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We investigate the splitting and mixing ofr and v mesons in nuclear matter. The calculations were per-
formed on the basis of QCD sum rules and include all operators up to mass dimension-6 twist-4 and up to first
order in the coupling constants. Special attention is devoted to the impact of the scalar four-quark condensates
on both effects. In nuclear matter the Landau damping governs ther-v mass splitting while the scalar
four-quark condensates govern the strength of individual mass shifts. A strong in-medium mass splitting causes
the disappearance of ther-v mixing.
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I. INTRODUCTION

The investigation of in-medium modifications of hadrons
is currently a topic of wide interest. This is because the issue
is related to chiral symmetry restoration as well as to a
change of vacuum properties, and the phenomenon “mass of
particles.” Among the promising candidates for a search for
changed hadron properties in an ambient strongly interacting
medium are vector mesons. Due to their decay modeV
→g* →e+e− and the negligible interaction of the escaping
e+e− one can expect to probe directly the parent vector me-
son V. Indeed, strong evidence for changes of ther meson
are found in relativistic heavy-ion collisions, where a meson-
rich hot medium is transiently created(cf. [1]). As the vector
meson properties are coupled to various condensates[2–4],
which change as a function of both the baryon density and
the temperature, complementary investigations of their be-
havior via thee+e− decay channel in compressed nuclear
matter is also required. Experimentally this will be done in a
systematic way with the detector system HADES[5]. The
situation is quite challenging since various predictions differ
in details.

In the invariant mass region up to 1 GeV there are various
sources ofe+e− [6,7]: Dalitz decays of many hadrons, brems-
strahlung, and the direct decaysV→e+e− mentioned above.
One important channel for di-electron production is the re-
action pp→g!→e+e−. This channel has been evaluated
with increasing sophistication over the last years(cf. [1]).
The corresponding di-electron production rateR=dNee/d4x
in a medium characterized by the baryon densityn and tem-
peratureT is given by[8,9]

dR

dMee
sMee,n,Td =

ssMee
2 ,nd

s2pd4 Mee
4 T K1SMee

T
D S1 −

4 mp
2

Mee
2 D .

s1d

Here K1 is a modified Bessel function,Mee stands for the
invariant mass of the di-electron pair, ands is the total cross
section of the processp+p−→g* →e+e−,

ssq2,nd =
4

3
p

aem
2

q2 Î1 −
4 mp

2

q2 uFpsq2,ndu2, s2d

where Fpsq2d is the pion form factor andq2=Mee
2 is the

momentum squared of the decaying virtual photong* .

Ther-v mixing in vacuum was discovered as a particular
form of the pion form factoruFpsq2du a few decades ago[10].
Since that time much work has been done aiming at a theo-
retical understanding of this mixing effect(for a review see
[11]). Despite that there is still some debate concerning de-
tails of ther-v mixing in vacuum[12–14] the experimental
pion form factor in vacuum can well be reproduced by
means of several theoretical approaches. However, up to now
the mixing effect has not been studied systematically in the
medium. One may argue that ther-v mixing is a tiny effect
in evaluating the di-electron emission rate of warm nuclear
matter. Moreover, inspired by[15], it seems to be a generic
effect of its own interest, which should be analyzed in a
dense medium. This is one issue of the present paper. In
addition, we are going to investigate ther-v mass splitting
and mixing effect simultaneously on the same footing, i.e.,
we use the same parameter set and the same approach for
evaluating both effects.

References[15–17] showed thatr andv mesons experi-
ence, within the QCD sum rule approach, quite a different
in-medium behavior. Even in zero-width approximation a
larger-v mass splitting was found when neglecting terms in
the operator product expansion(OPE) which differ for r and
v mesons. The individual mass shifts depend on the yet
poorly known density dependence of the four-quark conden-
sate, assuming the same effective four-quark condensate for
both ther and thev mesons. A further goal of the present
paper is to include all terms in the OPE up to mass
dimension-6 and twist-4(up to orderas) and to study the
importance of condensates which maker and v differ. We
extend our previous studies[16,17] to consider here the yet
unexplored effect of the density dependence of the four-
quark condensate on ther-v mixing in medium.

Our paper is organized as follows. In Sec. II we determine
the mass shifts ofr and v mesons. We spell out the basic
steps of QCD sum rules in low-density approximation and
list all terms of the operator product expansion(OPE) up to
mass dimension-6 and twist-4. We then present a numerical
evaluation of the QCD sum rules and show that terms in the
OPE which maker andv differ are small at nuclear matter
saturation density. Ther-v mass splitting is found to be
determined by different Landau damping terms, while the
individual mass shifts are governed by the density depen-
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dence of the four-quark condensate. The knowledge of the
in-mediumr ,v mass parameters is a prerequisite of a con-
sistent treatment of ther-v mixing studied in Sec. III. We
define the phenomenology of the mixing and explain how
this effect is related to observables. Afterwards we specify
the QCD sum rule for ther-v mixing and present details of
the evaluation. The summary can be found in Sec. IV.

II. r-v MASS SPLITTING

The masses ofr and v mesons differ in vacuum by a
small amount,Dm=mv−mr=11 MeV. It was one success of
the QCD sum rule method to explain this mass splitting in
vacuum by differences in the OPE ofr andv current-current
correlators[3]. Indeed, up to mass dimension-6 there is only
one operator in vacuum, the so-called flavor mixing scalar
operator, which differs in sign in the OPE ofr and v corr-
elators. In the following we will investigate the behavior of
this splitting at finite density, where nonscalar condensates
also play a role.

A. QCD sum rule

Within QCD sum rules the in-medium vector mesonsV
=r ,v are considered as resonances in the current-current
correlation function

Pmn
sVdsq,nd = i E d4x eiqx kVu T Jm

VsxdJn
Vs0duVl, s3d

whereqm=sq0,qd is the meson four momentum,T denotes
the time ordered product of the meson current operators
Jm

Vsxd, and uVl stands for a state of the nuclear medium. In
the following, we focus on the ground state of baryonic mat-
ter approximated by a Fermi gas with nucleon densityn (in
Ref. [16] it was shown that temperature effects forT
ø100 MeV are of subleading order and may be neglected
for our purposes). We first study isospin symmetric nuclear
matter and extend later on our approach to asymmetric
nuclear matter. In terms of quark field operators, the vector
meson currents are given by

Jm
V = 1

2sūgmu 7 d̄gmdd, s4d

where the upper sign stands for ther meson while the lower
sign stands for thev meson. We will keep this notation
throughout the paper. Note that the interpolating currents(4)
are based on the same field operatorsu,d. Therefore, evalu-
ating the right-hand side of Eq.(3) will deliver the same
condensates, however a few of them with different signs. To
highlight this point we spell out all terms arising from Eqs.
(3) and (4) in the following.

We consider the nucleon and vector meson at rest,
i.e., qm=sq0,q=0d and km=sMN,k=0d, which implies the
vector meson to be off shell while the nucleon is on shell.
Then the correlator(3) can be reduced to1

3Pm
msq2,nd

=oV=r,vPsVdsq2,nd. In each of the vector meson channels the
correlatorPsVdsq2,nd satisfies the twice subtracted dispersion
relation, which can be written withQ2;−q2=−E2 as

PsVdsQ2,nd
Q2 =

PsVds0,nd
Q2 − PsVd8s0d

+ Q2 1

p
E
0

`

ds
Im PsVdss,nd

s2ss+ Q2d
s5d

with PsVds0,nd=PsVdsq2=0,nd and PsVd8s0d=fdPsVdsq2,nd /
dq2guq2=0 as subtraction constants. We usePsrds0,nd=n/
s4MNd and Psvds0,nd=9 n/ s4MNd [15,18], respectively,
which are the Thomson limit of theVN scattering process
and correspond to Landau damping terms[19].

As usual in QCD sum rules[3,4], for large values ofQ2

one can evaluate the nonlocal operator of Eq.(3) by OPE.
We truncate the OPE beyond mass dimension-6 and twist-4
and include all terms up to the first order inas in the SU(2)
flavor sector:

PsVdsQ2,nd = Pscalar
sVd + Pd=4,t=2

sVd + Pd=6,t=2
sVd + Pd=6,t=4

sVd + ¯ ,

s6d

Pscalar
sVd = −

1

8p2S1 +
as

p
CF

3

4
D Q2 lnSQ2

m2D −
3

8p2smu
2 + md

2d

s7d

+
1

2
S1 +

as

p
CF

1

4
D 1

Q2kVusmuūu + mdd̄dduVl

+
1

24

1

Q2kVu
as

p
G2uVl s8d

−
1

2
pas

1

Q4kVusūgmg5lauūgmg5lau

+ d̄gmg5ladd̄gmg5ladduVl s9d

±pas
1

Q4kVusūgmg5laud̄gmg5ladduVl s10d

−
1

9
pas

1

Q4kVusūgmlauūgmlau

+ d̄gmladd̄gmladduVl s11d

−
2

9
pas

1

Q4kVusūgmlaud̄gmladduVl, s12d

+ gs
1

12

1

Q6smu
2kVumuūsmn GmnuuVl

+ md
2 kVumdd̄smn GmnduVld, s13d
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Pd=4,t=2
sVd =

1

2

as

p
nf

1

Q4qmqnkVuŜT̂sGm
aGanduVl s14d

− S2

3
−

as

p
CF

5

18
D i

1

Q4qmqn

3kVuŜT̂sūgmDnu + d̄gmDndduVl, s15d

Pd=6,t=2
sVd = −

41

27

as

p
nf

1

Q8qmqnqlqskVuŜT̂sGm
rDnDlGrsduVl

s16d

+ S8

3
+

as

p
CF

67

30
D i

1

Q8qmqnqlqs

3kVuŜT̂sūgmDnDlDsu + d̄gmDnDlDsdduVl,

s17d

Pd=6,t=4
sVd = ±

1

3

1

Q6qmqnkVugs
2ŜT̂sūgmg5laud̄gng5ladduVl

s18d

−
1

6

1

Q6qmqnkVugs
2ŜT̂sūgmg5lauūgng5lau

+ d̄gmg5ladd̄gng5ladduVl s19d

−
1

24

1

Q6qmqnkVugs
2ŜT̂sūgmlausūgnlau

+ d̄gnladdduVl s20d

−
1

24

1

Q6qmqnkVugs
2ŜT̂sd̄gmladsūgnlau

+ d̄gnladdduVl s21d

−
5

12

1

Q6qmqnkVuigsŜT̂sūfDm,G̃nag+gag5u

+ d̄fDm,G̃nag+gag5dduVl s22d

−
7

3

1

Q6qmqnkVuŜT̂smuūDmDnu + mdd̄DmDndd

3uVl, s23d

where nf =3 is the number of active flavors at a scale of
1 GeV, andCF=snc

2−1d / s2ncd=4/3 with nc=3 as number of
colors;smn=si /2dfgm ,gng−. The strong couplings are related
by as=gs

2/ s4pd.
The SU(3) color matrices are normalized as Trsla lbd

=2dab, the covariant derivative is defined asDm=]m

+ igAm
ala/2 andG2=Gmn

a Ga mn whereGmn
a is the gluon field

strength tensor(Gmn=Ga mnla/2). The dual gluon field

strength tensor is defined byG̃mn=emnrsGa rsla/2.

The OPE for scalar operators up to mass dimension-6 can
be found in [3]. For the twist-2 condensates we have in-
cluded all singlet operators with even parity up to orderas
(nucleon matrix elements of operators with odd parity van-
ish). Their Wilson coefficients can be deduced from[20].1

The Wilson coefficients of the twist-4 operators in lines
(18)–(22) are given in[8], and for the twist-4 operator in line
(23) it can be deduced from[21], where it has been found
that the term(23) has some relevance for twist-4 effects of
nucleon structure functions. The Wilson coefficient of an ad-
ditional dimension-6 twist-4 operator, Sˆ T̂q̄fDm ,Gnag−gaq
(for an estimate of this condensate see[22]), vanishes
[21,23].

We emphasize that the only difference betweenr and v
mesons in the truncated OPE consists in the terms in lines
(10) and (18). As mentioned above the term in line(10) is
responsible for ther-v mass splitting in vacuum; the term in
line (18) vanishes in vacuum. It is now our goal to analyze
the in-medium difference ofr andv mesons stemming from
the OPE side. Most terms in lines(7)–(23) may be evaluated
using standard techniques[24]. However, what remains to be
considered are the flavor-mixing condensates in the lines
(10), (12), and (18), the mixed quark-gluon condensate in
line (13), the pure gluonic condensates in the lines(14) and
(16) and the twist-4 condensate in line(23). The QCD cor-
rections to orderas of the twist-2 condensates in lines(15)
and(17) have not been taken into account in previous analy-
ses.

The chiral condensate and scalar gluon condensate have
been discussed in some detail in[25]. Details for the scalar
four-quark condensates in lines(9)–(12) are given in Appen-
dices A and B, where also further notations are explained.
The twist-2 quark condensates[lines (15) and (17)] and the
gluonic twist-2 condensates[lines (14) and (16)] are explic-
itly given in Appendix C. The twist-4 condensates[lines
(18)–(23)] are listed in Appendix D.

Performing a Borel transformation[3] of the dispersion
relation (5) with appropriate mass parameterM2 and taking
into account the OPE(6) one gets the QCD sum rule

PsVds0,nd −
1

p
E
0

`

ds
Im PsVdss,nd

s
e−s/M2

= c0 M2 + o
i=1

`
ci

si − 1d ! M2si−1d . s24d

For nuclear matter we utilize the one-particle dilute gas ap-
proximation in order to evaluate all relevant condensates in
the nuclear medium i.e.,

kVuÔuVl = kÔl0 +
n

2MN
kNskduÔuNskdl, s25d

where the nucleon states are normalized bykNskd uNsk8dl
=s2pd32 Ekdsk−k8d with Ek=Îk2+MN

2. The scalar

1Despite the fact that twist-2 non-singlet operators occur in the
OPE for electromagnetic currents[20], they are absent in the OPE
of Eq. (3). Twist-2 non-singlet condensates contribute, however, to
r-v mixing.
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dimension-4 and dimension-5 condensates are given by[26]

mu kVuūuuVl = mukūul0 + 1
2sN

u n, s26d

kVu
as

p
G2uVl =Kas

p
G2L

0
− 8

9MN
0 n, s27d

kVugsūsmnG
mnuuVl = l2kūul0 + 1

2l2sN
u

mu
n, s28d

where we have introduced the sigma termsN
u

=mukNskduūuuNskdl /MN andl2.1 GeV2. The chirald quark
condensate follows by replacing theu quark by ad quark.
The nucleon sigma term[26] is 2sN=sN

u +sN
d .

Inserting the explicit expressions for all condensates(cf.
Appendixes A–D) one gets for the coefficientsc1,2,3 in Eq.
(24)

c0 =
1

8p2S1 +
as

p
CF

3

4
D , s29d

c1 = −
3

8p2smu
2 + md

2d, s30d

c2 =
1

2
S1 +

as

p
CF

1

4
Dsmukūul0 + mdkd̄dl0 + sN nd

+
1

24
FKas

p
G2L

0
−

8

9
MN

0 nG+ S1

4

−
5

48

as

p
CFDA2

su+dd MN n −
3

16
nf

as

p
A2

G MN n, s31d

c3 = −
112

81
p as k0 kq̄ql0

2F1 +
kN

k0

sN

mqkq̄ql0

nG
+

s8 ± 36d
81

Q0
2

fp
2

as

p
kq̄ql0

2F1 +
sN

mq

1

kq̄ql0

nG
− S 5

12
+

as

p
CF

67

192
DA4

su+ddMN
3n +

205

864

as

p
nfA4

GMN
3n

+
1

4
MN

3nS3

8
Ku

2 +
3

2
Ku

1 − s1 ± 1dKud
1 +

15

16
Ku

gD
−

7

144
sNMN

2n, s32d

whereAn
su+dd=An

u+An
d with n=2,4, 2kq̄ql0=kūul0+kd̄dl0, and

2mq=mu+md.

B. Evaluation

We define a ratio of weighted moments

mV
2sn,M2,sVd ;

E
0

sV

ds Im PsVdss,nde−s/M2

E
0

sV

ds Im PsVdss,nds−1 e−s/M2

s33d

for which the desired sum rule follows by taking the ratio of
Eq. (24) to its derivative with respect to 1/M2 as

mV
2sn,M2,sVd

=

c0 M2 F1 −S1 +
sV

M2De−sV/M2G −
c2

M2 −
c3

M4

c0 s1 − e−sV/M2
d +

c1

M2 +
c2

M4 +
c3

2M6 −
PsVds0,nd

M2

, s34d

where we have identified the highlying(continuum) contri-
butions as −ImPsVdssùsV,nd /s=pc0 (sV is the continuum
threshold). The meaning of the parametermV

2 as normalized
first moment of the spectral function ImPsVd becomes im-
mediately clear in zero-width approximation, −ImPsVdss
øsV,nd=pFVdss−mV

*2d, from wheremV=mV
* follows. Equa-

tions (33) and(34) are the corresponding generalizations for
the case of finite width, in the spirit of a resonance1 con-
tinuum ansatz. The mass equation(34) is commonly used for
describingmV

2 in vacuum[3,27–31], at finite temperature[8]
and at finite density[4,15,16] and will be subject of our
further considerations.

The sum rule is reliable only in a Borel windowMmin
2

øM2øMmax
2 . If M2 is too small the expansion(24) breaks

down. On the other side, ifM2 is too large the contribution of
perturbative QCD terms completely dominate the sum rule.
We adopt the following rules for determining the Borel win-
dow [24,32–35]: The minimum Borel mass,Mmin

2 , is deter-
mined such that the terms of orderOs1/M6d on the OPE side
contribute not more than 10%. The maximum Borel mass,
Mmax

2 , is evaluated within zero-width approximation by re-
quiring that the continuum part is not larger than the contri-
bution of the resonance part, i.e.,

1

8p2S1 +
as

p
DMmax

2 e−sV/Mmax
2

ø
FV

mV
2 e−mV

2/Mmax
2

. s35d

The parameterFV can be evaluated by means of the QCD
sum rule (24). The obtained results for vacuum,Fr

=0.0110 GeV4, Fv=0.0117 GeV4, are in good agreement
with the relations Fr=mr

4/grg
2 =0.0130 GeV4 and Fv

=9 mv
4 /gvg

2 =0.0138 GeV4, respectively, which follow from
the Vector Meson Dominance(VMD ) [3,11,32].

The thresholdsV is determined by maximum flatness of
mVsn,M2,sVd as a function ofM2. These requirements give a
coupled system of equations for the five unknownsMmin

2 ,

Mmax
2 , FV, sV, mV. The final parametersF̄V andm̄V are aver-

aged to get Borel mass independent quantities. For any pa-
rameterP this average is defined by
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P̄ =
1

Mmax
2 − Mmin

2 E
Mmin

2

Mmax
2

PsM2ddM2. s36d

In the following we will skip the average sign.

C. Results

For considering the mass parameter splitting effect there
is no need to distinguish between isospin symmetric and iso-
spin asymmetric nuclear matter since all operators in the
OPE Eq.(6) are isospin symmetric operators. Accordingly, in
the following we study isospin symmetric nuclear matter.

Twist-4 condensates have been estimated in[36] where
data of lepton-nucleon forward scattering amplitude has been
used to fix the parametersKu

1, Ku
2, Ku

g and Kud
1 in Eq. (32).

The corresponding system of equations is under-determined
and therefore various sets for these parameters can be ob-
tained. We have investigated all six sets from[36] for these
parameters and find only very small changes of the results. In
Fig. 1 we show the results obtained with the parameter set
given in Appendix D. Since in[16,17,28,37] a strong effect
of the density dependence of the four-quark condensate was
found we show here results for various possibilities, param-
etrized bykN introduced in Appendix A, Eq.(A5). The mass
parameter of ther meson decreases with increasing density
for all kN, while thev meson mass parameter decreases only
for sufficiently large kN. Other QCD sum rule analyses
[4,34,16] have obtained also a decreasingr mass parameter.
An increase of thev meson mass parameter has been found
in [15,16], where the correct Landau damping term was
implemented.

The flavor mixing scalar operators(i.e., MA,V
ud , see Appen-

dix B), while responsible for the mass splitting in vacuum,
play only a minor rule in matter. That means, discarding the
terms,Q0

2 in Eq. (32) yields curves which are nearly iden-

tical to those represented in Fig. 1. The poorly known scalar
four-quark condensate governs the strength of individual
mass shifts, while the strong mass splitting in matter origi-
nates mainly from the Landau damping termsPsVds0,nd,
which differ by a factor 9 forr andv [15]. The outcome of
our study is that terms in the OPE, which cause a difference
of r andv mesons, are small in matter since the mass split-
ting is mainly determined by the Landau damping terms.

III. r-v MIXING

First, we briefly describe the mixing scenario considered
in the following. We follow the arguments given in[11]. The
mixing can be accomplished by

Sr

v
D = S1 − e

e 1
DSrI

vI
D , s37d

where the subscriptI denotes isospin-pure states, ande is the
mixing parameter. The mixing formula(37) is quite general.
Extending the mixed propagator approach described in[11]
to the case of finite density one can obtain the following
relation between the complex mixing parametere and the
nondiagonal self-energydr vsq2,nd via (cf. [11] for vacuum,
cf. [15] for matter)

esnd =
dr vsq2,nd

mv
2snd − mr

2snd + i Im Svsq2,nd − i Im Srsq2,nd
.

s38d

The nondiagonal self-energydr vsq2,nd, and therefore also
the mixing parametere, is directly related to the pion form
factor, given by

FIG. 1. Mass parametermV of v meson(up-
per curves) andr meson(lower curves) as a func-
tion of the density for various values of the pa-
rameterkN ((a) kN=1, (b) kN=2, (c) kN=3, (d)
kN=4). The solid curves are for the full set of
terms in Eqs.(29)–(32), while for the dotted
curves the twist-4 condensates are discarded, i.e.,
Ku,d,ud

1,2,g =0.
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Fpsq2,nd = 1 −
q2

grg

grpp

q2 − mr
2snd − i ImSrsq2,nd

−
q2

gvg

1

q2 − mv
2snd − i ImSvsq2,nd

3dr vsq2,nd
grpp

q2 − mr
2 − i ImSrsq2,nd

.

s39d

Since the main contribution of the second line stems from
the regionq2,mr

2,mv
2 one usually approximates the nondi-

agonal self-energydrvsq2,nd in the pion form factor by its
on-shell value atq2=m̄2=0.5smr

2+mv
2d.

The nondiagonal self-energy consists of an electromag-
netic part and a hadronic part,dr vsm̄2,nd=dr v

EMsm̄2,nd
+dr v

H sm̄2,nd. Both contributions can consistently be isolated
in theoretical as well as experimental analyses. The electro-
magnetic part comes from the processr→g* →v and can be
evaluated analytically[39]. In the following we are going to
investigate the density dependence ofdr vsm̄2,nd.

A. QCD sum rule

The basic object for ther-v mixing in matter is the mixed
correlator

Pmn
r vsq,nd = i E d4x eiqxkT Jm

r sxdJn
vs0dln, s40d

with the isotriplet and isosinglet currents from Eq.(4). It is
straightforward to recognize that

Pr vsq,nd ; 1
3gmn Pmn

r vsq,nd = Pusq,nd − Pdsq,nd s41d

with

Pqsq,nd =
i

12
E d4x eiqxkTq̄sxdgm qsxdq̄s0dgm qs0dln.

s42d

This scalar function satisfies the twice subtracted dispersion
relation The subtraction constant

Prvsq,nd
Q2 =

Prvs0,nd
Q2 −Prv8s0,nd + Q2 1

p
E

0

`

ds
Im Prvss,nd
s2ss+ Q2d

.

s43d

The subtraction constantPr vs0,nd vanishes in vacuum[11]
as well as in case of symmetric nuclear matter[15]. For
asymmetric nuclear matter,Pr vs0,nd=−3 anp n/ s4MNd
with anp=snn−npd /n [15], wherenn and np are the neutron
and proton densities, respectively, andn=nn+np.

The other subtraction constant does not contribute to the
sum rule after a Borel transformation. It is convenient[38] to
subtract the pure electromagnetic contributionr→g* →v
from hadronic and OPE sides of the dispersion relation(43).
In doing so we arrive at a new function, denoted byP̃r v,
which satisfies the same dispersion relation(43).

For large values ofQ2 one evaluates the left-hand side of
Eq. (43) by the OPE. Due to large cancellations of the pure

QCD terms according to Eq.(41) one has now to include
also the electromagnetic contributions to the OPE in contrast
to Eq. (6), where the electromagnetic terms are neglegible
compared to the QCD terms. Accordingly, up to mass
dimension-6 twist-4, and up to first order inas andaem the
OPE is given by(for vacuum cf.[12,38], for matter cf.[15])

P̃r vsQ2d = P̃scalar
r v + P̃d=4,t=2

r v + P̃d=6,t=2
r v + P̃d=6,t=4

r v + ¯ ,

s44d

P̃scalar
r v = −

1

64p3Q2 aem lnSQ2

m2D −
3

8p2smu
2 − md

2d s45d

+
1

2
S1 +

as

p
CF

1

4
D 1

Q2kVusmuūu − mdd̄dduVl

s46d

+
1

72

aem

p

1

Q2kVus4 muūu − mdd̄dduVl s47d

−
1

2
pas

1

Q4skVuūgmg5lauūgmg5lauuVl

− kVud̄gmg5ladd̄gmg5laduVld s48d

−
1

9
pas

1

Q4skVuūgmlauūgmlauuVl

− kVud̄gmladd̄gmladuVld s49d

−
2

9
paem

1

Q4s4kVuūgmg5uūgmg5uuVl

− kVud̄gmg5dd̄gmg5duVld s50d

−
4

81
paem

1

Q4s4kVuūgmuūgmuuVl

− kVud̄gmdd̄gmduVld s51d

+ gs
1

12

1

Q6smu
2kVumuūsmnG

mnuuVl

− md
2 kVumdd̄smnG

mnduVld s52d

+ e
1

12

1

Q6S2

3
mu

2kVumuūsmnF
mnuuVl

+
1

3
md

2kVumdd̄smnF
mnduVlD , s53d
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P̃d=4,t=2
r v = − S2

3
−

as

p
CF

5

18
D i

Q4qmqnkVuŜT̂sūgmDnu

− d̄gmDndduVl s54d

+
aem

p

5

162

i

Q4qmqnkVuŜT̂s4ūgmDnu

− d̄gmDndduVl, s55d

P̃d=6,t=2
r v = S8

3
+

as

p
CF

67

30
D i

Q8qmqnqlqskVuŜT̂sūgmDnDlDsu

− d̄gmDnDlDsdduVl s56d

+
aem

p

67

270

i

Q8qmqnqlqskVuŜT̂s4ūgmDnDlDsu

− d̄gmDnDlDsdduVl, s57d

P̃d=6,t=4
r v = −

1

24

1

Q6qmqnkVugs
2ŜT̂sūgmlauūgnlau

− d̄gmladd̄gnladduVl s58d

−
1

6

1

Q6qmqnkVugs
2ŜT̂sūgmg5lauūgng5lau

− d̄gmg5ladd̄gng5ladduVl s59d

−
5

12

1

Q6qmqnkVuigsŜT̂sūfDm,G̃nag+gag5u

− d̄fDm,G̃nag+gag5dduVl s60d

−
7

3

1

Q6qmqnkVuŜT̂smuūDmDnu − mdd̄DmDndd

3uVl s61d

−
1

54

1

Q6qmqnkVuge
2ŜT̂s4ūgmuūgnu

− d̄gmdd̄gndduVl s62d

−
2

27

1

Q6qmqnkVuge
2ŜT̂s4ūgmg5uūgng5u

− d̄gmg5dd̄gng5dduVl s63d

−
5

12

1

Q6qmqnkVui eŜT̂S2

3
ūfDm

em,F̃nag+gag5u

+
1

3
d̄fDm

em,F̃nag+gag5dDuVl. s64d

aem=e2/ s4pd is the electromagnetic fine structure constant,
Fna stands for the electromagnetic field strength tensor, and

the dual electromagnetic field strength tensor is defined by

F̃mn=emnrsFrs. The covariant derivative of QED is defined
as Dm

em=]m+ ieAm. The QED contributions may be deduced
from the QCD terms by the replacementsla/2→1 (which
implies CF→1) and gs→eq (eq is the electric charge of
quark q), respectively. Not all of the condensates given
above have been taken into account in previous evaluations:
the terms in lines(47), (52), and (53), the QCD corrections
in lines (46), (54), and (56), the QED corrections given in
lines (55) and (57), and all twist-4 contributions in lines
(58)–(64) have not been considered yet.

The isospin breaking of the scalaru andd quark conden-
sates is usually parametrized by

g + 1 =
k0ud̄du0l
k0uūuu0l

.
kNud̄duNl
kNuūuuNl

.
kVud̄duVl
kVuūuuVl

, s65d

where we have generalized the corresponding relation for
vacuum[15,12,38] to the case of nuclear matter.

The four-quark condensates are given in Appendix A. The
twist-2 quark condensates are listed in Appendix C and the
corresponding parameters can be found in Appendix E. The
twist-4 condensates, listed here for the sake of completeness,
are neglected in our analysis since they are strongly sup-
pressed in the chosen Borel window.

Performing a Borel transformation of Eq.(43) leads to

Pr vs0,nd −
1

p
E
0

`

ds
ImP̃rvss,nd

s
e−s/M2

= d0 M2 + o
i=1

`
di

si − 1d ! M2si−1d . s66d

The coefficientsd1,2,3 in linear density approximation and
neglecting all twist-4 condensates are given by

d0 =
1

64p3aem, s67d

d1 = −
3

8p2smu
2 − md

2d, s68d

d2 = F1

2
S1 +

as

p
CF

1

4
Dsmu − mdd +

1

72

aem

p
s4mu − mddG

3Skq̄ql0 +
sN

2mq
nD−

aem

p

5

288
MN n sA2

u,p + A2
d,pd + d2

AS,

s69d

d3 =
14

81
pk0s8gas − aemdkq̄ql0

2S1 +
kN

k0
n

sN

mqkq̄ql0
D

−
aem

p

67

1152
MN

3 nsA4
u,p + A4

d,pd + d3
AS, s70d

where further terms proportional tomq g ,g2 andg aem have
been neglected. The termsdl

ASsl =2,3d are proportional to
anp and account for isospin asymmetric matter. Their impact
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on mixing will be considered separately in Sec. III C 3.
Finally, we specify the hadronic side of the QCD sum rule

(66) (cf. [3,12,13] for vacuum,[15] for matter), where thef
meson has been implemented in accordance with[13]

−
1

p

ImP̃r vss,nd
s

=
1

4
ffr dss− mr

2d − fv dss− mv
2d

+ ff dss− mf
2dg+

1

4
ffr8 dss− mr8

2 d

− fv8 dss− mv8
2 dg +

aem

64p3Qss− sVd.

s71d

The necessity for including the higher resonancesr8 andv8
is discussed below.

We mention that the termff is allowed since thef meson
is not a pures̄s state but mixed with thev meson. Even
more, it has been found in[13] that thef meson gives a
significant contribution in vacuum due to large cancellations
betweenfr and fv. Accordingly, we drop the assumption of
ideal mixing and take into account such a term.2

The five parametersfr , fr8 , fv , fv8 and ff have to be
evaluated self-consistently within the QCD sum rule ap-
proach. What we still need is a connection between these
new parameters and the parameterdrvsm̄2d which enters
physical observables like the pion form factor in Eq.(39).
Such a relationship can be obtained by means of VMD[11]

Jm
r sxd =

mr
2

grg

wm
r sxd, Jm

vsxd = 3
mv

2

gvg

wm
vsxd, s72d

where wm
Vsxd is the field operator of the respective vector

mesonV=r ,v. If one inserts these relations into the cor-
relator (40) one gets an expression which relatesPmn

rv with
the mixed propagator(keeping in mind the zero-width ap-
proximation at all stages). Another expression forPmn

rv can be
obtained by inserting Eq.(71) into the dispersion relation
(43). Equating both expressions leads to the searched relation

drv
H sm̄2d = − sfr + fvd

1

24
grg gvg

Dm2

m̄2 , s73d

which is valid to orderOsDm4/m̄4d being a fair approxima-
tion even when taking into account the strong mass splitting
betweenr andv mesons. We mention that for evaluating the
momentum dependence ofdrv

H sq2d the applicability of VMD
has been debated in[13] due to the impact of thef meson.
On the other side, the reliablility of VMD for a momentum
dependence ofdrv

H sq2d has been confirmed in[14], where the
finite width of vector mesons is taken into account. Anyhow,
in zero-width approximation VMD, which leads to Eq.(73),
is applicable as long as one restricts oneself to the on-shell
value of this quantity, i.e., todrv

H sm̄2d.

B. Evaluation

Since the most relevant parameterdrv
H enters the approach

via the combinationz, fr+ fv it is convenient to rewrite the
sum rule(66) as

1

4
z

m̄2

M2S m̄2

M2 − bD e−m̄2/M2
+

1

4
z8

m̄82

M2 S m̄82

M2 − b8D e−m̄82/M2

+
1

4

1

M2 ff e−mf
2/M2

+
Prvs0,nd

M2 +
aem

64 p3e−sV/M2

= d0 + o
i=1

`
di

si − 1d ! M2i , s74d

where we have introduced[13]

z =
Dm2

m̄4 S fr + fv

2
D, z8 =

Dm82

m̄84 S fr8 + fv8

2
D ,

b = 2
fv − fr

fr + fv

m̄2

Dm2, b8 = 2
fv8 − fr8

fr8 + fv8

m̄82

Dm82 s75d

with 2m̄2=smr
2+mv

2d ,2m8̄2=smr8
2 +mv8

2 d, Dm2=mv
2 −mr

2 and
Dm82=mv8

2 −mr8
2 , respectively. We stress that Eq.(74) is

valid to orderOsDm4/M4d. Despite the observed strong mass
splitting found in the previous section, Eq.(74) is a good
approximation: The terms of orderOsDm4/M4d would give
less than 10% correction to terms of orderOsDm2/M2d, even
at such a small Borel mass likeM <1 GeV.

The residues in the hadronic model(71) can be expressed
by the new variables(75) to give

fr = S m̄2

Dm2 −
b

2
Dzm̄2, fr8 = S m̄82

Dm82 −
b8

2
Dz8m82, s76d

fv = S m̄2

Dm2 +
b

2
Dzm̄2, fv8 = S m̄82

Dm82 +
b8

2
Dz8m̄82.

s77d

Finally we give an expression for the mixing parametere in
zero-width approximation(i.e., Im Sr,v=0) which can be de-
duced from(73) and (38),

e = −
m̄2

Dm2

grg gvg

12
z. s78d

We need five equations for the five unknowns
z ,z8 ,b ,b8 , ff. One could perform a Taylor expansion of Eq.
(66) ending up with an equation system for these five param-
eters. This is the frame work of Finite Energy Sum Rules
(FESR). Instead, here we use a combined FESR and Borel
analysis, following the approach described in[12,13] which
we extend to finite density. Accordingly, the first equation
comes from a local duality relation[12] which results into

4 Prvs0,nd − bzm̄2 − b8z8m̄82 = 4 d0 sV + 4 d1 − ff

s79d

and agrees with the first equation of the FESR approach
[12,13]. This equation makes clear why the higher reso-

2In finite width QCD sum rule, which is necessary when consid-
ering the momentum dependence of mixingdr vsq2d, the f contri-
bution is negligible[14]. We mention also that there is no need to
use unphysical values formr8 andmv8, as been pointed out in[13].
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nancesr8 and v8 have to be taken into account: Without
these higher resonances one would get eitherb<0 or z<0,
which would be in contradiction with experimental findings.
The second equation is just the sum rule(66). Two equations
are obtained by the first and second derivatives with respect
to 1/M2 of Eq. (66), cf. [12] (due to the high Borel mass and
the small contribution of the threshold term the second de-
rivative sum rule is applicable, in contrast to the mass split-
ting, investigated in the previous section, where a second
derivative sum rule becomes unstable[34]).

For evaluatingff we still need a fifth equation. In[13] a
third derivative of sum rule has been used which could cause
instabilities due to the truncation of OPE[34,35]. To avoid
such instabilities the individual contributions ofr8 and v8
have been approximated by an effective strengthfr8v8 at the
averaged mass ofmr8 v8 in [14]. However, at finite densityb
is density dependent. Therefore, in order to improve this ap-
proximation we apply the second FESR for the parameterb,
i.e.,

s1 + bdz m̄4 + s1 + b8dz8m̄84 − ff mf
2 = − 2 d0 sV

2 + 4 d2.

s80d

The resulting system of equations has to be solved self-
consistently giving the five unknowns as function of the

Borel mass,zsM2d ,z8sM2d ,bsM2d ,b8sM2d and ffsM2d.
In Fig. 2 we have plotted these parameters as a function of

the Borel mass for different densities. Like in the Borel
analysis for ther-v mass splitting we have to find an appro-
priate Borel windowMmin

2 ,Mmax
2 . To determine the minimal

Borel window one could again use the 10% rule getting
Mmin<1 GeV, while in[12] a 25% rule has been used get-
ting Mmin<1.3 GeV. But it turns out that in such a region
aroundMmin the sum rule is unstable for a wide range of
parameters[12,13]. Nevertheless, the curves in Fig. 2 evi-
dence that a stable region for all five unknowns exists in the
interval 4øM ø8 GeV. This observation confirms a corre-
sponding stability investigation in[13]. Therefore, in line
with [13], we will use a static Borel windowMmin=4øM
øMmax=8 GeV over which we have to average[using Eq.
(36)] to get Borel mass independent quantities. The result
found in [12–14] that the threshold parameters0 in vacuum
turns out to play a subdominant rule is also valid in case of
finite density. Accordingly, we may use a fixed value,sV
=2.0 GeV, for all densities.

C. Results

1. Vacuum

First of all, let us briefly discuss the pion form factor in
vacuum, given by(39) with n=0. Our sum rule analysis for

FIG. 2. Parametersz (a), b (b), z8 (c), b8 (d)
and ff (e) as a function of the Borel mass. Dotted
curves are for vacuum, solid curves stand forn
=n0 and dashed curves depictn=2 n0. All curves
are evaluated forkN=k0=3 (here the mass shift
of vector mesons has not been taken into
account).
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vacuum results inz=1.055310−3, in good agreement with
[12,15]. Using (78) gives for the mixing parametere=
−0.21. The hadronic contribution of the nondiagonal on-shell
self-energy which enters the pion form factor, is given, via
Eq. (73), by drv

H sm̄2d=−m̄2grg gvg z /12=−4289 MeV2

which amounts, by taking into account the electromagnetic
nondiagonal on-shell self-energydr v

EMsm̄2d=610 MeV2

[39,12], in total todr vsm̄2d=−3679 MeV2, in fair agreement
with experiment[40]. Using this value we get the pion form
factor in vacuum as shown in Fig. 3. It reproduces very well
recently obtained experimental data[41]. In [13] it was ar-

gued that the sum rules might not give a good agreement
with data when taking the parameter set of[12]. Our analysis
shows, however, that the sum rules are in agreement with
experimental data when using appropriate parameters.

2. Isospin symmetric nuclear matter

After reproducing the pion form factor in vacuum we now
turn to the density dependence of the mixing effect. Due to
the small effect of mixing compared to splitting and the large
impact of the four-quark condensate and Landau damping
terms on mass parameter splitting, it becomes obvious that
mixing does not strongly influence the mass parameter split-
ting effect. But on the other side, the mass parameter split-
ting effect could strongly influence the mixing effect. To
study the effect of ther-v mass parameter splitting on the
r-v mixing we have to implement in the five equations for
the five unknownsz ,b ,z8 ,b8 , ff the density dependent mass
parameters, i.e.,mrsnd, mvsnd and mfsnd, respectively. For
mrsnd, mvsnd we use the values obtained in the previous
section, while for the density dependence of thef meson we
will take the relation mfsnd=s1−a n/n0dmfs0d with a
=0.03, which turns out to be almost independent ofkN [16].
The results for the five parameters are shown in Fig. 4.

From the density behavior of the parameterz [see Fig.
4(a)] one might conclude that the mixing effect remains in
matter. But this is actually not the case. In view of Eq.(78)

FIG. 3. Comparision of the form factor evaluated within the
QCD sum rule method(solid curve) and the results of the CMD-2
experiment(symbols) [41].

FIG. 4. Parametersz (a), b (b), z8 (c), b8 (d)
and ff (e) at finite density. Dotted curves are for
kN=2, dashed curves are forkN=3 and solid
curves are forkN=4. The density dependence of
the mass parameters ofr, v andf mesons(with-
out the twist-4 condensates) has been taken into
account consistently.
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we recognize that the mixing anglee is strongly suppressed
by the factor 1/Dm2. Additionally, the mass shift of ther
meson modifies significantly the pion form factor. Using
Eqs. (39) and (1) for the pion form factor and di-electron
production rate, respectively, we get the results shown in Fig.
5.

These figures show that the mixing effect in the pion form
factor as well as in the di-electron production rate is washed
out due to the mass shifts of the vector mesons. But one has
to keep in mind that global changes of vector mesons in
matter like mass shift and width broadening turn out to be
correlated in nuclear matter[32,33,37]. Taking into account
such broadening effects needs further investigations.

We also show results without the mass shifts ofr, v and
f mesons. The corresponding density dependence of the five
parametersz ,b ,z8 ,b8 , ff is shown in Fig. 6. One observes
noticeable changes for the parameters. The dashed curve
(i.e., kN=k0) in Fig. 6(a) recovers the density-independence
of z for isospin symmetric nuclear matter as anticipated in
[15]. Otherwise, depending on the parameterkN which gov-
erns the density dependence of the four-quark condensate,z
may slightly increase(large kN) or decrease(smaller kN)
with increasing density. The resulting pion form factor and
the di-electron production rate are plotted in Fig. 7. At finite
density one obtains a very small modification of the form
factor compared to the vacuum, while the modification of the
rate is nearly invisible.

In Figs. 5 and 7 the meson peaks are assumed
to be distributed with a schematic width ImSrsEd
=−fgrpp

2 / s48pdEgsE2−4mp
2d3/2 QsE−2mpd and ImSvsEd

=−mvGv QsE−3mpd, respectively. In Fig. 5 the density de-
pendence ofmr,v is taken into account, while in Fig. 7 no
shifts of mr,v are assumed. Obviously, the di-electron rates
shown in Figs. 5 and 7 differ significantly.

There is the possibility, advocated in[42], that in-medium
the original (vacuum) r peak is not shifted, but additional
strengths develop below ther peak. A similar possibility has
been reported in[7] for the v meson. In such cases the
r-v mixing remains, similar to Fig. 7, but the weightedr
strength is shifted down, as required by the sum rule consid-
ered in Sec. II. A proper handling of this situation deserves
further investigations with explicit knowledge of ther andv
in medium spectral functions. Experimentally, precision
measurements with HADES[5] can deliver information on
the in-medium behavior of ther-v mixing.

3. Isospin asymmetric nuclear matter

So far we have considered isospin symmetric nuclear mat-
ter. While it is not necessary to study isospin asymmetric
matter for the mass splitting effect, finite values ofanp have
some relevance for the mixing effect[15]. Therefore, in this
subsection we concentrate on isospin asymmetric nuclear
matter. The needed proton and neutron condensates are given
in the Appendix E. Accordingly, the coefficientsdi

AS in lines
(69) and (70) contain the following terms proportional to
anp:

d2
AS = −

1

2
S1 +

as

p
CF

1

4
D n

2MN
mq anpkpuūu − d̄dupl

−
1

72

aem

p

1

MN

n

4
anp5 mqkpuūu − d̄dupl

− S1

4
−

5

48

as

p
CFDsA2

u,p − A2
d,pd MN anp n

+
aem

p

25

864
MN n anpsA2

u,p − A2
d,pd, s81d

d3
AS =

56

81
p as anp n

1

MN
kq̄ql0kpuūu − d̄dupl

+
7

81
p anp n

1

MN
kN kq̄ql0kpuūu − d̄dupl

+
aem

p

335

3456
MN

3 n anp sA4
u,p − A4

d,pd, s82d

where terms of orderOssmd−mudanpd, Osgaemd and
Osganpd are neglected.

The dependence of the parameterz, Eq. (75), which gov-
erns the mixing effect of the pion form factor(39) via (73),
on the asymmetry parameteranp is seen in Fig. 8(a). For

FIG. 5. (a) Pion form factor at saturation densityn=n0. Mass
shifts of vector mesons(without twist-4 condensates) are taken into
account. The dotted curve is for vacuum, while the solid curves are
for saturation densityn=n0. The labels 2,3 denotekN=2,3,respec-
tively. (b) Di-electron production rate from pion-pion annihilation
at finite density andT=100 MeV. The dotted curve is for a hot pion
gas and baryonic vacuumn=0, while the solid curves are for satu-
ration densityn=n0.
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strong asymmetry one obtains a remarkable increase ofz,
roughly linear withanp. We note that the dashed curve of
Fig. 8(a) is in good agreement with[15] where an asymmetry
dependencez=zs0d+zs1d anp n/ s0.2 n0d with zs0d=1.1310−3

and zs1d=1.5310−3 has been reported, while our findings
correspond tozs0d=1.05310−3 andzs1d=1.9310−3.

Altogether, without accounting for the mass shifts, an am-
plification of the mixing effect in the pion form factor is
obtained [see the dashed curve in Fig. 8(b)]. In contrast,
when accounting for the individual mass parameter shifts the
mixing effect is washed out[see the solid curve of Fig. 8(b)].

Finally, it is expedient to summarize the differences be-
tween the analysis presented here and Ref.[15], which are,
so far, the only investigations where the QCD sum rule ap-
proach has been applied to the mixing effect at finite density.
Besides the usage of a complete OPE up to mass-
dimension-6 twist-2 for the mixing effect and a self-
consistent Borel analysis for all unknowns at finite density in
our work, the improvements are the following: First, we have
implemented the individual mass parameter shifts of the vec-
tor mesons in a consistent way and have studied their impact
on the mixing effect. A second difference consists in taking
into account thef meson on the hadronic side, which is
necessary due to large cancellations betweenr andv meson
contributions(this has been pointed out for vacuum in[13]).
Third, we have investigated the relevance ofz by consider-

ing the influence of the mixing on pion form factor and di-
electron production rate.

IV. SUMMARY

In summary, we have investigated the mass parameter
splitting and the mixing ofr andv mesons in nuclear matter
within the QCD sum rule approach, starting from a complete
OPE of the current-current correlator up to mass
dimension-6 twist-4 and up to the first order in the coupling
constant. Special attention is devoted to the impact of the
poorly known scalar four-quark condensates. We have found
a strongr-v mass parameter splitting. The scalar flavor mix-
ing condensate has been evaluated at finite density using
quite general assumptions. It turns out that this condensate,
while responsible for ther-v mass parameter splitting in
vacuum, plays a subdominant role in matter. Instead, the in-
dividual mass parameter splitting ofr and v mesons is
mainly governed by the Landau damping terms. The scalar
four-quark condensates have a strong impact on the indi-
vidual strengths of the mass parameter shifts, while the
amount of the splitting is fairly insensitive to these conden-
sates.

We emphasize that the mass parameters are weighted mo-
ments of the spectral functions. A mass parameter shift in
medium does not necessarily mean a simple shift of the peak

FIG. 6. Parameterz (a), b (b), z8 (c), b8 (d)
and ff (e) at finite density. The density depen-
dence of the mass parameters has not been taken
into account. Same notation as in Fig. 4.
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position of a spectral function, rather additional strength may
occur at lower or higher energies causing a shift of the
weighted moment. The presently employed form of the QCD
sum rule approach is not sensitive to such details. Only a
detailed modeling of the hadronic in-medium spectral func-
tion with parametric dependencies allows for more concise
statements[46].

Another physical effect investigated concerns ther-v
mixing at finite density and the impact of ther-v mass pa-
rameter splitting. Starting with the vacuum we find excellent
agreement with experimental data recently obtained. In me-
dium, the nondiagonal self-energydrvsm̄,nd, which drives
the mixing effect, is only weakly amplified in isospin sym-
metric nuclear matter. The mixing parameterz, however, is
remarkably enlarged for strongly isospin asymmetric nuclear
matter, such as in uranium nuclei withanp=0.2. Therefore,
not taking into account the individual mass shifts of ther
andv meson would indeed result in an in-medium amplifi-
cation of the mixing effect. In contrast, if one takes into
account the strong mass parameter splitting ofr andv me-
sons as a pronounced splitting of the corresponding peaks
then the mixing effect in the pion form factor as well as in
the di-electron production rate disappears in medium, both
for isospin symmetric and isospin asymmetric nuclear mat-
ter. Upcoming measurements at HADES can deliver valuable
information on these issues.
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APPENDIX A: SCALAR FLAVOR-UNMIXING FOUR-
QUARK CONDENSATES

In lines (9) and(11) one recognizes two different types of
scalar flavor-unmixing four-quark condensatessq=u,dd

MA
qq = kVuq̄gmg5laqq̄gmg5laquVl sA1d

and

MV
qq = kVuq̄gmlaqq̄gmlaquVl. sA2d

Previous studies employed a factorization for the scalar
flavor-unmixing four-quark condensates[26]. We go beyond
such approximation,MA

qq= 16/9kkVuq̄quVl2, pointing out
that k is uncertain and might even have a density depen-
dence. In the spirit of the linear density approximation(25),
a Taylor expansion results in

MA
qq =

16

9
kq̄ql0

2 k0
s1dF1 +

kN
s1d

k0
s1d

sN n

mq kq̄ql0
G . sA3d

The first term, i.e.,16
9 kq̄ql0

2 k0
s1d, is merely an expression for

kq̄gmg5laqq̄gmg5laql0. The second term, proportional tokN
s1d,

parametrizes the poorly known four-quark condensate in the
nucleon kNskduūgmg5lauūgmg5lauuNskdl. Similarly, for the
other four-quark condensate we obtain

MV
qq = −

16

9
kq̄ql0

2 k0
s2dF1 +

kN
s2d

k0
s2d

sN n

mq kq̄ql0
G . sA4d

FIG. 7. (a) Form factor at finite density. Dotted line denotes
vacuum, dashed line representsn=n0 and solid line meansn=2n0.
(b) Di-lepton production rate for pion-pion annihilation at finite
density forT=100 MeV. The plotted curves are forkN=3. No mass
shifts

FIG. 8. (a) Parameterz as a function ofanp at saturation density
n0 (solid line: individual mass shifts of vector mesons have been
taken into account; dashed line: without mass shifts of vector me-
sons). (b) Pion form factor forkN=3 and anp=0.2 (dotted line:
vacuum; solid line:n=n0 with mass shifts of vector mesons; dashed
line: n=n0 without mass shifts of vector mesons).
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Accumulating all flavor-unmixing four-quark conden-
sates, with the right weight given from the OPE, one obtains
in linear density approximation finally

−
1

2
MA

uu −
1

2
MA

dd −
1

9
MV

uu −
1

9
MV

dd

= −
7

18

16

9
kq̄ql0

2 k0F1 +
kN

k0

sN n

mq kq̄ql0
G . sA5d

Note thatkN=k0 conforms to the large-Nc limit [43]. Since
we are interested in medium effects, we adjust the value of
k0 to the vacuum masses, yieldingk0=3 both forr and v,
and study the impact of the unknown parameterkN. As
stressed in[16,37], only a comparison with experimental
data can pin downkN.

For treating ther-v mixing we also need

NA
qq = kVuq̄gmg5qq̄gmg5quVl sA6d

and

NV
qq = kVuq̄gmqq̄gmquVl. sA7d

With the same steps as above we arrive at

− 4NA
uu + NA

dd −
8

9
NV

uu +
2

9
NV

dd

= −
7

9
kq̄ql0

2 k0F1 +
kN

k0

sN n

mq kq̄ql0
G . sA8d

APPENDIX B: SCALAR FLAVOR-MIXING FOUR-QUARK
CONDENSATES

Now we estimate the two scalar flavor-mixing conden-
sates in lines(10) and(12) at finite density.(For the vacuum
such an estimate is given in[29].) Let us first consider the
condensate in line(10). To evaluate such a condensate we
insert a complete set of QCD eigenstates after a Fierz trans-
formation

MA
ud = kVuūgmg5laud̄gmg5laduVl

=o
n

kVuūi
adl

dunlknud̄k
guj

buVl sladi j sladklsdaddgb

+ 1
2sgmdadsgmdgb + 1

2sgmg5dadsgmg5dgb

− sg5dadsg5dgbd , sB1d

and approximate the sum by

o
n

unlknu < uVlkVu + uV*lkV* u

+ o
b=1

3 E d3p

s2pd3

1

2Ep
uV pbspdlkpbspdVu,

sB2d

where uVl is the ground state of matter,uV*l denotes low-
lying excitations(e.g., particle-hole excitations), and uV pbl
means ground state plus pion with isospin indexb (other

states with mesons heavier than pions are suppressed by their
larger masses). The matrix elementskVuūi

adl
duVl and

kVuūi
adl

duV*l vanish due to quark flavor conservation yielding

MA
ud = o

b=1

3 E d3p

s2pd3

1

2Ep
kVuūi

adl
duVpbspdlkVpbspdud̄k

guj
buVl

3sladi j sladklsdaddgb + 1
2sgmdadsgmdgb

+ 1
2sgmg5dadsgmg5dgb − sg5dadsg5dgbd. sB3d

The soft pion theorem[8,44] allows one to calculate the
needed terms in linear density approximation as

kVuūi
adl

duV p1s0dl =
i

fp

1

12
dilsg5dadkVuq̄quVl, sB4d

kVuūi
adl

duV p2s0dl = −
1

fp

1

12
dilsg5dadkVuq̄quVl sB5d

and kVuūi
adl

duV p3s0dl=0. Inserting these matrix elements
into (B3) results in

MA
ud =

4

9p2

1

fp
2 kVuq̄quVl2 Q0

2 sB6d

with the cutoff Q0 coming from the momentum integral.
With Eq. (25) and kNskduq̄quNskdl=MN sN/mq one gets the
final result

MA
ud =

4

9p2

Q0
2

fp
2 kq̄ql0

2F1 +
sN n

mq kq̄ql0
G . sB7d

Using the same technique for the matrix element in line(12)
one finds

MV
ud = kVuūgmlaud̄gmladuVl = − MA

ud. sB8d

Q0 is adjusted to the vacuumr-v mass splitting. UsingQ0
=150 MeV we get the right experimental vacuum masses,
i.e., mrs0d=771 MeV and mvs0d=782 MeV [45] for our
chosen parameters,kq̄ql0=s−0.245 GeVd3, kas/p G2l0

=s0.33 GeVd4, as=0.38, mu=4 MeV, md=7 MeV, MN
0

=770 MeV, sN=45 MeV. Furthermore, we take the known
vacuum values ofMN, fp andmp.

APPENDIX C: TWIST-2 CONDENSATES

The quark twist-2 condensates appear in lines(15) and
(17), respectively, while the gluonic twist-2 condensates ap-

pear in lines(14) and (16), respectively. The operator Sˆ T̂
creates a symmetric and traceless expression with respect to

the Lorentz indices, i.e., for spin-2 Sˆ T̂sOabd=s1/2!dsOab

+Obad− 1/4gab Og
g and analogously for spin-4 conden-

sates. These condensates vanish in vacuum and therefore,
according to the low-density approximation(25), we need
only the nucleon matrix elements which can generally be
written as[26]
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kNskduŜT̂q̄gmDnquNskdl = − iSmn A2
qsm2d, sC1d

kNskduŜT̂Gm
aGanuNskdl = Smn A2

Gsm2d sC2d

for spin-2 operators and

kNskduŜT̂q̄gmDnDlDsquNskdl = iSmnls A4
qsm2d, sC3d

kNskduŜT̂Gm
rDnDlGrsuNskdl = − Smnls A4

Gsm2d sC4d

for spin-4 operators, respectively. The Lorentz structures are
defined as

Smn = kmkn − 1
4k2 gmn, sC5d

Smnls = Fkmknklks +
k4

48
sgmngls + gmlgns + gmsgnld

−
k2

8
skmkngls + kmklgns + kmksgln + knklgms

+ knksgml + klksgmndG . sC6d

The reduced matrix elements of quark twist-2 condensates
are defined as

Ai
qsm2d = 2E

0

1

dx xi−1fqNsx,m2d + s− 1di q̄Nsx,m2dg,

where qNsx,m2d and q̄Nsx,m2d are the quark and antiquark
distribution function inside the nucleon. We takeA2

su+dd

3s1 GeV2d=1.02 andA4
su+dds1 GeV2d=0.12[4], respectively.

The reduced matrix elements of gluon twist-2 condensates
are defined byAi

Gsm2d=2e0
1dx xi−1GNsx,m2d, with GNsx,m2d

as gluon distribution function inside the nucleon at the scale
m2. We useA2

Gs1 GeV2d=0.83 andA4
Gs1 GeV2d=0.04 [24],

respectively.

APPENDIX D: TWIST-4 CONDENSATES

Twist-4 condensates appear in the lines(18), (19), (21),
and (22). All twist-4 operators vanish in vacuum and there-
fore, according to the low-density approximation(25), one
needs only the nucleon matrix elements. The nucleon matrix
elements of symmetric and traceless twist-4 operators can be
decomposed as[36]

kNskduigsŜT̂sūfDm,G̃nag+gag5uduNskdl = 1
2 SmnsKu

g + Kd
gd,

sD1d

kNskdugs
2ŜT̂sūgmg5lauūgng5lauduNskdl

= 2 SmnsKu
1 + Kd

1 − Kud
1 d, sD2d

kNskdugs
2ŜT̂sūgmg5laud̄gng5ladduNskdl = 2 SmnsKud

1 d,

sD3d

kNskdugs
2ŜT̂sūgmlausūgnlau + d̄gnladdduNskdl

= 2 Smn sKu
2 + Kd

2d sD4d

with Smn defined in Eq.(C5). The other twist-4 condensates,
whereu andd are interchanged, are equal to the given ones
due to the assumed flavor symmetry. As pointed out in[36]
the coefficientsKu,d,ud

1,2 are related to the nucleon forward
scattering amplitude of the electromagnetic current. We take
the following parameter set: Ku

1=−0.112 GeV2, Ku
2

=0.110 GeV2, Ku
g=−0.300 GeV2, Kud

1 =−0.084 GeV2 as de-
fault. For thed quark we useKd

1,2,g=bKu
1,2,g with b=0.476

from [36].
We remark that the parametersKu,d,ud

1,2,g should be taken at a
hadronic scale ofm=1 GeV. Unfortunately, twist-4 conden-
sates are poorly known and even available only at a scale of
m=2.25 GeV. To evolve these parameters down tom
=1 GeV would require the knowledge of anomalous dimen-
sions which are not available. Here we use the above con-
densates, expressed byKu

1, Ku
2, Ku

g and Kud
1 , to demonstrate

that accounting for these condensates has little influence on
the mass splitting and individual mass shifts ofr and v
mesons.

For the twist-4 operator in line(23) we use the estimate
[21]:

kNskdumqq̄DmDnquNskdl . − Pm
qPn

qkNskdumqq̄quNskdl,

sD5d

wherePm
q is the average momentum carried by the quarkq

inside the nucleon. TakingPm
q ,km /6 [21] (km is the momen-

tum of nucleon) and making the operator symmetric and
traceless we get

kNskduŜT̂mqq̄DmDnquNskdl . − Smn
1
36mq kNskduq̄quNskdl.

sD6d

APPENDIX E: PARAMETERS FOR r-v MIXING

For ther-v mixing we have to distinguish between pro-
ton and neutron matrix elements. In particular we need the
following twist-2 and twist-4 condensates:

kpskduŜT̂q̄gmDnqupskdl = − iSmnA2
q,p, sE1d

kpskduŜT̂ūgmDnDlDsuupskdl = iSmnlsA4
q,p sE2d

with the proton stateupskdl and analog expressions for the
neutron. The reduced matrix elementsAi

q,psm2d are defined
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as Ai
q,psm2d=2e0

1dx xi−1fqpsx,m2d+s−1di q̄psx,m2dg, where
qpsx,m2d and q̄psx,m2d are the quark and antiquark distribu-
tion functions inside the proton. We use the following
parameters: A2

u,ps1 GeV2d=0.67, A2
d,ps1 GeV2d=0.35,

A4
u,ps1 GeV2d=0.091, A4

d,ps1 GeV2d=0.029; A2
u,n=A2

d,p and
A2

d,n=A2
u,p, which follow from unsx,m2d=dpsx,m2d and

upsx,m2d=dnsx,m2d, respectively[48].
Another needed matrix element is[47]

kpuūu − d̄dupl = 2 MN
mJ − mS

ms
= 1.3 GeV. sE3d

The isospin symmetry breaking parameter for the quark con-
densate isg=−0.008(cf. [12]), and the mass parameters of
higher resonances aremr8=1.465 GeV and mv8
=1.649 GeV[45], respectively. For the coupling constants
we take the valuesgrpp=6.0, grg=5.2 andgvg=3grg [11].
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