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QCD sum rule taking into account finite widths.
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1. Introduction

The experiments performed at the high-acceptance di-electron spectrometer HADES
[1] are aimed at verifying predictions of the behavior of light vector mesons in nuclear
matter. Due to the decay channelV → e+e− a measurement of the escaping di-electrons
can reveal directly the properties of the parent mesons,V = ρ,ω, . . ., sincethe interaction
probability of the e± with the ambient strongly interacting medium is small.

In relativistic heavy-ion collisions temperature effects play an important role, which
also cause a change of the properties of vector mesons. Indeed, the experiments of the
CERES collaboration at the CERN-SPS [2] can only be explained by assuming strong
medium effects, in particular for theρ meson (cf. [3, 4] and further references therein).
This seems to be confirmed at higher beam energies, as delivered by the relativistic
heavy-ion collider, since theρ meson, as measured via theπ+π− decay channel, suffers
somemodification [5]. In contrast, in heavy-ion collisions at typical SIS18 energies,
i.e., at beam energies around 1 A GeV, the in-medium behavior of vector mesons in
compressed nuclear matter can be studied, where temperature effects are small and
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may be neglected. Complementary to heavy-ion collisions one can seek for in-medium
modifications in reactions of hadronic projectiles [6] or real and virtual photons [7] at
nuclei, as already at nuclear saturation density sizeable modifications of vector mesons are
predicted.

There exists a vastly extended literature on the in-medium modification of hadrons.
We mention here only the Brown–Rho scaling hypothesis, according to which a mass
shif t of a vector meson is directly interrelated to a change of the chiral condensate [8],
and the vector manifestation [9], the effective Lagrangian approach [10], purely hadronic
approaches [11, 12], and QCD sum rules [13–16]. QCD sum rules [17] follow the idea of
duality (cf. [ 18]) by relating quantities expressed by partonic (quark and gluon) degrees of
freedom with hadronic observables. We take here the attitude to assume that the partonic
quantities are given and examine the QCD sum rule to elucidate the in-medium change of
theρ andω meson on a common footing. The corresponding current operators, expressed
by the interpolating quark field operatorsu andd have the formJρ

µ = 1
2(ūγµu−d̄γµd) and

Jω
µ = 1

2(ūγµu + d̄γµd), suggesting that the same partonicquantities enter the sum rules.
A common treatment ofρ andω mesons is necessary since our schematic transport model
studies [19] show that the relative shift of the peak positions and in-medium broadenings
must be known to arrive at firm predictions concerning the chances to identify both mesons
in experiments performed at HADES.

In a broader context such studies address the phenomenon “mass”. Within the standard
model, the masses of quarks and leptons are generated by spontaneous symmetry breaking
(in the Higgs mode) in the electro-weak sector, while the spontaneous symmetry breaking
(in the Goldstone mode) explains the features of the hadronic mass spectrum: light
Goldstone bosons (π , K , η with finite masses generated by an additional explicit symmetry
breaking) and heavier hadronic states emerge [20]. Within the QCD sum rule approach
[17, 18] the hadron masses can be related to condensates which represent non-perturbative
features of the QCD vacuum. This is highlighted by the Gell-Mann–Oakes–Renner
relation,m2

π f 2
π = −2mq〈q̄q〉 (which is actually related to PCAC), and the Ioffe formula,

MN = −8π2〈q̄q〉/M2 (cf. [21]). Both expressions, which are in leading order, suggest that
hadron masses are tightly related to the chiral condensate〈q̄q〉, which inturn is a measure
of the order parameter of the chiral symmetry breaking.

Since〈q̄q〉 changes with changing temperature [22] and density (cf.Fig. 1 in [23]),
one can expect a simultaneous change of the hadron masses. This was the very idea of
the Brown–Rho scaling hypothesis [8] which is modified according to [13]. This promoted
very much the physics programme at HADES with the motivation to verify, via an observed
change of the hadron masses, the chiral condensate’s change.

To give a loosely spoken analogy, one is seeking for the QCD analog of the
Zeeman/Stark effects: an external field (here: strong interaction mediated by surrounding
hadrons) changes the excitation spectrum of an atom (here: the hadronic excitation
spectrum above the QCD ground state). Very often the notion “mass shift” is used as
shorthand notation for a shift of the peak in the spectral function.

Our paper addresses such mass shifts ofρ andω mesons on the basis of the Borel QCD
sum rule; it isorganized as follows. InSection 2we recapitulate the basics of the QCD
sum rule approach. InSection 3we present a combined studyof the in-medium behavior
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Fig. 1. Results of the QCD sum rule evaluations forρ (left panels) andω (right panels) atn0. TV N is discarded.

of ρ andω mesons accounting for the effects of finite widths. Theρ–ω mass splitting is
discussed inSection 4. The conclusions can be found inSection 5.

2. QCD sum rule

Within QCD sum rules (QSR) the in-medium vector mesonsV = ρ,ω are considered
as resonances in the current–current correlation function

Πµν(q, n) = i
∫

d4x eiq·x 〈T J V
µ (x)J V

ν (0)〉n, (1)

whereqµ = (E, q) is the meson four momentum,T denotes the time ordered product of
the respective meson current operatorsJ V

µ (x), and〈· · ·〉n stands for the expectation value
in medium. In what follows, we focus on the ground state of low-density baryon matter
approximated by a Fermi gas with nucleon densityn. We consider isospin symmetric
nuclear matter, where theρ–ω mixing effect isnegligible.

The correlator (1) can be reduced to13Π
µ
µ (q2, n) = Π (V )(q2, n) for a vector meson

at rest,q = 0, in the rest frame of matter. In each of the vector meson channels the
corresponding correlatorΠ (V )(q2, n) satisfies the twice subtracted dispersion relation,
which can be written withQ2 ≡ −q2 = −E2 as

Π (V )(Q2)

Q2 = Π (V )(0, n)

Q2 − Π (V )′(0) − Q2
∫ ∞

0
ds

R(V )(s)

s(s + Q2)
, (2)

with Π (V )(0, n) = Π (V )(q2 = 0, n) and Π (V )′(0) = dΠ (V )(q2)

dq2 |q2=0 as subtraction

constants, andR(V )(s) ≡ −ImΠ (V )(s, n)/(πs).
For largevalues ofQ2 one can evaluate the r.h.s. of Eq. (1) by the operator product

expansion (OPE) leading to

Π (V )(Q2)

Q2 = −c0 ln(Q2) +
∞∑

i=1

ci

Q2i
, (3)
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where the coefficientsci include the Wilson coefficients and the expectation values of the
corresponding products of the quark and gluon field operators, i.e. condensates. Performing
a Borel transformation of the dispersion relation (2) with appropriate parameterM2 and
taking into account the OPE (3) one gets the basic QSR equation

Π (V )(0, n) +
∫ ∞

0
ds R(V )(s) e−s/M2 = c0 M2 +

∞∑
i=1

ci

(i − 1)!M2(i−1)
. (4)

The advantage of the Borel transformation is (i) the exponential suppression of the high-
energy part ofRV (s), and (ii) the possibility to suppress higher-order contributions to the
r.h.s. sum. Choosing sufficiently large values of the internal technical parameterM one can
truncate the sum in a controlled way, in practice ati = 3.

For the subtraction constantsΠ (V )(0, n) in Eq. (2) we useΠ (ρ)(0, n) = n/(4MN ),
Π (ω)(0, n) = 9n/(4MN ), which are actually the Thomson limit of theV N scattering
processes, but also coincide with Landau damping terms elaborated in [24] for the hadronic
spectral function entering the dispersion relation without subtractions. For details about
the connection of subtraction constants and Landau damping term we refer the interested
reader to [25].

In calculating the density dependence of the condensates entering the coefficientsci

we employ the standard lineardensity approximation, which is valid for not too large
density values. This gives for the chiral quark condensate〈qq〉n = 〈qq〉0 + σN

2mq
n,

where we assume here isospin symmetry for the light quarks, i.e.mq = 5.5 MeV and
〈q̄q〉0 = −(0.24 GeV)3. Thenucleon sigma term isσN = 45 MeV. The gluon condensate
is obtained as usual employing the QCD trace anomaly〈αs

π
G2〉n = 〈αs

π
G2〉0 − 8

9 M0
N n,

whereαs = 0.38 is the QCD coupling constant andM0
N = 770 MeV is the nucleon mass

in the chiral limit. The vacuum gluon condensate is〈αs
π

G2〉0 = (0.33 GeV)4.
The coefficientc3 in Eq. (4) contains also the mass dimension-6 4-quark condensates

(cf. [26] for a recent calculation of corresponding matrix elements)〈(q̄γµλaq)2〉n ,
〈(ūγµλau)(d̄γ µλad)〉n , 〈(q̄γµλaq)(s̄γ µλas)〉n , and〈(qγµγ 5λaq)2〉n which are common
for ρ and ω mesons. On this level,ρ and ω mesons differ only by the condensate
±2〈(ūγµγ5λ

au)(d̄γ µγ5λ
ad)〉n (cf. [16]), causing the small ρ–ω mass splitting in

vacuum [17]. Keeping in mind the important role of the 4-quark condensate [27, 28]
for the in-medium modifications of the vector mesons, we employ the following
parameterization:

〈(q̄γµγ 5λaq)2〉n = 16

9
〈qq〉2

0 κ̂0

[
1 + κ̂N

κ̂0

σN

mq〈q̄q〉0
n

]
. (5)

The parameter̂κ0 reflects a deviation from the vacuum saturation assumption. (The
caseκ̂0 = 1 corresponds obviously to the exact vacuum saturation [18].) To control
the deviation of the in-medium 4-quark condensate from the mean-field approximation
we introduce the parameter̂κN . An analog procedure applies for the other 4-quark
condensates, each with its own̂κ0 and κ̂N , which sum up to a parameterκ0 and a
parameterκN . As seen in Eqs. (5) and (9) below,κN parameterizes the density dependence
of the summed 4-quark condensates;κ0 is adjusted to the vacuum masses. Below we
vary the poorly constrained parameterκN to estimate the contribution of the 4-quark
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condensates to the QSR with respect to the main trends of the in-medium modification
of the vector meson spectral function. (Strictly speaking,κ0 andκN differ for ρ andω

mesons due to contributions ofthe above mentioned flavor-mixing condensate; in addition,
in medium a twist-4 condensate makes furtherρ and ω to differ [15]. However, the
differences can be estimated to be sub-dominant. Therefore, we use in the present work
one parameterκN , keeping in mind that it may slightly differ for different light vector
mesons.)

Using the above condensates and usual Wilson coefficients one gets as relevant terms
for mass dimension≤ 6 and twist ≤ 2 [27, 28]

c0 = 1

8π2

(
1 + αs

π

)
, (6)

c1 = −3m2
q

4π2
, (7)

c2 = mq〈qq〉0 + σN

2
n + 1

24

[〈αs

π
G2

〉
0
− 8

9
M0

N n

]
+ 1

4
A2MN n, (8)

c3 = −112

81
παsκ0〈qq〉2

0

[
1 + κN

κ0

σN

mq〈qq〉0
n

]
− 5

12
A4M3

N n

+ 4αs

81π f 2
π

〈q̄q〉2
0Q2

0(2 ± 9)

[
1 + σN

mq〈qq〉0
n

]
. (9)

The terms withA2,4 in c2,3 correspond to the derivative condensates from non-scalar
operators as a consequence of the breaking of Lorentz invariance in the medium. These
condensates are proportional to the moments of quark and anti-quark distributions inside
the nucleon at scaleµ2 = 1 GeV2 (see for details [13]). Our choice of the momentsA2

andA4 is 1.02 and 0.12, respectively. The last line in Eq. (9) stemsfrom the flavor-mixing
condensate,〈ū · · · ud̄ · · · d〉n , which has been evaluated with a technique similar to [17].
Q0 ∼ O (200 MeV) is a cut-off parameter from momentum integrals. For our purposes we
can neglect terms related toQ0.

The value ofκ0 in Eq. (9) is related to such a choice of the chiral condensate〈qq〉0
to adjust the vacuum vector meson masses. In our QSR we have usedκ0 = 3, obtaining
mρ,ω(n = 0) = 777 MeV closeto the nominal vacuum values. The ratioκN /κ0 in the
parameterization (5) is restricted by the condition〈(qγµλaq)2〉n ≤ 0, so that one gets
0 ≤ κN ≤ 4 as reasonable numerical limits when consideringn ≤ n0, as dictated by our
low-density approximation.

The case of finite baryon density andtemperature has been considered in [27]. Here we
focus on density effects with the reasoningthat temperature effects below 100 MeV are
negligible.

To model the hadronic side of the QSR (4) we make thestandard separation of the vector
meson spectral densityR(V ) into a resonance part and a continuum contribution by means
of the threshold parametersV

R(V )(s, n) = FV
S(V )(s, n)

s
Θ(sV − s) + c0 Θ(s − sV ), (10)
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whereS(V )(s, n) stands for the resonance peak in the spectral function; the normalization
FV is unimportant for the following consideration. In vacuum, this ansatz is justified
since the time-reversed reaction,e+e− → V , which isdirectly related toR(V ), exhibits a
prominent vector meson peak at low energies and a smooth continuum at higher energies.
The sum rule can be then cast into the form

∫ sV
0 dsS(V )(s, n) e−s/M2

∫ sV
0 dsS(V )(s, n)s−1e−s/M2

=
c0 M2

[
1 −

(
1 + sV

M2

)
e−sV /M2

]
− c2

M2 − c3
M4

c0

(
1 − e−sV /M2

)
+ c1

M2 + c2
M4 + c3

2M6 − Π (V )(0,n)

M2

. (11)

Given as such, the sum rule allows one to test the consistency of aparticular model
for the spectral functionS(V ) as exercised, e.g., in [10]. In the zero-width approxima-
tion, S(V )(s, n) ∝ δ(s − m̃2

V (n)), the l.h.s. of Eq. (11) becomes simplym̃2
V (n). In this

senseone could also consider the l.h.s. as averaged mass, denoted asm̄2
V (n), keeping

in mind that it represents a normalized moment of the hadron strengthS(V ). Then the
sum rule Eq. (11) determines the parameters̃m2

V or m̄2
V by the density dependence of

the condensates, encoded in the coefficientsc1,2,3 from Eqs. (6)–(9), and the subtraction
constantΠ (V )(0, n). Without further explication ofS(V ) nothing can be deduced from
Eq. (11) on in-medium mass shifts and broadening (see, however, [13] where, after deter-
mining the mass parameterm̃V (n) an estimate of the corresponding width is attempted).

3. Finite width effects

Our intention is now to evaluate the QCD sum rule Eq. (11) by taking into account the
finite widths of the vector mesons. Note that already in vacuum theρ andω widths differ
noticeably, 150.7 and 8.43 MeV, respectively. This must be reflected in the form ofS(V ).

Reference [16] made for theρ meson theansatz

S(V )(s, n) = γV (n)ΓV (s)

(s − m2
V (n))2 + (γV (n)ΓV (s))2

(12)

with the two parameters,mV (n) andγV (n), and someparameterization of the widthΓV (s).
Clearly, the one Eq. (11) cannot determine the two unknownsmV andγV , ratheronly the
correlation ofγV (mV ) is determined at a given density. In line with the above ansatz (12),
one can use a more realistic form for the resonance spectral densityS(V ) based on the
general structure of the in-medium vector meson propagator

S(V )(s, n) = − γV (n) ImΣV (s, n)

(s− 0
m

2

V (n) − ReΣV (s, n))2 + (γV (n)ImΣV (s, n))2

, (13)

with ReΣV (s, n) and ImΣV (s, n) as real and imaginary parts of the in-medium vector
meson self-energy. In the spirit of Eq. (12) [16] the meson mass parametermV (n) and
the width factorγV (n) become density dependent in nuclear matter to have a degree of
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freedom for the “request” of the QSR. Thisdependence is determined by the QCD sum
rule Eq. (11) and mainly governed by the QCD condensates. (An analogous approach with
γρ = 1 was used in [14].) The in-medium vector meson mass is determined by the pole

position of the meson propagator, i.e.,m2
V = 0

m
2

V (n) + ReΣV (s = m2
V (n), n).

Within the linear density approximation thevector meson self-energy is given by

ΣV (E, n) = Σ vac
V (E) − nTV N (E), (14)

where E = √
s is the meson energy,Σ vac

V (E) = ΣV (E, n = 0), and TV N (E) is the
(off-shell) forward meson–nucleon scattering amplitude in free space. The renormalized
quantity Σ vac

ρ is summarized in the Appendix A in [29]. For theω meson we absorb as

usual ReΣ vac
ω in

0
m

2

ω and put simply ImΣ vac
ω = −mωΓωΘ(E − 3mπ) with the vacuum

values of massmω and widthΓω.
The described framework is well defined, supposedTV N is reliably known.1

Unfortunately, the determination ofTV N is hampered by uncertainties (cf. results in [10]
and [12]). ImTV N is more directly accessible, while ReTV N follows by a dispersion relation
with sometimes poorly known subtraction coefficients. Since our emphasis here is to
include the collision broadening and other finite width effects in the spectral function, we

absorb, as an intermediate step, ReTV N in
0
m

2

V (n) thus neglecting a possible strong energy
dependence. In such a way, the uncertainties of ReTV N become milder sincemV (n) is then
mainly determined by the QSR. Neglecting the energy dependence of ReTV N one discards
a potentially rich structure ofS(V ), such as, for instance, a double-peak structure obtained
in [12] for the ω meson or in [11] for the ρ meson. Afterwards the importance of ReTV N

is checked.
We takethe needed scattering amplitudeTV N (E) for ρ andω mesons from results of the

detailed analysis of pion- and photon–nucleon scattering data performed recently in [12] on
the footing of the Bethe–Salpeter equation approach with four-point meson–baryon contact
interactions and a unitary condition for the coupled channels.

To test the importance of this particular form ofTV N we proceed to evaluate the
sum rule2 in three steps: (i) first neglectTV N at all, (ii) include only ImTV N , and (iii)
include both ImTV N and ReTV N as well. The results are exhibited inFigs. 1–3. Compared

1 Then,γV = 1 andmV (n) = mV (0), and the QSRacts merely as consistency check, as mentioned above.
2 At a given baryon densityn the continuum thresholdsV is determined by requiring maximum flatness of

mV (n; M2, sV ) as a function ofM2 within the Borel windowM2
min · · · M2

max. The minimum Borel parameter

M2
min is determined such that the terms of orderO(M−6) on the OPE side Eq. (4) contribute not more that 10%.

Selecting such sufficiently large values ofM2
min suppresses higher-order contributions in the OPE Eq. (4) and

justifies the truncation. Typically,M2
min(10%) is in the order of 0.6 GeV2. The values forM2

max are roughly
determined by the “50% rule”, i.e., the continuum partof the hadronic side must not contribute more than 50%
to the total hadronic side to be sufficiently sensitiveto the resonance part. According to our experience [27–
29], mV is not very sensitive to variations ofM2

max. We can, therefore, fix the maximum Borel parameter by
M2

max = 1.5(2.4) GeV2 for the ω(ρ) meson, in good agreement with the “50% rule”. The sensitivity of the
results on these choices of the Borel window is discussed in [29]. Flat curvesmV (n; M2, sV ) within the Borel
window represent a prerequisite for the stability of the sum rule analysis.
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Fig. 2. As inFig. 1but with ImTV N from [12].
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Fig. 3. As inFig. 2but with both ReTV N and ImTV N from [12].

to vacuum, the in-medium changes of the r.h.s. of Eq. (11) require for theρ meson
more strength at low energy which is accomplished, for the given parameterization, by
a down-shift of the peak position or a larger width. With increasingγ the masses are
shif ted to larger values. This can be understood in the following way: a larger width
gives more contribution to the integrals on the l.h.s. of Eq. (11) at lowerenergy; this is
compensated by an up-shift of the peak position. Note thatγ = 0 reproduces the zero-
width approximation.

One observes inFigs. 1–3 a strong sensitivity on the density dependence of the
4-quark condensate. The sensitivity against variations ofκN is larger than that ofγ . (The
displayed range ofγ covers an enormous range of widths.) Remarkable is the tendency of
a down-shift of the ρ mass and a related up-shift of theω mass when restricting the width
parametersγV to smaller values. The overall pattern seen inFigs. 1–3 is quite robust. The
numerical details, however, change under variations ofTV N . To have a fixpoint let us
considerκN = 3 (which will later turn out as relevant value). The peak position of the
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ρ meson is stable with respect to variations ofTV N . This maybe attributed to the large
vacuum width ofρ; changes of the amount ofTV N by γ cause only small changes of the
ρ peak position. Theω meson, in contrast, seems to sit at some borderline: the variations
of TV N can cause an up-shift or a down-shift. Inclusion of ImTV N alone results in a tiny
effect, while ReTV N pushes the peak further up. Larger values ofκN are required to get
theω meson’s peak position down-shifted.

In contrast to the universal scaling hypothesis [8] there isno unique in-medium behavior
of ρ and ω mesons. Rather, the strikingly different values of the subtraction constants
ΠV (0, n) cause the different behavior ofρ andω mesons, as stressed in [24].3

4. ρ–ω mass splitting

Inspecting Figs. 1–3 seems to point to a lacking predictive power of the QSR. However,
if one is interested in the peak position of the spectral function (usually called “in-medium
mass”), and not in the very details of the shape ofS(V ), and ifone assumes that the essential
features of the in-medium broadening are sufficiently accurately described by ImTV N , one
has to putγV = 1. Then one arrives at the in-medium mass splitting ofρ andω mesons
as displayed inFig. 4. The mass splitting is surprisingly large already at normal nuclear
densityn0. Themagnitude of the mass splitting can be traced back to the particular form
of ImTV N from [12]. (Using ImTV N from [10] results in a smaller splitting.) The driving
force of theρ–ω mass splitting, however, is the difference ofΠ ω(0, n) andΠ ρ(0, n).

Theρ andω mass shifts are determined by the still unconstraint parameterκN . Once
oneof the vector mesons’s peak position is experimentally determined the other one is
fixed by the correlation displayed inFig. 4, up to someuncertainty caused by the actual
ImTV N or the freedom inγV .

3 The detailed analysis of further terms in the OPE side of the sum rule will be relegated to a separate study.
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A presently running experiment [7] measures the reactionγ + A → X + ω with
identifying theω via the 3γ Dalitz decay. First data analysis [7] seems to exclude any
up-shift, and even a weak down-shift ofω strength is compatible with the data. If this
result gets confirmed it would require, within the present approach, thatκN > 3, i.e.,
a strong density dependence of the4-quark condensate. In other words, this would give
the first direct evidence for a change of a condensate. Even a null effect forω mesons
decaying inside the target nucleus would require a strong density dependence of the
4-quark condensate, as evidenced byFig. 4. In fact, atn0 and forκN = 3 the4-quark
condensate drops to 60% of its vacuum value.

5. Conclusion

In summary, we present here an analysis of the QCD sum rule for the in-medium
behavior ofρ andω mesons. Truncating the “QCD side” of the sum rule at mass dimension
6 and twist 2 we find a strong sensitivity of theρ andω peak positions on the density
dependence of the 4-quark condensate. Assuming that we have at our disposal a sufficiently
realistic description of the collision broadening, described in low-density approximation
by the off-shell forward meson–nucleon scattering amplitude ImTV N , the in-medium mass
shifts ofρ andω mesons are related essentially to one parameter. Experiments identifying
theω decay in nuclear matter then constrain this parameter, thus fixing also the in-medium
ρ mass, up to uncertainties inherent in the sum rule approach. If an up-shift ofω strength
can be experimentally excluded, the present QCD sum rule analysis points to a strong
reduction of the 4-quark condensate already at nuclear saturation density.

On a quantitative level there is some uncertainty caused by the actual form of ImTV N ,
in particular for theρ meson which influences theρ–ω mass splitting. Poorly known twist-
4 condensates modify further this splitting anddeserve additional investigations. Given
the importance of the 4-quark condensate, one could be afraid of the influence of higher
order condensates. Here, the hope is that an appropriate Borel window suppresses these
higher orders. We also found some quantitativechanges when including explicitly ReTV N

in the spectral function. But the overall pattern of the in-medium modifications ofρ andω

mesons isstable.
In contrast toρ andω mesons, which are insensitive against changes of the genuine

chiral condensate,〈q̄q〉, theφ meson depends sensitively on the chiral strange condensate,
〈s̄s〉, and only very weakly on the 4-quark condensate.

With respect to the future accelerator project SIS200/300 at GSI an extension of the
present approach to the in-medium behavior ofD mesons is challenging.
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[4] K. Gallmeister, B. Kämpfer, O.P. Pavlenko, C. Gale, Nuclear Phys. A 698 (2002) 424.
[5] J. Adams etal., STAR,nucl-ex/0307023.
[6] K. Ozawa et al., Nuclear Phys. A 698 (2002) 535.
[7] V. Metag, talk at the workshop “Hadrons and Nuclei”, September 8–11, 2003, Meissen, Germany;

D. Trnka, CB/TAPS Collaboration at ELSA (to be published).
[8] G.E. Brown, M. Rho, Phys. Rep. 363 (2002) 82.
[9] M. Harada, C. Sasaki, Phys. Lett. B 537 (2002) 280.

[10] F. Klingl, N. Kaiser, W. Weise, Nuclear Phys. A 624 (1997) 527; Z. Phys. A 356 (1996) 193;
F. Klingl, T. Waas, W. Weise, Nuclear Phys. A 650 (1999) 299; Phys. Lett. B 431 (1998) 254.

[11] M. Post, S. Leupold, U. Mosel, Nuclear Phys. A 689 (2001) 753.
[12] M.F.M. Lutz, Gy. Wolf, B. Friman, Nuclear Phys. A 706 (2002) 431.
[13] T. Hatsuda, S.H. Lee, Phys. Rev. C 46 (1992) R34;

T. Hatsuda, S.H. Lee, H. Shiomi, Phys. Rev. C 52 (1995) 3364;
T. Hatsuda, Y. Koike, S.H. Lee, Nuclear Phys. B 394 (1993) 221;
T. Hatsuda, T. Kunihiro, M. Shimizu, Phys. Rev. Lett. 82 (1999) 2840;
T. Hatsuda, Nuclear Phys. A 698 (2002) 243.

[14] M. Asakawa, C.M. Ko, Phys. Rev. C 48 (1993) R526; Nuclear Phys. A 560 (1993) 399.
[15] S. Leupold, U. Mosel, Phys. Rev. C 58 (1998) 2939.
[16] S. Leupold, Phys. Rev. C 64 (2001) 015202.
[17] M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nuclear Phys. B 147 (1979) 385.
[18] T.D. Cohen, R.J. Furnstahl, D.K. Griegel, X. Jin, Prog. Part. Nucl. Phys. 35 (1995) 221.
[19] Gy. Wolf, O.P. Pavlenko, B. K¨ampfer,nucl-th/03060209.
[20] A. Hosaka, H. Toki, Quarks, Baryons, and Chiral Symmetry, World Scientific, Singapore, 2001.
[21] A.W. Thomas, W. Weise, The Structure of the Nucleon, Wiley-VCH, Berlin, 2001.
[22] F. Karsch, Lecture Notes of Physics 583 (2001) 209.
[23] S. Zschocke, B. K¨ampfer, O.P. Pavlenko, Gy. Wolf, in: I. Iori, A. Maroni (Eds.), XL Int. Winter Meeting on

Nucl. Phys., Bormio, Jan. 21–26, 2002, p. 102.nucl-th/0202066.
[24] A.K. Dutt-Mazumder, R. Hofmann, M. Pospelov, Phys. Rev. C 63 (2000) 015204.
[25] W. Florkowski, W. Broniowski, Nuclear Phys. A 651 (1999) 397.
[26] E.G. Drukarev, M.G. Ryskin, V.A. Sadovnikova, V.E. Lyubovitskij, Th. Gutsche, A. Faessler,

hep-ph/0306132.
[27] S. Zschocke, O.P. Pavlenko, B. K¨ampfer, Eur. Phys. J. A 15 (2002) 529.
[28] S. Zschocke, O.P. Pavlenko, B. K¨ampfer, Phys. Lett. B 562 (2003) 57.
[29] S. Zschocke, O.P. Pavlenko, B. K¨ampfer,hep-ph/0308070.

http://www.arxiv.org/archive/nucl-ex/0307023
http://www.arxiv.org/archive/nucl-th/03060209
http://www.arxiv.org/archive/nucl-th/0202066
http://www.arxiv.org/archive/hep-ph/0306132
http://www.arxiv.org/archive/hep-ph/0308070

	Finite-width QCD sum rules for rho and omega mesons
	Introduction
	QCD sum rule
	Finite width effects
	rho--omega mass splitting
	Conclusion
	Acknowledgements
	References


