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Evidence for In-Medium Changes of Four-Quark Condensates
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Utilizing the QCD sum rule approach to the behavior of the ! meson in nuclear matter we derive
evidence for in-medium changes of particular four-quark condensates from the recent CB-TAPS
experiment for the reaction �� A! A0 �!�! �0�� with A � Nb and LH2.
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The chiral condensate h �qqi is an order parameter for
the spontaneous breaking of chiral symmetry in the theory
of strong interaction (cf. e.g., Ref. [1] for introducing
this topic). The role of h �qqi is highlighted, e.g., by the
Gell-Mann–Oakes–Renner relation m2

�f2
� / �h �qqi (cf.

Ref. [2]; the explicit chiral symmetry breaking is essential
for a finite pion mass m�, while the relation of the pion
decay constant f� to h �qqi qualifies the latter as an order
parameter) or by Ioffe’s formula MN / �h �qqi for the
nucleon mass (cf. Ref. [3] and in particular the discussion
in Ref. [4]). There is growing evidence that the quark-
gluon condensate is another order parameter [5]. The
QCD trace anomaly related to scale invariance breaking
gives rise to the gluon condensate. There are many other
condensates characterizing the complicated structure of the
QCD vacuum. In a medium, described by temperature and
baryon density n, these condensates change; i.e., the
ground state is rearranged. Since hadrons are considered
as excitations above the vacuum, a vacuum change should
manifest itself as a change of the hadronic excitation
spectrum. This idea triggered widespread activities to
search for in-medium modifications of hadrons. Such in-
medium modifications of hadronic observables are found
(cf. the lists in Ref. [6,7]), and it is timely to relate them to
corresponding order parameters.

We deduce here evidence for a noticeable drop of in-
medium four-quark condensates in cold nuclear matter
from results of the recent CB-TAPS experiment [6] for
the reaction �� A! A0 �!�! �0��. The CB-TAPS
collaboration observed the occurrence of additional low-
energy ! decay strength for a Nb (A � 93) target com-
pared to a LH2 (A � 1) target. The link of observables to
quark and gluon condensates is established by QCD sum
rules [8], which are expected to be sensitive to four-quark
condensates in the vector channels [9]. Four-quark con-
densate combinations which contain only left-right helicity
flipping terms (as the chiral condensate does) represent
other order parameters of chiral symmetry.

Concentrating on the isoscalar part of the causal current-
current correlator [3]
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here for the ! meson with the current j!� � � �u��u�
�d��d�=2 and nuclear matter states j�i (the symbol T
means time ordering, and u; d denote quark field opera-
tors), an operator product expansion and a Borel trans-
formation (cf. Refs. [3,10] for arguments in favor of
Borel sum rules) of the twice-subtracted dispersion relation
result in
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�

Z 1
0
ds
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X1
j�1

cj
�j� 1�!M2�j�1�
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where �!�0; n� � 9n=�4MN�with the nucleon massMN is
a subtraction constant having the meaning of Landau
damping or !N forward scattering amplitude, and the
coefficients cj contain condensates and Wilson coeffi-
cients; M is the Borel mass. The first coefficients cj
have been spelled out in many papers (cf. Ref. [11] for
our notation, and Ref. [12] for an anomalous contribu-
tion) and are not reproduced here in full length. c0 � �1�
�s
� �=�8�

2� is the perturbative term. c1 / m
2
q is exceedingly

small due to the small current quark mass mq. In c2 the
gluon condensate (being less sensitive to medium ef-
fects), some moments of the parton distribution in the
nucleon (combined with a density dependence), and the
renormalization group invariant combination mqh �qqi
(being numerically tiny) enter. The latter fact makes
the Borel sum rule insensitive to the genuine chiral con-
densate, but sensitive to four-quark condensates which
enter c3, among other quantities related to expectation
values of certain traceless and symmetric twist-2 and
twist-4 operators. To be specific, the flavor-mixing con-
densates 2

9 h �u�
��Au �d���Adi � h �u�5�

��Au �d�5���Adi
and the pure flavor four-quark condensates (for which we
employ u� d isospin symmetry; �� and �A stand for
Dirac and Gell-Mann matrices) 2

9 h �q�
��Aq �q���Aqi �

h �q�5�
��Aq �q�5���Aqi enter c3. (c4 will be discussed

below.) Our strategy to deal with these conden-
sates is as follows: (i) the factorized expressions
(which might fail badly [3,12]) are corrected by factors
1-1 © 2005 The American Physical Society
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�� (with � being a label of the respective four-quark

condensate) using h �u���Au �d���Adi � ��1
4

9�2

Q2
0

f2
�
h �qqi2,

h �u�5���Au �d�5���Adi � �2
4

9�2

Q2
0

f2
�
h �qqi2 (where Q0

is a cutoff related to the ��! mass splitting;
both expressions are already beyond the ground state
saturation [11]), h �q���Aq �q���Aqi � �

16
9 �3h �qqi2,

h �q�5���Aq �q�5���Aqi �
16
9 �4h �qqi2; �1;2 � 0 and

�3;4 � 1 recover the factorized terms in the ground state
saturation approximation; (ii) expand �� in density [13],
i.e., �� � ��0�� � �

�1�
� n, use the known sigma term �N in

h �qqi � h �qqi0 � 	n with 	 � �N=�2mq� [3], and linearize
the resulting expressions [14]; (iii) add up all contributions
with their corresponding prefactors to get a common factor
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for the density dependent medium contribution of the
mentioned four-quark condensates [cf. the first term in
Eq. (10) below]. �0 enters the vacuum sum rule and has
to be adjusted properly with other quantities to get the
correct vacuum ! mass, while �N is the subject of our
further consideration. Because of the mixing of density
dependencies of �� and h �qqi even the accurate knowledge
of �0 does not fix �N .

No density dependence of the four-quark condens-
ates would imply �N � 0, while strong density depen-
dencies will result in a sizeable value of �N , unless
the terms contributing to �N cancel. The estimate in
Ref. [11] points to small values of ��1�1;2 thus having essen-
tially the density dependence of the combined pure flavor
scalar dimension-6 condensates 2

9 h �q�
��Aq �q���Aqi �

h �q�5���Aq �q�5���Aqi to be constrained.
Large-Nc arguments [3,15] favor �N � �0. Previously,

often the factorization h �q � � � q �q � � � qi ! h �qqi2 has been
used. Here, we study explicitly, however, the role of the
four-quark condensates using the square of the gen-
uine chiral condensate only to set the scale, as out-
lined above. The integral in the left hand side of (2)
23230
can be decomposed in a low-lying resonance part,Rs!
0 ds Im�!�s; n�s�1e�s=M

2
, and the continuum part,R

1
s!
ds Im�!�s; n�s�1e�s=M

2
� ��M2c0e

�s!=M2
, both

depending on the continuum threshold s!. The quantity

m2
!�n;M2; s!� �

Rs!
0 ds Im�!�s; n�e�s=M

2

Rs!
0 ds Im�!�s; n�s�1e�s=M

2 (3)

is a normalized moment with s meaning the coordi-
nate of the center of gravity of Im�!�s; n�e�s=M

2
=s in

the interval s � 0 � � � s!. Clearly, when additional strength
of Im�! at lower values of s is caused by in-medium
effects as observed in Ref. [6], then the center of gravity
shifts to the left; i.e.,m2

! becomes smaller. Direct use of the
count rates in the middle panel of Fig. 2 in Ref. [6] as
estimator of Im�! in the interval s � 0:41 � � � 0:77 GeV2

yields m2
!�LH2� � 0:599 GeV2 and m2

!�Nb� �
0:568 GeV2 for M�O�1� GeV. Instead of testing the
consistency of a particular model for Im�!�s; n� with
the sum rule, we suggest here to use the experimental
information on Im�! to find constraints on the QCD
side of the sum rule. In fact, the ! decay rate !!
�0� is given by dR!!�0�=d

4q � �6d=f��2��=	3q2
��

�q2 �m2
��

3 Im�!�q2 � s� with d � 0:011. However, ac-
ceptance and efficiency corrections to the results of
Ref. [6] need to be invoked and the fraction of
events, where the rate dR!!�0�=dM�0� is shifted to
smaller values of M�0� (being the invariant mass of the
�0 and � decay products of !) by final state interaction of
the decay �0 in the ambient nuclear medium [16], must
be corrected for as well. We postpone such a quantitative
and model dependent study for future work and consider
qualitatively here the implication of the observation
of Ref. [6], i.e., the occurrence of additional ! decay
strength atM�0� < m�0�! which translates intom! <m�0�! �
0:782 GeV for low-momentum ! decaying in the Nb
nucleus.

With (3) the truncated QCD sum rule (2) for the !
meson can be arranged as [11]
m2
!�n;M

2; s!� �
c0M

2	1� �1� s!
M2�e�s!=M

2

 � c2

M2 �
c3

M4 �
c4

2M6

c0�1� e�s!=M
2
� � c1

M2 �
c2

M4 �
c3

2M6 �
c4

6M8 �
�!�0;n�
M2

: (4)
This sum rule is to be handled as usual (cf. Refs. [10,11]):
determine the sliding Borel window by requiring that
(i) the sum of the c3;4 terms in Eq. (2) does not contribute
more than 10% to the right hand side; (ii) the continuum
part defined above does not exceed 50% of the left hand
side of (2) to ensure sufficient sensitivity for the resonance
part; (iii) the continuum threshold is determined by the
requirement of maximum flatness ofm2

!�n;M2; s!�within
the Borel window; and (iv) m2

! follows as average with
respect to M2.
Despite the linear density expansion of the condensates
entering the coefficients cj, the sum rule (4) is nonlinear in
density. It is instructive to consider the linearized form.
Using the notation s! � s�0�! � s

�1�
! n and cj � c�0�j � c

�1�
j n

we arrive at

m2
!�n;M; s�0�! ; s

�1�
! � � R��n (5)

with
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FIG. 1 (color online). The mass parameter m2
! defined in

Eq. (3) and averaged within the Borel window as a function of
the baryon density for �N � 4 and c4 � 0 (solid curve). Note
that the parameter m2

! coincides only in zero-width approxima-
tion with the ! pole mass squared; in general it is a normalized
moment of Im�! to be calculated from data or models. The sum
rule Eq. (4) is evaluated as described in the text with appropri-
ately adjusted �0. Inclusion of c�0�4 � O�
10�3� GeV8 requires
a readjustment of �0 in the range 1 � � � 5 to m�0�2! . A simultaneous
change of �N in the order of 20% is needed to recover the same
density dependence as given by the solid curve at small values
of n. The effect of a c�1�4 term is exhibited, too (c�1�4 �


10�5n�1
0 GeV8, dashed curves; c�1�4 � 
5� 10�5n�1

0 GeV8,
dotted curves; the upper (lower) curves are for negative (posi-
tive) signs.
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which we use for illustrative purposes. The quantity R
determines the vacuum properties of the ! meson; for
the sake of estimates we can put it equal to m�0�2! and use
M� 1 GeV. N contains only vacuum quantities, and
N > 0 holds. Therefore, the sign of the in-medium shift
of m2

! is determined by �. For its estimate we note
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where we include three active flavors on a 1 GeV scale;
MN;0 � 0:77 GeV is the nucleon mass in the chiral limit.
Some of the quantities in (6)–(10) are rather well-known
(e.g., the twist-2 contributions), while others are individu-
ally less accurately fixed. We use for our evaluations
h �qqi0 � ��0:245 GeV�3, �N � 0:045 GeV, �s � 0:38,
Q0 � 0:15 GeV, f� � 0:093 GeV, Au�d2 � 1:02, AG2 �
0:83, Au�d4 � 0:12, AG4 � 0:04, Ku;1 � �0:112 GeV2,
Ku;2 � 0:11 GeV2, Ku;g � �0:3 GeV2 [11] to get c�1�2 �

0:17 GeV, and c�1�3 � 0:2��N � 0:7� GeV3 to obtain fi-
nally

� � �4� �N�
0:03

n0
GeV2; (11)

where we employ s�0�! � 1:4 GeV2, s�1�! ��0:15n�1
0 GeV2

(with n0 � 0:15 fm�3 as nuclear saturation density)
from an evaluation basing on (4) and neglect the c4

term for the moment. To probe the uncertainty caused
23230
by less constrained quantities in (6)–(10) we assign
N, R, c�0�0 , c�1�2 , and c�1�3 (the term in front of �N and the
remainder separately) the large uncorrelated variations
of 
10% and arrive at � � �2:8 � � � 5:3� �N��
�0:023 � � � 0:035�n�1

0 GeV2. In essence, to achieve a nega-
tive value of � and thus the experimentally observed [6]
dropping ofm! in medium, a sufficiently large value of �N
is required, as evidenced by Eqs. (5) and (11). Thereby, the
term / c�1�3 provides a counterbalance to the large Landau
damping [17] [first term in (8)]. (For the � meson the
Landau damping term is 9 times smaller [17], resulting
in an always negative shift parameter conforming with the
dropping � mass scenario in Ref. [18] and in qualitative
agreement with the Brown-Rho scaling [19].)

Indeed, the evaluation of the complete sum rule (4)
requires for the described parameter set �N � 4 to have
m2
!�n > 0�<m�0�2! ; see Fig. 1. In other words, the above

mentioned four-quark condensates must change drastically
in the nuclear medium. With the above quoted parameters
this translates into the huge amount of more than a 50%
drop of the combined four-quark condensates at nuclear
matter saturation density when relying on the linear density
expansion up to such density. (The experiment [6] probes
actually densities �0:6n0.) Phrased differently, the density
1-3
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dependence of the c3 term must be stronger than the simple
factorization allows.

To have some confidence in our estimate, the influence
of c4 must be evaluated. An order-of-magnitude estimate
utilizing ground state saturation would yield c4 � �5:48�
0:122n=n0� � 10�5 GeV8 when considering only the first
seven mass dimension-8 scalar condensates [20] and the
two twist-2 condensates [21]. The corresponding value of
c�0�4 is substantially smaller than the standard estimates
related to the 
 decay: [22] quotes ��7 � � � � 4� �

10�3 GeV8 pointing to some uncertainty also of c�1�4 . We
consider, therefore, c4 as parameter and study its impact on
the sum rule, as illustrated in Fig. 1.

Experimentally, a much stronger drop of the ! meson
mass squared is found [6] than the in-medium change of
m2
! exhibited in Fig. 1. The conservative estimate of �N >

4�0:7
�0:7 � 2:8�0:2

�0:4 � 103 GeV�8n0c
�1�
4 obtained from an

evaluation of the sum rule (4) expresses a condition for a
decreasing value of m2

! in the nuclear medium (the indi-
cated variation of the numbers arise from an assumed
uncertainty of m�0�2! by 
10% which should reflect the
approximate character of the vacuum sum rule). In other
words, as long as c�1�4 < 1:7�0:3

�0:6 � 10�3n�1
0 GeV8 a finite

positive value of �N is required, i.e., a noticeable density
dependence of the combined four-quark condensates. Note
that this statement is independent of a model for Im�!; it
is based only on the observation that m2

! must become
smaller if additional strength of Im�! below m�0�2! occurs
in the medium, as observed in Ref. [6].

Finally, we mention that many more four-quark conden-
sates enter other sum rules in different combinations. For
instance, the investigation of the three coupled sum rule
equations for the nucleon [23] points to some cancellations
among the four-quark condensates when using the esti-
mates from Ref. [24]. (The results of Ref. [24] cannot be
employed directly for our ! sum rule since the flavor-
mixing four-quark condensates are delivered in color
combinations suitable only for the nucleon sum rule.)
Furthermore, a crucial point is that the genuine chiral
condensate is not suppressed in the nucleon sum rule, while
in the ! sum rule it is.

In summary we argue that the recent CB-TAPS ex-
periment [6] implies a noticeable drop (more than 50%
when extrapolating to nuclear saturation density and trun-
cating the sum rule beyond mass dimension 6) of a certain
combination of four-quark condensates. Four-quark con-
densates are fundamental quantities, among others, char-
acterizing the nonperturbative QCD vacuum. Specific four-
quark condensates, changing under chiral transformation,
represent further important order parameters for chiral
symmetry restoration. Clearly, also other channels, besides
23230
the omega meson considered here, must be studied to
gain more information on these particular four-quark
condensates.
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B. Kämpfer and S. Zschocke, Prog. Part. Nucl. Phys.
53, 317 (2004).

[15] S. Leupold, Phys. Lett. B 616, 203 (2005).
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