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Abstract. We report on the recent evaluation of the two-photon electron self energy to all orders
in the interaction with the Coulomb field of the nucleus. With the present results at hand the major
theoretical uncertainty is diminished, which provides predictions of the ground-state energy with a
relative accuracy of about 10−6 for the hydrogenlike uranium and lead systems. This allows for
high-precision tests of quantum electrodynamics (QED) in strong fields that are expected to be
experimentally available in the near future.
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An ideal scenario to test quantum electrodynamics (QED) in the strong field limit
is provided by the strong electric field of the nucleus in highly charged ions, e.g.,
by measurements of the Lamb shift at utmost precision. Therefore, at the SIS/ESR
facilities in Darmstadt one is aiming for an accuracy of about 1 eV in measurements
of the ground-state Lamb shift for hydrogenlike uranium in the near future [1].
Theoretical evaluations on the same level of accuracy require calculations of the
complete set of radiative corrections of order α2 (α is the fine structure constant)
but to all orders in the coupling constant Zα to the Coulomb field of the nu-
cleus. The set of these second-order diagrams includes all various combinations of
the first-order self-energy (SE) and vacuum-polarization (VP) graphs. The present
status of the theoretical predictions for the Lamb shift in different one-electron
ions is presented in [2]. Most of these diagrams have already been calculated in
recent years. However, calculations of the most difficult set, the second-order self-
energy correction (SESE) are yet incomplete. In this paper we report the present
status of this challenging theoretical problem for the most interesting cases of the
hydrogenlike uranium and lead systems.

The general renormalization scheme for the two-photon self energy was con-
sidered in more detail in [3]. The loop-after-loop diagram SESE (a) can be divided
into an irreducible and a reducible part. For an elegant way deriving the corre-
sponding energy shifts in reducible as well as irreducible diagrams of bound-state
QED we refer to the two-times Green-function method [4]. The irreducible part
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Figure 1. The graphical representation of the partial wave renormalization approach. The bar
in the irreducible part denotes the exclusion of the state A in the sum over the intermediate
states n. The double and ordinary solid lines with the cross denote the quadratic denominators
in the bound and free electron propagators. The triangles represent Fourier expansion of the
bound state A wavefunction into free electron states.

SESE (a) (irred) is invariant under covariant gauges [5] and therefore this part can
be renormalized and calculated separetely. In [6] the corresponding energy shift
of the SESE (a) (irred) diagram has already been evaluated for the nuclear charge
numbers Z = 70, 80, 90 and 92, and in [7, 8] for arbitrary nuclear charge numbers
in the range 3 � Z � 92. In the high-Z limit the results of [6, 7] and [8] are
in coincidence with each other (�E

SESE(a)(irred)
1s = −0.97 eV for uranium). But in

the low-Z limit a disagreement has been obtained. This discrepancy is a subject of
several controversial statements made in a series of subsequent papers [8–12]. For
more details on this point we refer also to [13]. We would like to emphasize that
while the discrepancy between the different calculations of the SESE (a) (irred)
contribution for low-Z values still needs to be resolved, for the high-Z region all
the calculations [6–8] give identical results.

Now we shall consider the SESE (a) (red) as well as the SESE (b), (c) di-
agrams. The renormalized expression for the SESE-contribution is depicted in
Figure 1. In the Feynman gauge only the sum of the graphs in the renormalized
expression in Figure 1 is ultraviolet as well as infrared convergent. Therefore these
diagrams should be calculated together. According to the partial wave renormal-
ization method [14, 15] all single terms, including the mass counterterms, are
decomposed in partial waves. Accordingly, the renormalized expression of the two-
photon electron self energy can be expressed as a double sum over two partial
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Table I. Partial wave contributions �E
(l1,l2)
1s to �E

SESE(a)(red),(b),(c)(ren)
1s for H-like U and Pb

(in eV)

U l2 = 0 l2 = 1 l2 = 2 l2 = 3 Pb l2 = 0 l2 = 1 l2 = 2 l2 = 3

l1 = 0 0.699 0.384 0.106 −0.059 l1 = 0 0.439 0.158 0.051 −0.04

l1 = 1 0.384 −0.188 0.563 l1 = 1 0.186 −0.092 0.228

l1 = 2 −0.427 −0.376 l1 = 2 −0.135 −0.124

l1 = 3 0.501 l1 = 3 0.172

waves l1 and l2:

�E
SESE(a)(red),(b),(c)(ren)

A =
∞∑

l1=0

∞∑

l2=0

�E
(l1,l2)

A . (1)

The decisive advantage of the PWR approach is that every single partial wave is
already UV- as well as IR-finite.

For the ground state |A〉 = |1s〉 of uranium and lead we were able to compute
4 partial waves l1, l2 = 0, 1, 2, 3 with the limitation l1 + l2 � 3 for the sum.
The individual terms �E

(l1,l2)
1s of the double partial–wave expansion for uranium

(Z = 92) and lead (Z = 82) ions are listed in Table I.
The inaccuracy of our calculations is determined by the unstability of the nu-

merical results with the change of the number of grid points within the B-spline ap-
proximation [16] for the solution of the radial Dirac equation from N = 23 to N =
46. We estimate this inaccuracy as 12%. The final value �E

SESE(a)(red),(b),(c)(ren)
1s was

obtained by an extrapolation from the numbers given in Table I. Accordingly, we
evaluated the accumulated sums

Sl =
l1+l2=l∑

l1,l2

�E
(l1,l2)

1s (2)

for l = 0, 1, 2 and 3. Corresponding values in eV for U and Pb are

U: S0 = 0.70, S1 = 1.47, S2 = 0.96, S3 = 1.59,

Pb: S0 = 0.439, S1 = 0.783, S2 = 0.607, S3 = 0.843.
(3)

The values for Sl reflect again the behaviour of the corresponding accumulated
sums for the first-order self-energy [8]. Therefore we performed the same kind of
extrapolation as in [8] leading to the energy shift

�E
SESE(a)(red),(b),(c)(ren)

1s (Z = 92) = S2 + S3

2
= 1.28 ± 0.15 eV,

�E
SESE(a)(red),(b),(c)(ren)

1s (Z = 82) = S2 + S3

2
= 0.73 ± 0.09 eV.

(4)

It is interesting to note that the so-called sign approximation [17] gives already
≈40% of the exact result. The limit of the number of partial waves was set by
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the extremely large computer time required. The calculations were performed at
the computer center of the Technical University of Dresden on the CRAY-T3E
supercomputer with 32 parallel processors. The inclusion of 4 partial waves l1, l2 =
0, 1, 2, 3 in both partial wave expansions with the limitation l1 + l2 � 3 required
more than 20 thousand single-processor CPU hours for each ion (U,Pb). The in-
accuracy assigned to our results for SESE (a) (red) and SESE (b), (c) corrections
remains the main source of the total error in the theoretical Lamb shift predic-
tion. We expect that the inaccuracy can be substantially diminished within the
framework of the method described above.

Acknowledgements

I. G., L. L., and A. N. are grateful to the Technische Universität Dresden and
the Max-Planck-Institut für Physik komplexer Systeme (MPI) for the hospitality
and for financial support from the MPI, DFG, and RFBR (grant no. 99-02-18526).
G. S., G. P., and S. Z. acknowledge financial support from BMBF, DFG, and GSI.

References

1. Stöhlker, T. et al., The 1s lamb shift in hydrogenlike uranium measured on cooled, decelerated
ion beams, preprint (2000), submitted to Phys. Rev. Lett.

2. Mohr, P., Plunien, G. and Soff, G., Phys. Rep. 293 (1998), 227.
3. Labzowsky, L. N. and Mitrushenkov, A. O., Phys. Rev. A 53 (1996), 3029.
4. Shabaev, V. M., Phys. Rev. A 49 (1994), 4489;

Shabaev, V. M. and Fokeeva, I. G., Phys. Rev. A 50 (1994), 4521.
5. Blundell, S. A., Phys. Rev. A 47 (1993), 1790.
6. Mitrushenkov, A. O., Labzowsky, L. N., Lindgren, I., Persson, H. and Salomonson, S., Phys.

Lett. A 200 (1995), 51.
7. Mallampalli, S. and Sapirstein, J., Phys. Rev. Lett. 80 (1998), 5297.
8. Goidenko, I. A., Labzowsky, L. N., Nefiodov, A. V., Plunien, G. and Soff, G., Phys. Rev. Lett.

83 (1999), 2312.
9. Yerokhin, V. A., Phys. Rev. 62 (2000), 012508.

10. Eides, M. A., Grotch, H. and Shelyuto, V. A., Theory of light hydrogenlike atoms, hep-
ph/0002158.

11. Manohar, A. V. and Stewart, I. W., Logarithms of α in QED bound states from the renormal-
ization group, hep-ph/0004018.

12. Goidenko, I. A., Plunien, G., Nefiodov, A., Zschocke, S., Labzowsky, L. N. and Soff, G.,
No regularization corrections to the partial-wave renormalization procedure, hep-ph/0006220;
to appear in Phys. Rev. A (2000).

13. Goidenko, I. A., Labzowsky, L. N., Nefiodov, A. V., Plunien, G., Zschocke, S. and Soff, G.,
In: Proc. to the Satellite Meeting of the 10th ICAP Conf., Florence, Italy, 1–3 June 2000.

14. Persson, H., Lindgren, I. and Salomonson, S., Phys. Scripta T46 (1993), 125;
Lindgren, I., Persson, H., Salomonson, S. and Ynnerman, A., Phys. Rev. A 47 (1993), R4555.

15. Quiney, H. M. and Grant, I. P., Phys. Scripta T46 (1993), 132; J. Phys. B 27 (1994), L299.
16. Johnson, W. R., Blundell, S. A. and Sapirstein, J., Phys. Rev. A 37 (1988), 307.
17. Goidenko, I., Labzowsky, L., Nefiodov, A., Plunien, G., Soff, G. and Zschocke, S., Hyp.

Interact. 127 (2000), 293.


