groundstate
saturation approximation, noting the importance of four-
quark condensates also for properties of the nucleon within
the QCD sum rule approach. An attempt to go beyond the
groundstate saturation approximation has been presented
in [30], where, by using the Nambu-Jona-Lasinio model
and including pions and � mesons, correction terms have
been obtained. Further evaluations of four-quark conden-
sates beyond the groundstate saturation approximation
have been performed in [8] by using a perturbative chiral
quark model for describing the nucleons. Later, the results
of [8] have been used for evaluating nucleon parameter at
finite density within QCD sum rules [68]. In [9,52] lattice
evaluations for scalar and traceless four-quark operators
with nonvanishing twist have been reported. In view of
these very few results obtained so far further insight into
such condensates is desirable.

Before considering this important issue we notice a
general decomposition of four-quark condensates. Let Â
and B̂ two arbitrary two-quark operators. Then the nucleon
expectation value of Ô � Â B̂ can be decomposed as
[69,70]

hNphysjÂ B̂ jNphysi � hÂi0hNphysjB̂jNphysi

� hNphysjÂjNphysihB̂i0

� hNphysjÂ B̂ jNphysi
C; (23)

where the first two terms refer to the so called factorization
approximation, while the last term is a correction term to
the factorization approximation and describes the scatter-
ing of a nucleon with B̂ into a nucleon and Â, i.e. it is a sum
over all connected scattering Feynman diagrams Nphys �

B̂! Nphys � Â. The decomposition (23) is matched with
the decompositions (24), (25), and (45) given below, as it is
seen in [70] where we consider an explicit example for the
vector channel. The first two terms in (23) scale with N2

c
(Nc denotes the number of colors, for the moment being
taken as a free parameter of QCD), while the correction
term scales with Nc [71,72]. Dividing both sides of (23) by
N2
c one recognizes that the last term has to be considered as

a correction term of the order 1=Nc [71,72]. That means
that a factorization of four-quark operators in a cold me-
dium is consistent with the large-Nc limit [71,72], a state-
ment which is also valid in vacuum [73].
-6
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1. Flavor-unmixed four-quark condensates

We start our investigation with the flavor-unmixed four-
quark condensates and consider the general expression of
two different kinds of flavor-unmixed condensates inside
the nucleon, namely, condensates without and with Gell-
014005
Mann matrices )a (a � 1; . . . ; 8 are the Gell-Mann indices,
which should not be confused with the color indices (in
roman style) a, b, c, (later also i:::; n) of quark fields)
[30,64,74]
hNphysjq̂�1q̂ q̂�2q̂jNphysi �
1

8

Tr��1�Tr��2� 	

1

3
Tr��1�2��hq̂ q̂i0hNphysjq̂ q̂ jNphysi �

1

16

�
Tr��1�Tr����2�

� Tr��2�Tr����1� 	
1

3
Tr��1�

��2� 	
1

3
Tr��2�

��1�

�
hq̂ q̂i0hNphysjq̂��q̂jNphysi

� hNphysjq̂�1q̂ q̂�2q̂jNphysi
C; (24)

hNphysjq̂�1)
aq̂ q̂�2)

aq̂jNphysi � 	
2

9
Tr��1�2�hq̂ q̂i0hNphysjq̂ q̂ jNphysi 	

1

9

Tr��1�

��2� � Tr��2�
��1��hq̂ q̂i0

�hNphysjq̂��q̂jNphysi � hNphysjq̂�1)aq̂ q̂�2)aq̂jNphysi
C; (25)
where q̂ . . . q̂ is either û . . . û or d̂ . . . d̂ (the dots stand for �
or �)a). For the chiral condensate we take hq̂ q̂i0 �
	�0:250 GeV�3. The decompositions of Eqs. (24) and
(25) are related to (23) by means of a Fierz rearrangement;
an explicit example for the vector channel is given in [70].
The last term on the right side of Eqs. (24) and (25) is a
correction term [30] to the groundstate saturation approxi-
mation [64], describing the scattering process Nphys �
q̂ . . . q̂! Nphys � q̂ . . . q̂. To get an idea about the magni-
tude of these correction terms we consider two typical
examples. The factorization approximation (25) (i.e. with-
out the correction term) yields for the scalar channel
hNphysjq̂ q̂ q̂ q̂ jNphysi � 	0:173 GeV4. In [30] the correc-
tion term to this groundstate saturation approximation has
been found to be hNphysjq̂ q̂ q̂ q̂ jNphysi

C � 0:011 GeV4. As
another example we consider the vector channel with
Gell-Mann matrices. The factorization approximation
(25) (i.e. without the correction term) yields
hNphysjq̂��)aq̂ q̂ ��)aq̂jNphysi � 0:335 GeV4, while the
correction term in [30] is hNphysjq̂��)

a�
q̂ q̂ ��)aq̂jNphysi

C � 	0:139 GeV4. Accordingly, the cor-
rection to the groundstate saturation approximation in the
scalar channel turns out to be less than 10%, while in the
vector channel with Gell-Mann matrices it is about 30%.
As we will see, from (24) and (25) the valence quark
contribution can be extracted in a unique way.

Now we evaluate the valence quark contribution of four-
quark condensates, and start to consider the u quark inside
the bare proton. Application of the nucleon formula (8)
with the composite proton field operator (12) yields

hp�k2; �2�jû�1û û�2ûjp�k1; �1�i

� u�2
p �k2; �2���0��2�2

��0��1�1
u�1
p �k1; �1�

� ��1�
����2�

��
Z
d3r1e

ik1r1

Z
d3r2e

	ik2r2

� h0j
 ̂�2
p �r2;0�; 
û

i
�û

i
�û

j
�û

j
�;  ̂

�1

p �r1;0��	��j0i: (26)

By inserting the expression given in Eq. (B9) in the
Appendix B into (26) one obtains for the bare proton

hp�k2; �2�jû�1û û�2ûjp�k1; �1�i

�
1

6
hû ûi0�3Tr��1�up�k2; �2��2up�k1; �1�

� 3Tr��2�up�k2; �2��1up�k1; �1�

	 up�k2; �2��1�2up�k1; �1�

	 up�k2; �2��2�1up�k1; �1��: (27)

In a similar way one obtains for the four-quark condensates
involving Gell-Mann matrices

hp�k2; �2�jû�1)
aû û�2)

aûjp�k1; �1�i

� 	
8

9
hû ûi0�up�k2; �2��1�2up�k1; �1�

� up�k2; �2��2�1up�k1; �1��: (28)

For the d flavor we have

hp�k2; �2�jd̂�1d̂ d̂�2d̂jp�k1; �1�i

�
1

2
hp�k2; �2�jû�1û û�2ûjp�k1; �1�i; (29)

hp�k2; �2�jd̂�1)
ad̂ d̂�2)

ad̂jp�k1; �1�i

�
1

2
hp�k2; �2�jû�1)aû û�2)aûjp�k1; �1�i: (30)

An analog evaluation of these four-quark operators inside
the bare neutron gives

hn�k2; �2�jû�1û û�2ûjn�k1; �1�i

� hp�k2; �2�jd̂�1d̂ d̂�2d̂jp�k1; �1�i; (31)

hn�k2; �2�jû�1)
aû û�2)

aûjn�k1; �1�i

� hp�k2; �2�jd̂�1)
ad̂ d̂�2)

ad̂jp�k1; �1�i; (32)
-7
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which, like in the case of chiral condensate, reflect the
isospin symmetry. By interchanging û$ d̂ on both sides in
Eq. (31) and (32) one also gets the d flavor four-quark
condensates inside neutron. The results (27)–(30) for the
four-quark condensates inside the bare nucleon distinguish
between proton and neutron, and they also contain the
dependence of these condensates on the momentum of
the (pointlike) nucleon. Of course, as in the case of two-
quark matrix elements, for a finite-size nucleon there are
additional momentum dependences implemented in
formfactors.

We compare now these findings of Eqs. (27), (28), (28),
and (30)–(32) with Ref. [64], i.e. we set k1 � k2 and �1 �
�2, and average over proton and neutron to get the nucleon
condensates, 2hNjÔjNi � hpjÔjpi � hnjÔjni. First we
consider the case of scalar four-quark condensate, i.e. �1 �
�2 � 1. Then, for the bare nucleon one obtains from
Eqs. (27), (29), and (31)

hN�k;��jq̂ q̂ q̂ q̂ jN�k;��i �
11

2
hq̂ q̂i0MN; (33)

while, according to the first term in Eq. (24) (the second
term vanishes in this special case), for the physical nucleon
the result

hNphys�k; ��jq̂ q̂ q̂ q̂ jNphys�k;��i �
11

6
hq̂ q̂i0MN

�N
mq

�
11

6
hq̂ q̂i0MN

�
�vN
mq

�
��N
mq

�
(34)

has been obtained in [64]. For the last line of Eq. (34) we
have used the decomposition �N � �vN � ��N , which has
already been considered in section IV B. Comparing both
results, Eqs. (33) and (34), one recognizes, by means of
relation �vN=mq � 3 [cf. [66] and Eq. (21)], that the result
(33) is nothing else but just the valence quark contribution
of the scalar four-quark condensate inside the nucleon; it is
in agreement with the separated valence quark term of
Eq. (34).

Because of its importance and its instructive property we
will also consider the case �1 � 1; �2 � �4. From
Eqs. (27), (29), and (31) we find

hN�k; ��jq̂ q̂ q̂ �4q̂jN�k; ��i

�
5

4
hq̂ q̂i0uN�k; ���4uN�k;��;

(35)

which is the contribution of the bare nucleon, i.e. the
valence quark contribution. To compare it with the corre-
sponding result of Ref. [64] we first deduce from Eq. (24)
that

hNphys�k;��jq̂ q̂ q̂ �4q̂jNphys�k;��i

�
5

6
hq̂ q̂i0hNphys�k;��jq̂�4q̂jNphys�k;��i: (36)
014005
From (36) we have to extract the valence quark contribu-
tion by virtue of Eq. (2) (with ZN ’ 1)

hNphys�k;��jq̂�4q̂jNphys�k;��i

� hN�k;��jq̂�4q̂jN�k;��i �
X
n

	2
nhNn�jq̂�4q̂jNn�i:

(37)

The first term on the right side, which is in fact an average
over proton and neutron, is the valence quark term we are
interested in, while the second term is the pion cloud
contribution. With isospin invariance one obtains

hN�k;��jq̂�4q̂jN�k;��i

�
1

2
�hp�k;��jû�4ûjp�k;��i � hp�k;��jd̂�4d̂jp�k;��i�

�
1

2
�2up�k; ���4up�k;�� � 1up�k;���4up�k;���

�
3

2
uN�k;���4uN�k;��; (38)

where for the last term we have set up � uN because of
Mp � MN. By inserting (37) into (36) and using (38) we
obtain

hNphys�k;��jq̂ q̂ q̂ �4q̂jNphys�k; ��i

�
5

4
hq̂ q̂i0uN�k;���4uN�k;��

�
5

6
hq̂ q̂i0

X
n

	2
nhNn�jq̂�4q̂jNn�i: (39)

The first term on the right side of Eq. (39) agrees with our
result (35), while the second term on the right side of
Eq. (39) is a factorization approximation of the expressionP
n	

2
nhNn�jq̂ q̂ q̂ �4q̂jNn�i. From that it becomes ob-

vious that our result (35) is nothing else but just the valence
quark contribution of (39).

Other combinations of Clifford matrices, like �1 � �5

and �2 � �4, with or without Gell-Mann matrices, can be
evaluated and compared in the same way [75]. This means
that within the algebraic approach (8) for evaluating bare
nucleon matrix elements we find an agreement for all of the
flavor-unmixed four-quark condensates if one takes from
the corresponding results of Ref. [64] the valence quark
contribution, for instance by means of the decomposition
�N � �vN � ��N . Therefore, one actually may consider our
evaluation as a re-evaluation of the valence quark contri-
bution of the four-quark condensates of Ref. [64] and a
confirmation of their results within an independent micro-
scopic approach (quark-diquark picture of the nucleon).
But we have to be aware that such an agreement between
our algebraic approach and the factorization approxima-
tion applies only for the valence quark contribution of
nucleon matrix elements. Especially, such an agreement
is not expected when taking into account the pion cloud
contributions according to Eq. (2).
-8
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Having found the remarkable agreement with valence
quark contribution of the factorization approximation it
becomes interesting to compare our results also with other
evaluations in the literature. However, it turns out that a
comparison with the recent lattice data of Ref. [9] is quite
involved since in [9] the condensates have been evaluated
at a renormalization scale of about �2

lattice ’ 5 GeV2,
which is considerably higher than our renormalization
point of about �2 ’ 1 GeV2 (our renormalization point is
hidden in the chiral condensate, i.e. hq̂ q̂i0��2�). To scale
the lattice data from 5 GeV2 down to the hadronic scale of
1 GeV2 one needs to know the matrix of anomalous di-
mension for all of the four-quark operators which accounts
for the effect of operator mixing among the four-quark
condensates. This operator mixing may change consider-
ably the numerical values and even the signs of the four-
quark condensates given in [9]. Another method which
seems also capable to compare our results with lattice
data would be to scale our renormalization point �2 up
to the lattice scale �2

lattice. Such a procedure requires,
however, the knowledge of renormalization scale depen-
dence of the chiral condensate. Altogether, performing
these procedures is out of the scope of the present paper
and we therefore abandon a comparison of our results with
the ones given in Ref. [9].

In view of the mentioned points and especially in view of
an acceptable lucidity of our paper, we restrict ourselves to
a comparison with the recently obtained four-quark con-
densates of Ref. [8]. Because of the specific notation for
the four-quark condensates choosen in Ref. [8] we list our
results for the valence quark contribution of scalar four-
quark condensates for all channels in the same way as in
Ref. [8]. Our results for the valence quark contribution can
be obtained from Eqs. (27)–(32)by averaging over proton
and neutron �k1 � k2; �1 � �2�:


N
��������2

3
q̂ q̂ q̂ q̂	

1

2
q̂)aq̂ q̂ )aq̂

��������N
�

� 	0:0733 GeV4�	0:117 GeV4�; (40)
014005


N
��������2

3
q̂�5q̂ q̂ �5q̂	

1

2
q̂�5)aq̂ q̂ �5)aq̂

��������N
�

� 	0:0147 GeV4�	0:0567 GeV4�; (41)



N
��������2

3
q̂��q̂ q̂ ��q̂	

1

2
q̂��)aq̂ q̂ ��)aq̂

��������N
�

� 	0:0586 GeV4�	0:0582 GeV4�; (42)



N
��������2

3
q̂���5q̂ q̂ ���5q̂	

1

2
q̂���5)aq̂ q̂ ���5)aq̂

��������N
�

� �0:0586 GeV4��0:0567 GeV4�; (43)



N
��������2

3
q̂��*q̂ q̂ �

�*q̂	
1

2
q̂��*)

aq̂ q̂ ��*)aq̂
��������N

�

� 	0:176 GeV4�	0:356 GeV4�: (44)

The values parenthesized are the results for these conden-
sates as given in Ref. [8], but for the physical nucleon, i.e.
for a nucleon which contains the valence quark, sea quark
and gluon contributions [76]. Since we have compared our
evaluated valence quark contribution with the total contri-
bution for the physical nucleon of Ref. [8] it becomes
obvious that one may actually not expect a perfect numeri-
cal agreement. The more interesting fact is to notice that
the valence quark contribution for the vector and axial
vector channel, (42) and (43), respectively, agrees very
well with the total contribution for the physical nucleon.
For the scalar, axial scalar and tensor channel the signs for
the valence quark contribution and total contribution of
Ref. [8] agree, while the numerical values differ. This
illustrates that the sea quark and gluon contributions are
expected to give noticeable contributions.

2. Flavor-mixed four-quark condensates

For the flavor-mixed four-quark condensates the general
decomposition reads [64]
hNphysjû�1û d̂�2d̂jNphysi �
1

8
hq̂ q̂i0hNphysjq̂ q̂ jNphysiTr��1�Tr��2� � hq̂ q̂i0hNphysjq̂��q̂jNphysi
Tr��1�Tr����2�

� Tr��2�Tr����1�� � hNphysjû�1û d̂�2d̂jNphysi
C; (45)
where the isospin symmetry relations (19) have been used.
The last term in (45) is a correction term to the factoriza-
tion approximation, describing the scattering process
Nphys � d̂�2d̂! Nphys � û�1û. The decomposition (45)
is, like (24) and (25), matched with Eq. (23) by means of
a Fierz transformation. The flavor-mixed condensates with
Gell-Mann matrices vanish in the factorization approxima-
tion, hNphysjû�1)

aû d̂�2)
ad̂jNphysi � 0 [64] (in [77] we

have found small corrections to the factorization approxi-
mation of flavor-mixed condensates for the vector and axial
vector channel with Gell-Mann matrices).
Now we consider the valence quark contribution of the
flavor-mixed four-quark condensates, i.e. the contribution
of the bare nucleon. Application of our nucleon formula (8)
with (12) yields for the bare proton

hp�k2; �2�jû�1û d̂�2d̂jp�k1; �1�i

�
1

4
�2hû ûi0Tr��1�up�k2; �2��2up�k1; �1�

� 1hd̂ d̂i0Tr��2�up�k2; �2��1up�k1; �1��; (46)
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hp�k2; �2�jû�1)
aû d̂�2)

ad̂jp�k1; �1�i � 0; (47)

while for the bare neutron we find

hn�k2; �2�jû�1û d̂�2d̂jn�k1; �1�i

�
1

4
�1hd̂ d̂i0Tr��1�un�k2; �2��2un�k1; �1�

� 2hû ûi0Tr��2�un�k2; �2��1un�k1; �1��; (48)

hn�k2; �2�jû�1)aû d̂�2)ad̂jn�k1; �1�i � 0: (49)

The Eqs. (46) and (48) are generalized expressions of the
factorization approximation given in [64] because of the
dependence on nucleon momentum and the distinction
between proton and neutron. The results of Eqs. (47) and
(49) are in agreement with the factorization approximation
[64], but, as mentioned above, beyond the factorization
approximation these condensates are nonvanishing [77].

To compare the obtained results of Eqs. (46) and (48)
with the factorization approximation, i.e. neglecting the
correction term in (45), we consider the special case k1 �
k2, �1 � �2, and �1 � �2 � 1. For the bare nucleon one
obtains by averaging over the bare proton and bare neutron,

hN�k;��jû û d̂ d̂ jN�k;��i � 6hq̂ q̂i0MN: (50)

This result has to be compared with the corresponding
finding of [64] which according to Eq. (45) reads

hNphys�k;��jû û d̂ d̂ jNphys�k;��i � 2hq̂ q̂i0MN
�N
mq

� 2hq̂ q̂i0MN

�
�vN
mq

�
��N
mq

�
; (51)

where in the last expression we have used the decomposi-
tion �N � �vN � ��N . By means of the relation �vN=mq �

3 [cf. [66] and Eq. (21)] the result (50) is in agreement with
the separated valence quark contribution of (51). As in the
cases considered in the previous Sec. IV C 1 such an agree-
ment with Ref. [64] can be achieved for all the other
combinations of �1 and �2 of the Clifford algebra.

As in the case of flavor-unmixed four-quark operators
we compare our findings for the valence quark contribution
of flavor-mixed condensates, (46) and (48), with the total
result for the physical nucleon of Ref. [8] to examine the
magnitude and sign of our results. According to Eqs. (46)–
(49) only the valence quark contribution of the scalar
channel does not vanish. Its numerical magnitude
014005


N
��������2

3
û û d̂ d̂	

1

2
û)aû d̂ )ad̂

��������N
�

� 	0:0586 GeV4�	0:094 GeV4�; (52)

turns out to be comparable with the evaluation of [8] for the
total contribution of the physical nucleon given in the
parentheses in (52). The numerical difference in magnitude
is caused by sea quark and gluon contributions.

To summarize this section, we have evaluated the va-
lence quark contribution to flavor-unmixed and flavor-
mixed four-quark condensates for the u and d flavor inside
proton and neutron. The results for the flavor-unmixed
operators are given by the Eqs. (27)–(32), and the results
for the flavor-mixed operators are given by the Eqs. (46)–
(49). We have seen that our findings for the four-quark
condensates within the algebraic approach, which is by far
a different method than the used one of Ref. [64], are in
agreement with the large-Nc limit [71,72] and with the
results of Ref. [64] when taking from there the valence
quark contribution only. It seems admissible, especially in
view of the agreement with valence quark contribution of
factorization, that the nucleon formula yields reliable re-
sults for the valence quark contribution of four-quark con-
densates inside the nucleon.

V. SIX-QUARK CONDENSATES

Six-quark condensates become important mainly for
two reasons. First, in the operator product expansion
(OPE) of current correlators one usually takes into account
all terms up to the order of the four-quark condensates and
neglects the contributions of higher order. Such an approxi-
mation may work or may not work, depending on the
specific physical system under consideration.
Accordingly, one has to be aware about the contribution
of the next order to decide how good such an approxima-
tion is. This is also necessary for the more involved case of
finite density, where a Gibbs average over all hadronic
states of the correlator under consideration has to be taken.
Indeed, a very recent estimate of such higher contributions
beyond the four-quark condensate for the nucleon correla-
tor in matter underlines also the importance of an estimate
for the six-quark condensates inside the nucleon [78]. And
second, it is well known that instantons give rise to cor-
rections to the Wilson coefficients of six-quark conden-
sates [79,80]. These corrections cause a substantial
enhancement of the vacuum contribution of six-quark con-
densates in the OPE of current correlators. To investigate
such current correlators at finite density implies the knowl-
edge of the nucleon matrix elements of six-quark conden-
sates. Here, after getting confidence on our proposed
approach in the previous sections, we will use the nucleon
formula to evaluate the valence quark contribution of six-
quark condensates inside the nucleon.

Within our algebraic approach by using the nucleon
formula (8) with (12) we obtain for the u flavor inside
-10
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the bare proton
hp�k2;�2�jû�1û û�2û û�3ûjp�k1;�1�i � u�2
p �k2;�2���0��2�2

��0��1�1
u�1
p �k1;�1���1�

����2�
����3�

.5

�
Z
d3r1e

ik1r1

Z
d3r2e

	ik2r2h0j
 ̂�2
p �r2;0�; 
û

i
�ûi

�û
k
�ûk

�û
m
. ûm

5 ;  ̂
�1

p �r1;0��	��j0i:

(53)

The commutator-anticommutator is given in Eq. (B11) in Appendix B for a more general case. According to this result the
six-quark condensate inside the bare proton is reduced to a four-quark condensate in vacuum. We note one of these four-
quark condensates in vacuum saturation approximation [1]

hûj
�û

k
�û

l
�û

m
. i0 �

1

�12�2
hû ûi20������.�

jk�lm 	 ��.����
jm�kl�: (54)

When evaluating all of the four-quark condensates of Eq. (B11) in the same way one obtains, by using the normalization
(13),

hp�k2;�2�jû�1û û�2û û�3ûjp�k1;�1�i �
2

�12�2
hû ûi20
up�k2;�2���1�2�3 ��1�3�2 ��2�1�3�up�k1;�1�

�up�k2;�2���2�3�1 ��3�1�2 ��3�2�1�up�k1;�1�

	 3up�k2;�2��1�3up�k1;�1�Tr��2�	 3up�k2;�2��2�3up�k1;�1�Tr��1�

	 3up�k2;�2��1�2up�k1;�1�Tr��3�	 3up�k2;�2��3�2up�k1;�1�Tr��1�

	 3up�k2;�2���2�1�up�k1;�1�Tr��3�	 3up�k2;�2���3�1�up�k1;�1�Tr��2�

� 9up�k2;�2��3up�k1;�1�Tr��1�Tr��2�� 9up�k2;�2��2up�k1;�1�Tr��1�Tr��3�

� 9up�k2;�2��1up�k1;�1�Tr��2�Tr��3�	 3up�k2;�2��3up�k1;�1�Tr��1�2�

	 3up�k2;�2��2up�k1;�1�Tr��1�3�	 3up�k2;�2��1up�k1;�1�Tr��2�3��: (55)
For the d flavor six-quark condensate we get

hp�k2; �2�jd̂�1d̂ d̂�2d̂ d̂�3d̂jp�k1; �1�i

�
1

2
hp�k2; �2�jû�1û û�2û û�3ûjp�k1; �1�i: (56)

These findings are, to the best of our knowledge, the first
attempts to estimate the size of six-quark condensates in-
side a (bare) nucleon. An analog evaluation for the bare
neutron reveals the isospin symmetry relations

hn�k2; �2�jû�1û û�2û û�3ûjn�k1; �1�i

� hp�k2; �2�jd̂�1d̂ d̂�2d̂ d̂�3d̂jp�k1; �1�i; (57)

hn�k2; �2�jd̂�1d̂ d̂�2d̂ d̂�3d̂jn�k1; �1�i

� hp�k2; �2�jû�1û û�2û û�3ûjp�k1; �1�i: (58)
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Finally, by averaging over the proton matrix elements,
Eqs. (55) and (56), and the neutron matrix elements,
Eqs. (57) and (58), one gets the six-quark condensates
inside a bare nucleon. For instance, the six-quark conden-
sate for the scalar channel is found to be
hN�k;��jq̂ q̂ q̂ q̂ q̂ q̂ jN�k;��i �
55

8
hq̂ q̂i20MN: (59)
Further, we present results for six-quark condensates
which contain Gell-Mann matrices. Note that only nucleon
matrix elements of colorless operators do not vanish, i.e.
only two Gell-Mann matrices may occur. With the general
result (B11) in Appendix B and normalization (13) we
obtain
-11
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hp�k2;�2�jû�1)
aûû�2)

aûû�3ûjp�k1;�1�i�
2

�12�2
hû ûi20

�
16

3
up�k2;�2���1�2�3��1�3�2��2�1�3�up�k1;�1�

�
16

3
up�k2;�2���2�3�1��3�1�2��3�2�1�up�k1;�1�

	16up�k2;�2��2�1up�k1;�1�Tr��3�	16up�k2;�2��1�2up�k1;�1�Tr��3�

	16up�k2;�2��3up�k1;�1�Tr��1�2�

�
: (60)
For the d flavor we get

hp�k2; �2�jd̂�1)ad̂ d̂�2)ad̂ d̂�3d̂jp�k1; �1�i

�
1

2
hp�k2; �2�jû�1)aû û�2)aû û�3ûjp�k1; �1�i: (61)

Finally, evaluating these operators inside the bare neutron
we obtain the isospin symmetry relations

hn�k2; �2�jû�1)
aû û�2)

aû û�3ûjn�k1; �1�i

� hp�k2; �2�jd̂�1)ad̂ d̂�2)ad̂ d̂�3d̂jp�k1; �1�i; (62)

hn�k2; �2�jd̂�1)
ad̂ d̂�2)

ad̂ d̂�3d̂jn�k1; �1�i

� hp�k2; �2�jû�1)
aû û�2)

aû û�3ûjp�k1; �1�i: (63)

As before, by averaging over the proton matrix elements,
Eqs. (60) and (61), and the neutron matrix elements,
Eqs. (62) and (63), one obtains the six-quark condensates
containing Gell-Mann matrices inside a bare nucleon. The
presented findings for six-quark condensates inside the
bare nucleon provide basic results for further investigations
beyond the order of four-quark condensates within the
QCD sum rule approach for the nucleon in matter (for
the nucleon sum rule in vacuum see [54,55], and for the
nucleon sum rule in matter see [63,64,81]). Investigations
aiming at predictions beyond the order of four-quark con-
densates, however, imply in addition to the evaluation of
the six-quark condensates also the knowledge of the
Wilson coefficients for all of these six-quark condensates.
So far, these coefficients in the OPE for the nucleon
correlator have been determined up to the order of the
four-quark condensates [78].

VI. SUMMARY

An algebraic approach for evaluating bare nucleon ma-
trix elements has been presented. The supposed nucleon
formula (8) relates bare nucleon matrix elements to vac-
uum matrix elements and, therefore, new parameters for
evaluating them are not needed. A feature of the algebraic
method is that the valence quark contribution of two-quark,
four-quark and six-quark condensates can be evaluated on
the same footing. One aim of the present paper is to
demonstrate how the nucleon formula works and to test it
in several cases. In doing so, the nucleon has been consid-
ered as a composite pointlike object, described by a va-
014005
lence quark and a valence diquark approximated by two
classical Dirac spinors. Neither sea quarks nor gluons, or in
a hadronic language no meson cloud, have been taken into
account here. Accordingly, the results presented have to be
considered as pure valence quark contribution to the matrix
elements under consideration.

A consideration of the electromagnetic current (15) and
the axial vector current (16) for the bare nucleon reveals
the expected current structure for a pointlike object. We
have evaluated then the valence quark contribution of the
chiral condensate (21), finding the relation �vN � 3mq

which turns out to be in numerical agreement with results
obtained in an earlier work [66].

Furthermore, the valence quark contribution of four-
quark condensates has been investigated. Our results are
given in Eqs. (27)–(32) for flavor-unmixed operators, and
in Eqs. (46)–(49) for flavor-mixed operators. In the special
case k1 � k2; �1 � �2 we find an interesting agreement
with the groundstate saturation approximation explored in
Ref. [64] if one separates the valence quark contribution of
four-quark condensates from that results. In this respect
our approach yields an independent re-evaluation and con-
firmation of the results of Ref. [64], because both methods
are different from the conceptional point of view, which is
already interesting in itself. Even more, our algebraic
approach presented recovers the dependence of conden-
sates on momentum for a pointlike nucleon and distin-
guishes between proton and neutron matrix elements. In
this respect it goes beyond the common factorization ap-
proximation. In this context it is worth to underline that the
agreement between our algebraic approach and the ground-
state saturation approximation has been found for the bare
nucleon, and not for the physical nucleon. In Eqs. (40)–
(44) and (52) we have compared our results with values of
four-quark condensates inside the physical nucleons re-
cently obtained within a chiral quark model [8].

As a further application of nucleon formula we have
presented results for six-quark condensates inside the bare
nucleon, given in Eqs. (55)–(58) and Eqs. (60)–(63), re-
spectively. These values obtained are, to the best of our
knowledge, the first evaluation of six-quark condensates
inside (bare) nucleons. Finally, in Eqs. (21), (33), and (59)
we have given more explicit examples for the scalar chan-
nel of two-quark, four-quark and six-quark operators, re-
spectively, inside the bare nucleon, showing up an
interesting alternative change in the algebraic sign from
-12
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two-quark to four-quark and from four-quark to six-quark
condensates.

A remark should also be in order about nucleon matrix
elements of gluonic operators. Evaluating such operators
within the algebraic approach presented requires, in gen-
eral, the implementation of gluonic degrees of freedom
into the composite nucleon field operator (12). Such an
implementation might be provided by the quark-gluon
interpolating nucleon field discussed in another context
in [82].

The algebraic approach can be extended into several di
rections. First, the description of the proton core with the
field operator (12), and the corresponding one for the bare
neutron, can be improved, e.g. by implementing an effec-
tive potential between the valence quarks. And second, the
pion cloud of nucleon, accounting for virtual sea quarks
and gluons inside the physical nucleon, can be imple-
mented within the Tamm-Dancoff method. To get an alge-
braic approach also for such a case one has to combine the
nucleon formula (8) with the soft pion theorem (A8). This
implies the evaluation of the coefficients 	n in (1) within
the renormalizable pion-nucleon interaction Hamiltonian,
which is therefore a topic of further investigations.
Accordingly, for the time being the application of nucleon
formula (8) in combination with the field operator (12) has
to be considered as a first step in determining more accu-
rately nucleon matrix elements of quark operators. In
summary, we arrive at the conclusion that a reliable evalu-
ation of quark operators inside nucleons can be based on a
purely algebraic approach. This triggers the hope that
predictions of in-medium properties of hadrons become
more precise in future.
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Professor Vladimir Shabaev, Dr. Gyuri Wolf, and Dr.
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APPENDIX A: SOFT PION THEOREM

In this Appendix we recall a soft pion theorem relevant
for our purposes to show the similarity in derivation and
final form of it with the nucleon formula (8). Let us
014005
consider the general pion matrix element of an operator
Ô�x� which in general may depend on space and time [14]

h�b�p2�jÔ�x�j�a�p1�i � iZ	1=2
’

Z
d4x1e

	ip1x1��x1
�m2

��

� h�b�p2�jTW�Ô�x�’̂a�x1��j0i;

(A1)

where the LSZ reduction formalism has been applied on
pion state j�a�p1�i. Here, the letters a; b � 1; 2; 3 denote
isospin indices. The normalization of pion state is
h�b�p2�j�

a�p1�i � 2Ep1
�2��3��3��p1 	 p2��

ab, where

Ep1
�

�������������������
p2

1 �m2
�

q
. The wave function renormalization con-

stant is 0 
 Z	1=2
’ 
 1. The normalization of nonperturba-

tive QCD vacuum is h0j0i � 1. Here, x1 � �r1; t1� is the
space-time four-vector, and TW denotes the Wick time
ordering. The states j�a�pi�i are, of course, on-shell states,
i.e. solutions of the Klein-Gordon equation for noninter-
acting pions, while the field operator ’̂a, in general, is the
interacting field, i.e. it is off-shell. The four momenta in
(A1) are on-shell, i.e. p2

1 � p2
2 � m2

�. The soft pion theo-
rem is valid for a noninteracting pion field (i.e. Z	1=2

’ � 1),
wich is a solution of the Klein-Gordon equation ��x �
m2
��’̂a�x�. In order to be complete in the representation we

will also specify the noninteracting pion field operator

’̂ a�x� �
Z d3p

�2��3
1

2Ep
�âa�p�e	ipx � b̂ay�p�eipx�; (A2)

where the creation and annihilation operators obey the
following commutator relations


âa�p1�; âby�p2��	 � 
b̂a�p1�; b̂
by�p2��	

� 2Ep1
�2��3��3��p1 	 p2��ab: (A3)

Accordingly, j�a�p�i � âay�p�j0i. From (A2) and (A3)
we deduce the equal-time commutator for the noninteract-
ing pion fields,


’̂a�r1; t�; @0’̂b�r2; t��	 � i��3��r1 	 r2��ab: (A4)

In addition, the soft pion theorem is only valid in case of
vanishing four-momentum p�1 ! 0 which implies m� �
0. Then we get

lim
p1!0

h�b�p2�jÔ�x�j�a�p1�i

� i
Z
d4x1�x1

h�b�p2�jTW�Ô�x�’̂a�x1��j0i

�	ih�b�p2�j

�
Ô�x�;

@
@t1

’̂a�x1�

�
	
j0i��t	 t1�: ( A5)
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In the last line we have used the equation of motion for the
massless pion field, i.e. �x1

’̂a�x1� � 0. Now, the PCAC
hypothesis, which asserts a relation between the axial
current and the pion field (f� ’ 92:4 MeV is the pion
decay constant),

Â a
��x� � 	f�@�’̂a�x�; (A6)
014005
is inserted into Eq. ( A5) (by means of the field equation for
the noninteracting pion it becomes obvious from (A6) that
in the limit of vanishing pion mass the PCAC goes over to a
conserved axial vector current (see also [58])). The axial
vector current Âa��x� obeys the well known current algebra
commutation relations [12] which directly leads to the soft
pion theorem relevant for our purposes [14]
lim
p1!0

h�b�p2�jÔ�x�j�a�p1�i �
i
f�

Z
d4x1h�

b�p2�j
Ô�x�; Âa0�x1��	j0i��t	 t1�: (A7)
One may apply the same steps as before on the other pion
state as well, ending up with the soft pion theorem

lim
p2!0

lim
p1!0

h�b�p2�jÔ�x�j�a�p1�i

�
1

f2
�

Z
d4x1

Z
d4x2��t	 t1���t	 t2�

� h0j
Âb0�x2�; 
Ô�x�; Âa0�x1��	�	j0i

�
1

f2
�
h0j
Q̂b

A; 
Ô�x�; Q̂a
A�	�	j0i: (A8)

where Q̂a
A is the (time independent) axial charge, Q̂a

A �R
d3rÂa0�r; t�. It seems expedient to emphasize that the

QCD quark degrees of freedom were not necessary for
deriving the soft pion theorem. If one expresses the axial
vector current by quark fields, Âa��x� � �̂�0a=2����5�̂
with �̂ � �û d̂�T, and the pion fields as well by means of
their interpolating fields (i.e. composite quark fields which
have the quantum numbers of pions), then the relation
(A6), the current algebra and, therefore, the soft pion
theorem (A8) can also be established within QCD degrees
of freedom. This theorem can then also be used for eval-
uating pion matrix elements of quark operators (see, for
instance, [21,22]). Summarizing, the soft pion theorem is
valid for a noninteracting pion field with vanishing pion
four-momentum. In many applications such a restriction is
not problematic since the pion mass is small compared to a
typical hadronic scale of about 1 GeV.

APPENDIX B: EVALUATING EQ. (53)

To evaluate Eq. (53) we start with the case of two-quark
field operators. The nucleon formula (8) with (12) yields
hp�k2; �2�jû
i
�ûi

�jp�k1; �1�i � u�2
p �k2; �2���0��2�2

��0��1�1
u�1
p �k1; �1�

Z
d3r1

Z
d3r2e

ik1r1e	ik2r2

� h0j
 ̂�2
p �r2; 0�; 
û

i
�ûi

�;  ̂
�1

p �r1; 0��	��j0i: (B1)
Inserting the proton field operator (12) and using

Â B̂; Ĉ�	 � Â
B̂; Ĉ�� 	 
Â; Ĉ��B̂ for the commutator
we obtain


ûi
�û

i
�;  ̂

�1

p �r1; 0��	 � A�
p.

abc�uaT�r1�C�5d
b�r1��

� �ic��0���1
��3��r1�û

i
�: (B2)

In the same way we get


 ̂�2
p �r2; 0�; 
û

i
�ûi

�;  ̂
�1

p �r1; 0��	��

� jApj2.abc.a0b0c0 ��0���1
��0���2

�cc0��3��r1���3��r2�

� �ua0T�r2�C�5d
b0 �r2���u

aT�r1�C�5d
b�r1��: (B3)

Integrating over both delta-functions and then using the
normalization (13) we obtain
Z
d3r1e

ik1r1

Z
d3r2e

	ik2r2

� h0j
 ̂�2
p �r2; 0�; 
û

i
�ûi

�;  ̂
�1

p �r1; 0��	��j0i

� 2��0���1
��0���2

; (B4)

and with (B1)

hp�k2; �2�jû
i
�ûi

�jp�k1; �1�i � 2u�p�k2; �2�u
�
p �k1; �1�:

(B5)

We note an analog relation for the d quark

hp�k2; �2�jd̂
i
�d̂

i
�jp�k1; �1�i � 1u�p�k2; �2�u

�
p �k1; �1�;

(B6)

while for the neutron we have
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hn�k2; �2�jû
i
�û

i
�jn�k1; �1�i � 1u�n �k2; �2�u

�
n �k1; �1�;

(B7)

hn�k2; �2�jd̂
i
�d̂

i
�jn�k1; �1�i � 2u�n �k2; �2�u

�
n �k1; �1�:

(B8)

Using relations like 
Â; B̂ Ĉ�� � 
Â; B̂��Ĉ	 B̂
Â; Ĉ�	
analog equations for the four-quark condensates can be
obtained. Two illustrative examples are given for the
flavor-unmixed four-quark condensate for the proton
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Z
d3r1e

ik1r1

Z
d3r2e

	ik2r2

� h0j
 ̂�2
p �r2; 0�; 
û

i
�ûi

�û
j
�û

j
�;  ̂

�1

p �r1; 0��	��j0i

�
1

6
hû ûi0�3��0���1

��0��2���� 	 ��0���1
��0��2����

� 3��0���1
��0��2���� 	 ��0���1

��0��2�����; (B9)

where the normalization (13) and hûi
�û

j
�i0 �

1
12�

ij���hû ûi0 [1] has been used. For four-quark conden-
sates with Gell-Mann matrices involved we find
Z
d3r1e

ik1r1

Z
d3r2e

	ik2r2h0j
 ̂�2
p �r2; 0�; 
û

i
�û

j
�û

k
�û

l
�;  ̂

�1

p �r1; 0��	��j0i�)
a�ij�)a�kl

� jApj
2.abc.a0b0c0 �ua0TC�5d

b0 ��uaTC�5d
b�

�
2�il�kj 	

2

3
�ij�kl

�
���0���1

��0��2�����
cl�c0k�ij

	 ��0���1
��0��2�����

cl�ic0�jk � ��0���1
��0��2�����

jc�ic0�kl 	 ��0���1
��0��2�����

jc�c0k�il�

� 	
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9

��0���1

��0��2���� � ��0���1
��0��2�����hû ûi0: (B10)
By using the same technique the general result for the six-quark condensates is obtained as
Z
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�û
m
. ûn

5 ;  ̂
�1

p �r1; 0��	��j0i

� jApj
2.abc.a0b0c0 �ua0TC�5d

b0 ��uaTC�5d
b��hûj

�û
k
�û

l
�û

m
. i0��0��15 ��0��2��
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�û

j
�û

l
�û

m
. i0��0��15 ��0��2��
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� hûi
�û

j
�û

k
�ûl

�i0��0��15 ��0��2.�
cn�c0m � hûj

�û
k
�û

m
. ûn

5 i0��0��1���0��2��
cl�c0i � hûi

�û
j
�û

m
. ûn

5 i0��0��1���0��2��
cl�c0k

	 hûi
�û

j
�û

k
�ûn

5 i0��0��1���0��2.�
cl�c0m � hûk

�ûl
�û

m
. ûn

5 i0��0��1���0��2��
cj�c0i 	 hûi

�ûl
�û

m
. ûn

5 i0��0��1���0��2��
cj�c0k

	 hûi
�û

k
�û

l
�û

n
5 i0��0��1���0��2.�

cj�c0m�: (B11)
Note that for applying the normalizations (13) and (14) one needs a term �cc0 , which naturally arises when evaluating a
specific matrix element under consideration.
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