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Abstract. Atomic binding energies are calculated at utmost precision. A report on the current status
of Lamb-shift predictions for hydrogenlike ions, including all quantum electrodynamical corrections
to first and second order in the fine structure constant α is presented. All relevant nuclear effects are
taken into account. High-precision calculations for the Lamb shift in hydrogen are presented. The
hyperfine structure splitting and the g factor of a bound electron in the strong electromagnetic field
of a heavy nucleus is considered. Special emphasis is also put on parity violation effects in atomic
systems. For all systems possible investigations beyond precision tests of quantum electrodynamics
are considered.
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1. Introduction

Quantum Electrodynamics (QED) can claim to be one of the most precisely tested
theories of physics. One impressive example is the g factor of the free electron
which is known today as

gfree = 2 + 2 × 1 159 652 188.4(4.3) × 10−12 (Experiment [1])
gfree = 2 + 2 × 1 159 652 216.0(1.2)(67.8) × 10−12 (Theory [2]).

(The second error indicated in the second line is due to the value of α employed
in this calculation [3].) Similar precisions are nowadays obtained in systems like
positronium or the Lamb shift in hydrogen where insufficiently known nuclear
parameters limit the accuracy of theoretical predictions [4, 5]. The electric field
involved in all these systems is rather low, however, compared to the strongest elec-
tromagnetic fields accesible to experimental investigation today. In atomic systems,
these strong fields are obtained by stripping all but one electron from a heavy atom,
� Dedicated to Prof. A. Wapstra on the occasion of his 78th birthday.
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Figure 1. Expectation value of the electric field strength for the lowest-lying states of a
hydrogenlike atom in the range Z = 1–92.

e.g., lead or uranium. The single electron is bound in a system similar to hydrogen,
and the whole system is therefore called hydrogen-like system. The expectation
value of the electric field strength in these systems is depicted in Figure 1. The
field strength at the nuclear surface is even higher. For example, at the surface of a
uranium nucleus, |E| ∼= 2 · 1019 V/cm. This is only a factor of 2 less than the field
strength in superheavy systems with Z � 170 where spontaneous pair production
is predicted to take place if the total charge can be confined in a sufficiently small
volume for a sufficiently long time [6–8]. It seems evident that in such strong fields
‘normal’ atomic physics – valid for a hydrogen atom where the field probed by
the electron is six orders of magnitudes smaller – may be questioned. A precise
knowledge about the validity of QED in strong external fields is also very promis-
ing for the detection of new physics beyond QED [9]. Thus it is a primary goal to
explore the behaviour of electrons in some of the strongest electromagnetic fields
accessible to experimental investigation. Additional evidence can be obtained from
muonic atoms because the muon is localized much closer to the nucleus and probes
therefore even stronger fields. On the other hand, it is also more sensitive to nuclear
effects that are theoretically less well known.

In atoms, the coupling of the electron with the binding field of the nucleus is
determined by the coupling constant Zα where Z is the nuclear charge number and
α ≈ 1/137 is the fine structure constant. In highly charged ions like uranium, the
coupling constant is no longer a small parameter but amounts to Zα ≈ 0.6 and
therefore a perturbation expansion in Zα becomes meaningless. In contrast, most
approaches for the calculation of QED effects in low-Z atoms like hydrogen still
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employ such an expansion. In heavy ions, the interaction with the Coulomb field
of the nucleus has to be considered to all orders in Zα. Bound-state QED provides
the relativistic description of an electron in highly charged atomic systems. To test
the predictions of this theory with utmost precision is a major challange in todays
atomic physics. This review is focused on the recent developments in this exciting
area. The examples given here will indicate the predictive power of QED in ‘simple
systems’ where many-body effects do not have to be considered except for nuclear
structure calculations. The paper is organized as follows:

In Section 2 we will consider the present status in the evaluation of all QED
corrections to the Lamb shift in hydrogen-like uranium and lead and compare theo-
retical and experimental results. The general theoretical and experimental precision
of Lamb shift measurements will be discussed, and an interesting future direction
of research will be mentioned. In Section 3 the hyperfine splitting of atomic levels
is considered. We will report on the present status of the hyperfine splitting effect
in hydrogen- and lithiumlike ions and we will compare the theoretical results with
the available experimental values. Another quantity accessible for high-precision
experiments is the g factor of a bound electron which is also in the scope of
Section 3.

In Section 4 parity violating effets in atomic systems will be considered. The
advantages of investigating these effects in highly charged ions will be underlined
and a new experiment for detecting a parity violation in heliumlike europium and
gadolinium is proposed.

2. Lamb-shift calculations

The term Lamb shift refers to the difference between the Dirac energy eigenvalue
of a single atomic level and its actual value which is shifted due to nuclear and
QED effects. The binding energy of an atomic level is one of the quantities best
to measure and therefore QED effects are well detectable. Precise measurements
in hydrogenlike heavy ions nowadays concentrate on uranium [10] where the best
measurement recently was achieved by Stöhlker et al. [11, 12]. Also in gold [13],
lead [14], and bismuth [15] the ground state Lamb shifts were investigated.

The major contributions to the 1s1/2 Lamb shift are the radiative corrections of
order α (Figure 2), and also the effect of the nuclear size which accounts for the

Figure 2. The QED corrections of order α, self energy (SE) and vacuum polarization (VP).
The double solid line denotes the bound electron and the wavy line indicates the photon.
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finite extension of the nuclear charge distribution. Therefore the potential that is
present in the Dirac equation changes and the wave functions and energy eigen-
values are slightly altered. Examples can be found, e.g., in [16]. For uranium,
even the different models for the shape of the nucleus at a fixed size (〈r2〉1/2 =
5.860 ± 0.002 fm) cause differences in the K-shell binding energy of nearly one eV.

The two major QED corrections are self energy and vacuum polarization. The
self energy (SE) is the result of the emission and reabsorption of a photon by
an electron. For high-Z ions, it has been calculated employing many different
methods, beginning from the pioneering elaborations of Brown et al. [17] and
Desiderio and Johnson [18] to the more accurate approach developed by Mohr
[19, 20]. Blundell and Snyderman presented an alternative approach [21, 22] of
calculating the first-order self energy also in a non-Coulomb potential.

The first-order vacuum polarization (VP) correction accounts for the interaction
of the electron with a virtual electron-positron pair in the field of the nucleus. It is
commonly divided into two major parts, the charge divergent but nowadays well-
known Uehling part [23–26] and the finite Wichmann–Kroll part [27] which was
evaluated by Gyulassi [28] and later with high precision by Soff and Mohr [29],
and by another approach also by Fainshtein et al. [30]. Persson et al. could even
improve the numerical accuracy [31].

The finite nuclear size has also an effect on the radiative corrections. For ura-
nium, the difference between the self-energy correction with and without consid-
ering the nuclear size amounts to more than 1% [32] and therefore the influence of
the nuclear size on the radiative corrections should be taken into consideration at
least for heavy systems with Z > 50. An elaborated investigation on this topic for
both self energy and vacuum polarization is given in [33]. The results of all these
contributions for hydrogen-like uranium and lead are depicted in Table I, together
with the contributions of order α2 and the recoil contributions.

All present experimental results can be theoretically well explained by con-
sidering the effect of the finite nuclear size and the QED corrections of order α
as discussed above. However, at the GSI in Darmstadt, a precision of about 1
eV in measurements of the ground-state Lamb shift seems likely in the near fu-
ture [12]. At this level, QED corrections of order α2 have to be taken into account.
The complete set of radiative corrections is displayed in Figures 3(a)–(k). These
diagrams are naturally divided into separately gauge invariant subsets: SESE (a),
(b), (c); VPVP (d); VPVP (e), (f); SEVP (g), (h), (i); and S(VP)E (k). In addition
to a complicated renormalization scheme, the calculation of higher-order QED
corrections also requires the application of special numerical methods to perform
multiple summations over the complete eigenfunction spectrum of the Dirac equa-
tion for a bound electron. Only recently this task was completed for the last missing
contributions, the so-called reducible part of the SESE (a) diagram together with
the SESE (b) and (c) diagrams. Now all of these corrections have been numeri-
cally calculated for the ground state of hydrogenlike uranium and lead [34]. The
so-called irreducible contribution SESE (a) can be separately renormalized and
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Table I. Lamb-shift contribution for the ground state of 238U91+ and 208Pb81+
(in eV), including the full recoil contribution. The finite nuclear-size correction
for uranium is calculated for a Fermi distribution with 〈r2〉1/2 = 5.860±0.002
fm. The finite nuclear-size correction for lead is calculated for a Fermi distri-
bution with 〈r2〉1/2 = 5.505 ± 0.001 fm. Known error-margins are linearly
added

Corrections (in eV): 238U91+ 208Pb81+

Finite nuclear size 198.82 ±0.10 67.25 ±0.02

Self energy (order α) 355.05 226.33

Vacuum polarization (order α) −88.60 −48.41

SESE (a) (irred.) −0.97 −0.51

SESE (a) (red.) (b), (c) 1.28 ±0.15 0.73 ±0.09

VPVP (d) −0.22 −0.09

VPVP (e) −0.15 −0.07

VPVP (f) (Uehling approx.) −0.60 ±0.10 −0.34

SEVP (g), (h), (i) 1.12 0.53

S(VP)E (k) (Uehling approx.) 0.13 0.07

Total recoil 0.46 0.37

Nuclear polarization −0.20 ±0.10 0.00

Lamb shift (theory) 466.12 ±0.45 245.86 ±0.11

Lamb shift (experiment) 469. ±16 290. ±75

evaluated. It denotes that part of the SESE (a) diagram where the energy of the
intermediate electron states between the two self-energy loops is different from the
energy of the state under consideration. This contribution has been first calculated
by Mitrushenkov et al. [35] for the nuclear charge numbers Z = 70, 80, 90, and 92,
and recently for arbitrary values of Z in [36, 37]. Although the obtained results are
in fair agreement for high Z, a discrepancy between these in [36] and [37] has been
observed for the case of low and intermediate Z values. Only the results of [37]
agree with an analytical expansion based on powers and logarithms of Zα [38].
The reason for this discrepancy is under current investigation and two recent works
devoted to this subject again end up with different conclusions: the calculation
of Yerokhin [39] supports [36] whereas Manohar and Stewart [40] find the same
logarithmic term as Karshenboim in [38]. It would be not the first time however,
that modern high-Z methods prove to be more successful also for low Z than the
conventional Zα expansion [41]. For the high-Z region, there is no doubt about the
results presented in Table I.

The VPVP contributions (e) and (f) (also known as Källén–Sabry corrections)
have been investigated in Uehling approximation [42, 43]. Calculating the domi-
nant Uehling part of the lowest order VP correction results in a precision of about
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Figure 3. Feynman diagrams corresponding to the radiative corrections of order α2 in
hydrogenlike ions.

5% for the ground state of hydrogenlike uranium and lead ions. In the Uehling
approximation one restricts to the first term in aZα expansion of the bound electron
propagator in the electron loop. This also corresponds to the expansion of the bound
propagator in terms of the nuclear potential. Recently the VPVP (e) contribution
has been determined to all orders in Zα [44]. In this case the inaccuracy of the
Uehling approximation turned out to be about 25%. The VPVP (d) contribution
was considered in [31] and tabulated in [45]. The SEVP (g), (h), and (i) contribu-
tions were evaluated in [46] employing the Uehling approximation and in the exact
form in [47]. The inaccuracy of Uehling approximation for hydrogenlike uranium
amounts to only 2% in this case. The S(VP)E (k) contribution has been calculated
only in Uehling approximation up to now [47, 48]. A recent overview about all
first- and second-order QED corrections is presented in [49].

In addition to the QED corrections of order α2, the internal structure (‘polar-
izability’) of the nucleus and the nuclear recoil effect cause additional binding-
energy corrections of the same order of magnitude as these QED corrections. The
nuclear-polarization contribution was derived and evaluated in the framework of
an effective photon propagator in [50–52]. The recoil effect accounts for a non-
infinitely heavy nucleus and takes into account its movement. Nonrelativistically
this can be considered by the reduced mass of the electron, an approximation which
is more than 50% wrong for heavy hydrogenlike systems like uranium. The com-
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plete effect to all orders in Zα was calculated in [53, 54] for point-like nuclei and
in [55] for extended nuclei. The extension of the nuclear charge distribution reduces
the effect by about 10% in the case of U91+. In Table I the results are compiled
for uranium and lead together with all QED corrections of order α and α2 and
also with the nuclear effects. We point out that the compilation in this table does
not follow the convention of [56] who do not include the nonrelativistic reduced-
mass correction in the Lamb shift because it does not contribute to the ‘classical’
2s1/2–2p1/2 splitting in low-Z atoms. For high-Z systems, however, a complete
recoil correction inherently includes the nonrelativistic reduced-mass correction
and there is no sense to consider this contribution separately [57]. All our present
results allow for high-precision tests of QED in the strong field of the nucleus that
are expected to be experimentally available in the near future.

The high-precision calculations for high-Z systems also influence the predictive
power in the low-Z region where higher precision is gained by including more
and more terms of an expansion in the interaction with the binding field, i.e., in
powers ofZα and some logarithmic terms. For an overview about these ‘analytical’
techniques, we refer to [58]. The precise determination of radiative corrections
by numerical calculations even for low nuclear charge numbers Z is currently an
emerging field [59]. Here, we will focus on the one-photon self energy, which
constitutes the dominant contribution to the Lamb shift in hydrogen by two orders
of magnitude.

One of the calculational challenges in the regime of low nuclear charge are
numerical cancellations. In order to understand the origin of the numerical can-
cellations it is necessary to consider the renormalization of the self energy. The
renormalization procedure postulates that the self energy is essentially the effect
on the bound electron due to the self interaction with its own radiation field, minus
the same effect on a free electron. There it is absorbed in the mass of the electron
and therefore not observable. The self energy of the bound electron is the difference
of two large quantities. Terms associated with renormalization counterterms are of
order unity in the Zα-expansion, whereas the residual effect is of order (Zα)4.
This corresponds to a loss of only one significant figure at Z = 92, but roughly 9
significant digits at Z = 1. Accurate numerical methods have to be employed, and
the convergence of certain angular momentum expansions has to be accelerated by
powerful numerical algorithms (see, e.g., [60]) which reduce the computation time
by roughly three orders of magnitude.

We start our discussion here from the well-known (regularized and renormal-
ized) expression for the one-photon self energy �ESE,

�ESE = lim
�→∞

{
−i e2 Re

∫
C

dω

2π

∫
d3k
(2π)3

Dµν

(
k2,�

)
×〈ψ |αµ exp(ik · x)G(En − ω)αν exp(−ik · x) |ψ〉 −�m

}
, (1)
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where G denotes the Dirac–Coulomb propagator,

G(z) = 1

α · p + β + V − z
, (2)

and �m is the cutoff-dependent one-loop mass-counter term,

�m = α

π

(
3

4
ln�2 + 3

8

)
〈β〉. (3)

Here, � serves as a cutoff parameter. The photon propagator Dµν(k
2,�) in

Equation (1) is given by (in Feynman gauge)

Dµν

(
k2,�

) = −
(

gµν

k2 + i ε
− gµν

k2 −�2 + i ε

)
. (4)

The contour C used in the numerical calculation is not the Feynman contour but
represents the mathematically equivalent contour depicted in Figure 4. The ana-
lytic structure of the propagators plays an important role in the evaluation, and
the choice of the contour has to reflect this structure which is indicated by the
branch cuts in Figure 4, while at the same time providing a convenient basis for the
numerical evaluations (as discussed below). The energy variable z in Equation (2)
assumes the value

z = En − ω, (5)

where En is the Dirac energy of the atomic state, and ω denotes the complex-valued
energy of the virtual photon. It is understood that the limit � → ∞ is taken after
all integrals in Equation (1) are evaluated.

The contour C naturally leads to a separation of the two scales in the self-
energy problem: the atomic energy scale (Zα)2 m and the relativistic electron mass

Figure 4. Integration contour C for the integration over the energy ω = En − z of the virtual
photon. The contour C consists of the low-energy contour CL and the high-energy contour
CH. Lines shown displaced directly below and above the real axis denote branch cuts from the
photon and electron propagator. Crosses denote poles originating from the discrete spectrum
of the electron propagator.
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scale. It is perhaps interesting to note that similar contours are also employed in
analytic evaluations of the self energy [41, 61, 62], which are based on the Zα-
expansion (there, too, a separation of the two energy scales is necessary). The
decisive observation is that the separation of the scales by an appropriate choice of
the contour facilitates the numerical evaluations considerably. Different techniques
are employed for the high- and the low-energy part.

In the low-energy part, the most challenging problem is the accurate numerical
evaluation of the bound electron propagator to the required relative precision of
10−24, whereas the convergence of the partial wave expansion represents a less
involved problem. Resummation techniques [63] which associate a finite value
to an otherwise divergent series are used in this part of the calculation. Observe
that the crosses in Figure 4 are shifted infinitesimally above the positive real axis
for excited states; the corresponding imaginary contributions to the integral (1)
yield the autoionization decay width. For the energy shift, we are only interested
in the real part of the radiative correction. For excited states, the subtraction of the
pole contributions of low-lying states to the required accuracy represents another
challenge in numerical calculations (this subtraction necessarily has to be done
before the final photon-energy integrations are carried out). Difficulties associated
with the regime of ultra-soft photons and the subtraction of the pole contributions
necessitate a further separation of the low-energy part into an infrared part and a
middle-energy contribution (see Figure 5).

We now discuss one of the fundamental differences between numerical and
analytic evaluations. The free electron propagator

F = 1

α · p + β − z
(6)

and the full electron propagator G defined in Equation (2) fulfill the following exact
identity,

G = F − F V F + F V GV F.

Figure 5. Separation of the low-energy contour CL into the infrared part CIR and the
middle-energy part CM. As in Figure 4, the lines directly above and below the real axis
denote branch cuts from the photon and electron propagator. At the separation, we have
Reω = 0.1En.
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Figure 6. The exact expansion of the bound electron propagator in powers of the binding field
leads to a zero-potential, a one-potential, and a many-potential term. The dashed lines denote
Coulomb photons, the crosses denote the interaction with the (external) binding field.

This exact identity is used in numerical calculations (a diagrammatic representation
is shown in Figure 6). The identity leads naturally to a separation of the one-photon
self energy into a zero-vertex, a single-vertex, and a many-vertex term (also repre-
sented diagrammatically in Figure 6). In analytic calculations, advantage is taken
of the iterated form of this identity,

G = F − F V F + F V F V F − · · · .
This analytic expansion in V ∼= Zα necessarily has to be terminated at a finite
order; the error made in the termination of the expansion at order (Zα)6 in com-
parison to the nonperturbative result is 28 kHz for atomic hydrogen. This has to
be compared to an experimental accuracy of currently 46 Hz for the 1s1/2–2s1/2

transition. The nonperturbative numerical calculation overcomes the accuracy limit
set by the termination of the Zα-expansion and leads to predictions which match
the current experimental precision.

Slow convergence of the Zα-expansion and the exceeding number of analytic
terms in higher order are likely to represent considerable problems for the conceiv-
able further improvement of analytic evaluations. At the same time, the nonpertur-
bative numerical evaluations provide a consistency check of the extensive work on
analytic calculations. As of today, full consistency between the analytic and nu-
merical approaches to the Lamb-shift problem is observed [59]. For the numerical
values of the corrections for hydrogen (K and L shell) at the 1 Hz precision level
we refer to our separate article in this volume [64].

This very high theoretical precision is matched by a corresponding one on the
experimental side. Absolute frequency measurements have become possible in part
due to optical frequency divider chains and frequency combs. These bridge the fre-
quency gaps between frequency standards and the transition frequencies in the op-
tical and ultraviolet range. Currently, the most precisely determined transition is the
1s1/2–2s1/2 transition in hydrogen which was measured to be 2 466 061 413 187 103
(46) Hz, i.e., to a precision of 1.8 × 10−14 [65]. From two different transitions
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in hydrogen, it is possible to derive both the 1s1/2 Lamb shift and also the Ryd-
berg constant R∞ = α2 cme/(2h). Its value is given at present to be R∞ =
10 973 731.568 549(83)m−1 [66]. Aiming for an even higher accuracy, measure-
ments would be able to detect a time variation in the fine structure constant α.
Absolute frequency measurements can be reproduced years later whereas mea-
surements that monitor only relative shifts in α need to be in continuous oper-
ation. The current limit on variation of α with time is given by comparing
a hydrogen maser with a Hg microwave atomic clock over a range of 140
days [67],

∣∣∣∣ α̇α
∣∣∣∣ < 3.7 × 10−14 yr−1. (7)

This number refers to a time variation in the recent epoch. Looking on longer time
scales or on astrophysical data, the boundary becomes even more stringent but for
earlier epochs of the universe [68]. Indications for an existing variation of α with
time are taken from observations of spectra of very far red-shifted quasars [69]
where the data might indicate a small negative α̇ (i.e., α seemed to have been
larger in former times) and no other explanation has been found yet. The data are
too poor to give clear evidence, however.

It is beyond the scope of the present article to discuss the underlying theory for
the time variation of fundamental constants in detail. We are just going to point
to some major articles in this field. The possible non-constancy of fundamental
constants was already considered by Dirac [70]. Nowadays, the time variation
of α is predicted by a number of theories such a string theory (e.g., [71–73]).
In superstring theories, Einstein’s equations of General Relativity are obtained in
a straightforward manner but with a scalar extension. This scalar particle links
the time variation of α to the Hubble constant, α̇ ∼ H0 [73]. Alternatively, theo-
ries have been considered which introduce new scalar fields [74]. Their coupling
to the Maxwell scalar FµνFµν allows for a time variation of α. The fine struc-
ture constant is not the only ‘constant’ which might show a possible variation in
time. In Kaluza–Klein theories, the unification of forces takes place in an enlarged
space-time of 4 + N dimensions where N is the number of additional spatial
dimensions and N � 7. These extra dimensions are supposed to form a very
small compact manifold with a mean radius RKK where RKK is thought to be of
the order of the Planck length lP = √

(h̄GN)/c3) � 1.6 × 10−35 m. Here GN

denotes the gravitational constant. In Kaluza–Klein theories, an expanding universe
leads quite naturally to ṘKK �= 0 [71], and if one allows for a varying α one
finds α̇ ∼ ĠN . In addition, other observables might also change with time such
as the masses of non-fundamental particles, e.g., d/dt (me/mp) �= 0. Godone et
al. [75] put a limit on the product of the proton’s g factor and that mass ratio,
|d/dt ln[gp (me/mp)]| � 5.4 × 10−13 yr−1.
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From this discussion it is obvious that high-precision experiments together with
the widely developed theory of QED are well able to support physicists in their
search for new and exciting phenomena beyond the standard model.

3. Magnetic effects: Hyperfine structure splitting and g factor

Highly charged ions do not only provide a strong electric but also a strong magnetic
field. In Figure 7 the expectation value for the magnetic field strength is given for
hydrogenlike ions over the whole range of Z. It amounts from about 10−1 T from
hydrogen to several times 105 T for the heaviest hydrogenlike ions accessible for
experiments. Still, even this enormous field strength leads to only a small influence
on the atomic energy levels. As a result of the interaction of an electron in an
open shell with this magnetic field, the level splits into sublevels corresponding to
the possible values of the total momentum F = J + I of the atom, where J is the
electronic angular momentum and I denotes the nuclear angular momentum. Only
the total angular momentum F is an observable. For the ground state of hydrogen-
and lithiumlike atoms with only one electron in the 1s1/2 or 2s1/2 state (J = 1/2),
this results in a splitting into two sublevels. This level splitting is termed hyperfine
structure splitting, and its value can be determined quite accurately by spectro-
scopic means. The hyperfine structure splitting of the ground state in hydrogen is

Figure 7. Expectation value of the magnetic field strength for the 1s1/2 state of a hydrogenlike
atom in the range Z = 1–92. For each Z, the odd isotope with the highest natural abundance
or longest lifetime was chosen. The nuclear magnetic moments are different for each system
and do not follow a simple functional law. Therefore no continuous curve is obtained. The
values were calculated employing wave functions for extended nuclear charge distributions.
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one of the quantities in nature that is most precisely known but it also demonstrates
the theoretical difficulties connected to it. Measurement and theoretical calculation
are conventionally not even presented in a comparable way because of effects re-
sulting from the proton structure [56, 76]. They lead to a small deviation from the
idealized point-dipole magnetic field, and this deviation still cannot be described
in a proper theoretical manner because its exact form is unknown.

The present numbers are

νHFS = 1420.405 751 766 7(9) MHz (Experiment [77, 78]),
νHFS = 1420.451 99(10) MHZ + nuclear structure effects (Theory [56]),

where the nuclear strucure effects include all contributions from the proton, from
finite size and mass to form factors and internal structure. Most of the discrepancy
between both numbers is already removed if the finite size of the proton is taken
into account [79] but the theoretical precision does not increase. In the theoretical
value, quantum elctrodynamical effects are included up to the reasonable accuracy.

The theoretical handling of quantum electrodynamical corrections to the hyper-
fine structure splitting is the same as for the g factor since in both cases radiative
corrections to a magnetic perturbation are considered. Up to now, highly charged
ions were experimentally investigated aiming for the hyperfine strucutre splitting,
at GSI [80–82] as well as at the Lawrence Livermore National Laboratory (USA)
[83, 84]. Corresponding to the rather high experimental precision, also theoretical
investigations were carried out in particular on the QED contributions of order α to
the hyperfine structure splitting in heavy highly charged ions. Again, a perturbation
expansion in Zα is not feasible, and the employed computational methods are very
similar to those for the Lamb shift.

The ground-state hyperfine structure splitting of hydrogen-like ions can be writ-
ten in the form

�E = 4

3
α(αZ)3

µ

µN

m

mp

2I + 1

2I
mc2[A(αZ)(1 − δ)(1 − ε)+ χQED

]
, (8)

where m is the electron mass, mp is the proton mass, µ is the nuclear magnetic
moment and µN = (e h̄)/(2mp) ≈ 3.152 × 10−8 eV/T is the nuclear magneton.
The terms in the square brackets represent the four corrections to the classical
nonrelativistic hyperfine splitting, i.e., the relativistic factor which for the 1s1/2

state is given by [85]

A(αZ) = 1

γ (2γ − 1)
with γ =

√
1 − (αZ)2, (9)

the finite-size nuclear-charge distribution correction δ, the finite-size nuclear-mag-
netization distribution correction ε, and the QED corrections denoted by χQED.

The nuclear charge distribution can easily be taken into account, similar to the
Lamb-shift case. The wave functions for the electron are calculated by solving
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the Dirac equation where the Coulomb potential is slightly modified around the
origin. These wave functions are then employed for the hyperfine structure splitting
calculations. The uncertainty of this effect is governed by the insufficiently known
nuclear charge distribution and does not play any role at the current level of preci-
sion for the theoretical predictions of the hyperfine structure splitting. A reasonable
nuclear charge distribution, e.g., a two-parameter Fermi distribution, allows to
evaluate the effect very easily (e.g, [86]).

The effect due to a deviation from the point-dipole model for the nuclear mag-
netization distribution is often termed Bohr–Weisskopf effect, after Å. Bohr and
V. Weisskopf who performed the first numerical investigations [87, 88]. They em-
ployed a so-called single-particle model where the extended magnetization dis-
tribution is due to a single valence nucleon moving around a core formed by
all other nucleons. One elaborated form of this model was employed to obtain
numerical values for that effect in the range Z = 49–83 for hydrogen- and lithi-
umlike ions [86, 89, 90]. For 209Bi82+ a related model with the valence proton
moving relativistically was also considered [91, 92]. It gives similar results. A num-
ber of other approaches also try to model the magnetization distribution of the
nucleus due to some outer valence nucleon [93] or treat the whole magnetiza-
tion distribution on a purely phenomenological base by introducing parameters
that allow to model nearly any distribution of the magnetization within the nu-
cleus [94]. The total interaction of all nucleons, however, is not taken into ac-
count in any of these models. An approach pointing more into that direction is the
so-called ‘dynamical-correlation model’ first evaluated by Arima and Horie [95,
96] and applied to highly charged ions by Tomaselli et al. [97, 98]. This model,
however, depends even more than those mentioned before on input parameters
that have to be obtained from independent experiments. Therefore it is highly
sensitive to uncertainties from nuclear physics. An elaborated discussion on the
current difficulties estimating the Bohr–Weisskopf effect is given in a recent re-
view [99].

The QED corrections of order α to a bound electron interacting with a perturb-
ing magnetic field are given in Figure 8. They have all been calculated during
the last decade by several independent groups for the 1s1/2 and the 2s1/2 state
[86, 90, 100–105] and their values are well established. Unfortunately, their mag-
nitude is of similar size as the uncertainty of the Bohr–Weisskopf effect caused by
the model-like structure which has to be employed for the nuclear magnetization
distribution. Therefore any precision test of bound-state QED by measuring the
hyperfine structure splitting in any highly charged ion is prevented until a reliable
model for the nuclear structure becomes available.

It is possible, however, to combine measurements of the hyperfine structure
splitting in hydrogenlike and lithiumlike ions of the same species, as was pointed
out by Shabaev [106, 107]. By extracting a value for the Bohr–Weisskopf effect
from one experiment, its magnitude for the other charge state of the ion can be
adjusted and its uncertainty is much less than that due to employing different
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Figure 8. The self-energy and vacuum-polarization correction to a bound electron perturbed
by an external magnetic field. The solid line terminated by a cross denotes the interaction with
the external magnetic field. In the case of the hyperfine structure splitting this field is generated
by the nucleus. In g-factor experiments a homogenoeus external field is applied.

models. The Bohr–Weisskopf effect for a hydrogenlike ion can be obtained from a
measurement by

ε(1s) = �E
(1s)
Dirac +�E

(1s)
QED −�E

(1s)
Exp

�E
(1s)
Dirac

, (10)

where �E(1s)
Dirac is the value of the 1s1/2-hyperfine structure splitting including the

nuclear charge distribution, �E(1s)
QED is the QED correction to the hyperfine structure

splitting for the 1s1/2 state, and �E(1s)
Exp is the experimental value of the 1s1/2 hyper-

fine structure splitting. The first and the last of these quantities are well known, and
the QED value is also known but put under test when a similar experiment is carried
out on the 2s1/2 state of a lithiumlike ion, where a similar formula has to be applied.
The expected ratio for the Bohr–Weisskopf effect is ε(2s)/ε(1s) = 1.078 for the case
of 209Bi [106]. This quantity has to be tested by experiments. The QED contribu-
tions have to be known very precisely, and in addition to the diagrams shown in
Figure 8, those corresponding to electron–electron interactions have to be taken
into account at least to order α2. A few of them are displayed in Figure 9. Their
value was estimated by Shabaev and co-workers [90, 105, 106, 108]. The above
proposal was taken up already. A precision search was started at GSI. However, it
did not yet yield any positive result [110] although the region under consideration
was investigated very carefully. Due to technical problems, the search is not yet
completed and therefore any high-precision test of the QED contributions to the
hyperfine structure splitting in heavy highly charged ions is still not performed.
For 209Bi, theoretical and experimental values are displayed in Table II.

In addition to the hyperfine structure splitting, the Feynman diagrams of Fig-
ure 8 also represent the QED corrections of order α to the g factor of bound
electrons. Whereas the magnetic field is generated by the spinning nucleus for the
hyperfine structure splitting case, it is externally applied for g-factor measurements
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Figure 9. A few diagrams for interelectronic-interaction QED corrections to lithium-like ions.

Table II. Recent detailed theoretical predictions for the hyperfine structure splitting
of the ground state in hydrogenlike and lithiumlike bismuth. For 209Bi82+, the QED
corrections and the relativistic one-electron value (including the finite nuclear-size ef-
fect) were taken from [104]. The separate finite nuclear-size effect was obtained by
subtracting the corresponding value of a point-like nucleus calculated by Formula (8)
(without δ, ε, and χQED). The Bohr–Weisskopf effect is given in [105]. For 209Bi80+,
all values were taken from [105]

209Bi82+ 209Bi80+

Relativistic one-electron value 5.8393(3) 0.95849

Finite nuclear-size effect −0.6482(7) −0.1138(2)

Bohr–Weisskopf effect −0.061(27) −0.0134(2)

One-electron QED (order α) −0.0298 −0.0051(2)

Interelectronic interaction

of first order in 1/Z −0.02948

of second and higher orders in 1/Z 0.00024(12)

estimate for QED correction [eV] 0.00018(9)

Theory, total [eV] 5.100(27) 0.7971(2)

Experiment [eV] 5.0840(8) [80] 0.820(26) [109]
5.0843(4) [82]
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where the Zeeman effect is investigated. These experiments therefore employ much
weaker but homogeneous magnetic fields of only several T which, on the other
hand, are much better known and therefore allow much more precise theoretical
predictions. The magnetic moment of a charge q of mass mq is connected with its
angular momentum J by

µ = gj
q

2mq

J, (11)

where gj is the g factor of this particular charge. For an electron, the constant in
Equation (11) is expressed as the Bohr magneton µB = (e h̄)/(2me) ≈ 0.579 ×
10−4 eV/T. The magnetic moment of an electron is

µJ = −gjµB
J
h̄
, (12)

where J denotes now the total angular momentum of the electron. For a free elec-
tron, the total angular momentum is equal to its spin S, and the Dirac theory
yields gfree = 2. The deviations from this value due to QED were already given in
the introduction. For bound electrons, a number of additional corrections appear.
The most important is the transition from S to J , because only the total angular
momentum operator commutes with the Hamiltonian for a bound electron. This
modification of the g factor is sometimes called ‘relativistic correction’ and some-
times ‘due to spin-orbit coupling’. However, it is not a ‘correction’ at all but is
entirely contained in the Dirac equation. The g factor of a bound electron due to
this was already obtained by Breit in 1928 [111] (cf. also [112] and [113] for a
detailed derivation). It is given by

gj,1s1/2 = 2

3

(
1 + 2

√
1 − (Zα)2

)
, (13)

gj,2s1/2 = 2

3


 1 + 2

√
1 + √

1 − (Zα)2

2


 (14)

for the 1s1/2 and 2s1/2 states in hydrogenlike ions. This value again is modified
due to quantum electrodynamical effects and also due to nuclear properties. Equa-
tions (13) and (14) were obtained employing wave functions for a point-like nu-
clear charge distribution. Extended nuclei lead to the finite-size correction which
amounts to up to 10−3 for uranium. This correction is easy to handle and limits
are put by the insufficiently known nuclear charge distribution which leads to an
uncertainty of the order 10−7 for uranium but much less for medium-range and
low Z. The finite nuclear mass leads to a recoil correction similar to the Lamb shift.
However, for the g factor no complete correction to all orders in Zα is known yet,
and the existing values from a perturbation series in Zα [114, 115] are justified
only for small Z with an uncertainty of at least 1% in the region of carbon [116].
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Figure 10. Graphs of order (α/π)2 to the g factor of a bound electron and to the hyper-
fine structure in hydrogenlike atoms. The interaction with the magnetic field is denoted by a
triangle. The figure is taken from [118].

All contributions resulting from the quantum electrodynamical corrections of
order (α/π) (Figure 8) were first calculated by Persson et al. [117] and with
slightly increased precision by Beier et al. [118]. For historical reasons, for the
g factor the expansion in α is referred to as expansion in (α/π), and we keep this
terminology. Diagrams of order (α/π)2 (given in Figure 10) or higher have not
yet been considered non-perturbatively in Zα. Recently, investigations on a Zα
expansion have been carried out [119] which indicate that the leading term in such
a series for each order in (α/π) is given by

�gαn = 2A(2n)

(
α

π

)n 1

6
(Zα)2, (15)
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Table III. Known theoretical contributions to the g factor of an
electron bound in the ground state of 12C5+. All values are
given in units of 10−9. The uncertainty for the recoil results
from the Zα expansion that is employed [116]. The values for
the QED of order (α/π) are taken from [118]. The uncertainty
for the order-(α/π)2 value is estimated to be 100% (cf. the
discussion in the text). The error margins for the ‘total’ value
are due to the (Zα) expansion for the recoil contribution, the
numerical uncertainties for the QED effects of order (α/π), and
the estimated uncertainty for the bound-state QED contribution
of order (α/π)2

Contribution to g Numerical value (in 10−9)

from Dirac eq. 1998721354.2

fin. nuc. size 0.4

recoil 87.5(9)

total QED, order (α/π): 2323663.9(12)

free QED, (α/π)2 to (α/π)4 −3515.1

bound QED, (α/π)2 (Zα)2 −1.1(11)

total: 2001041589.8(9)(12)(11)

where A(2n) is the corresponding term in the expansion in powers of (α/π) for g/2
of the free electron (cf. [2]). A(4)

1 = 197/144 + (1/2 − 3 ln 2)ζ(2) + 3/4ζ(3) =
−0.328 478 965 . . . , where ζ(n) is Riemann’s ζ function [120]. Investigations for
the hyperfine structure splitting have shown, however, that the Zα expansion is
not feasible at all to approximate radiative corrections for even medium-range
Z [101] and any result of such an approximation should therefore be considered
with enormous care. In Table III we present all known theoretical contributions
to the g factor of hydrogenlike 12C. The bound-state QED contribution of order
(α/π) can be obtained by subtracting this contribution for the free electron from
the total value for that order. This gives 8443(12)×10−10 which has to be compared
with 7422 × 10−10 from the the corresponding Zα expansion [121]. It is clear
that the available terms of the Zα expansion considerably underestimate the value
even for the low Z = 6. For hydrogenlike carbon, an experiment was carried out
which yielded a precision similar to the theoretical one [122, 123]. At this level, it
becomes possible even to evaluate a new high-precision value for the electron mass
that is given elsewhere in this volume [124].

Direct measurements of g factors in elements heavier than carbon have not
been carried out up to now. They are under way for oxygen and the results are
rather promising [125]. However, if the lifetime of the higher of the two hyperfine-
structure splitting levels is measured it is also possible to derive a value for the g
factor of the electron. This was pointed out by Shabaev [126]. The transition proba-
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bility w between ground-state hyperfine-structure sublevels in a hydrogen-like ion,
including QED and nuclear corrections, is given by

w = α

3

(�E)3

m2

I

2I + 1

[
g(e) − g

(n)
I

m

mp

]2

. (16)

Here �E is the transition energy, g(e) is the bound-electron g factor defined above
and g

(n)
I is the nuclear g factor. For the lowest-order QED and for a pointlike

nucleus a connetion between w and g(e) has been derived first in [127].
The lifetime of the upper hyperfine structure level in 209Bi82+ was measured to

be τexp = 397.5(1.5) µs by Winter et al. [82]. Using Equation (16) and employing
the experimental value of the hyperfine splitting �E together with the transition
amplitude for 209Bi82+, the experimental value of the bound-electron g factor is
found to be 1.7343(33). This result is in remarkable good agreement with the theo-
retical value of 1.7310 for 209Bi82+. Also the value for 207Pb81+, measured by Seelig
et al. [81], was found to be in good agreement with the theoretical prediction. Only
the older measurement of Klaft et al. [80] yielded a shorter lifetime than predicted
by theory. This triggered many investigations in the past. Only recently, the puzzle
was solved by reinvestigating that experiment [110].

The high precision in g-factor measurements could also be used to reinvestigate
the nuclear magnetic properties, in particular the nuclear magnetic moments them-
selves that enter the above formulae (8) and (16) via µ and gI , respectively. It was
pointed out [128] that due to the necessary corrections used in the old experiments,
they might be less precisely known than stated or the tabulated values are simply
wrong. We therefore conclude this section by pointing to the urgent need of rein-
vestigation also for the nuclear magnetic moments which became obvious by very
precise experiments and calculations of QED effects.

4. Electroweak radiative corrections

Parity-nonconserving (PNC) neutral-current effects, as predicted by the standard
electroweak gauge theory, have been observed in a wide variety of processes in
atomic physics. Studying PNC in atomic systems provides an interesting possi-
bility to deduce informations on the standard model of electroweak interactions
independent of high-energy physics experiments. In principle, the weak interac-
tion also contains parity-conserving terms, but it is much more difficult to observe
these terms in experiments due to the smallness of these contributions compared to
the also parity-conserving electromagnetic interactions. Therefore, parity-violation
effects, both theoretically and experimentally, are investigated very intensively in
today’s atomic physics. The PNC originates from the weak interaction of atomic
electrons with the nucleus and with the vacuum fluctuations of the electroweak
gauge boson fields [129, 130]. Comparing experimental results with the theoretical
predictions of the standard model again allows a glance on possible new physics
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beyond the standard model, due to the high precision which is possible for theoret-
ical calculations in atomic physics. Possible discoveries might be, e.g., a second Z
boson or supersymmetric counterparts of existing particles.

The most precise recent experiment was carried out by measuring the 7s1/2 →
6s1/2 transition probability in atomic (i.e., neutral) 133

55 Cs where the weak charge
QW of the nucleus is probed. To lowest order (‘tree-level’), QW is given by

QW = Z
(
1 − 4 sin2 7W

) −N, (17)

where sin2 7W is the weak mixing angle (‘Weinberg angle’, sin2 7W = 0.2224(19)
[66]) and N is the number of the neutrons in the nucleus under consideration.
Adding radiative corrections, one obtains within the standard model QW

= −73.20(13) for this system [131]. The experimental value was found to be QW

= −72.06(28)exp.(34)theo. [132] which differs slightly from the standard-model
value. This measurement is thought to be the first indication of the long-looked-for
‘anapole moment’ of the atomic nucleus [133] which is a parity-violation effect
within the nucleus due to the weak interaction and manifests itself by a toroidal
dipole moment. It was first proposed by Zel’dovitch just after the discovery of
parity violation [134]. A detailed recent discussion can be found in [135] which
also contains all important references on the subject. The discrepancy between
QW standard model and QW Cs 7s→6s, however, may be simply due to the underestima-
tion of theoretical uncertainties in the calculations for the Cs system [136] and does
not yet clearly prove new physics beyond the standard model. Here, we face the
general problem of atomic many-electron systems that although very precise cal-
culations are possible in principle, they are difficult to handle due to the enormous
amount of computer power that is required for these tasks.

In highly charged ions, on the other hand, the binding to the nucleus dominates
by far the electron–electron interaction which may be considered as a perturbation.
The spin-independent part of an effective Hamiltonian for a zero-momentum trans-
fer interaction between a bound electron and a nucleus, mediated by a Z0 boson, is
given by

ĤW(r) = − GF

2
√

2
QW ρN(r)γ5, (18)

where GF denotes the Fermi constant, ρN(r) is the nuclear density and γ5 is the
Dirac matrix. Due to the parity-violating exchange of Z bosons, every electron
state has a small admixture of a wave function with opposite parity, 9 → 9 +
iη9 ′, where the coefficient iη is pure imaginary because of the T -invariance of the
Hamiltonian (18). Accordingly, the amplitudes of the different processes in atoms
look as follows [130]:

A = A0 + iηA1, (19)

where A0 is the amplitude of the basic process and A1 is the amplitude of the
process caused by parity violation. The ‘degree of the parity violation’ P in an
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Figure 11. Energy-level scheme of the first excited states of heliumlike gadolinium. Num-
bers on the right-hand side indicate the ionization energies in eV. The partial probabilities
of radiative transitions are given in s−1. Numbers in parentheses indicate powers of 10. The
large radiative width for the 1s2p3P1 state is indicated as a bold line. The double lines denote
two-photon transitions.

atomic process can be defined as [130]

P = 2η
A1

A0
= 2η

(
W1

W0

)1/2

, (20)

where W0,W1 are the probabilities corresponding to the amplitudes A0 and A1,
respectively.

Electroweak radiative corrections were considered both for neutral atoms, e.g.,
in [137] and in the newer literature dealing with the situation in Cs ([136] and
references therein) and also for highly charged hydrogen-like ions [138, 139]. The
consideration of these radiative corrections becomes necessary because they can
contribute up to 10% to the magnitude of PNC effects.

For experiments, a promising situation occurs in heavy heliumlike ions due to
the near-degeneracy of two levels with opposite parities, 21S0 and 23P0. These lev-
els cross near the nuclear charge numbers Z = 64 (gadolinium) as well as close to
Z = 92 (uranium). The case of uranium was elsewhere considered in detail [140].
Here we restrict our consideration the heliumlike highly charged ions of gadolin-
ium (Z = 64) and europium (Z = 63). Especially we consider a quenching-type
experiment with interference of hyperfine- and weak-quenched transitions [141].
Such an experiment would require the use of a polarized highly-charged ion beam
together with a beam-foil time-of-flight technique, a rather challenging task for
experimentalists.

The standard parity violation situation in atoms concerns theM1 transition with
an admixture of the E1 transition. For heliumlike gadolinium and europium, the
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Figure 12. Energy-level scheme of the first excited states of heliumlike europium. Notations
are the same as in Figure 11.

energy level scheme is shown in Figures 11 and 12, respectively. The one-photon
hyperfine-quenched transition 21S0 → 11S0, via the magnetic photon emission
(M1), is due to the hyperfine mixing of the 21S0 and 23S1 levels. The weak inter-
action of electrons with the nucleus also opens another one-photon decay channel
21S0 → 11S0, via the electric photon (E1) emission through the mixing of the 21S0

and 23P1 levels by the operatorHW in Equation (18). As a result, the total amplitude
A in Equation (19) is represented by the mixture of the basicM1 (magnetic photon)
amplitude A0 ≡ As and the additional E1 (electric photon) amplitude A1 ≡ Ap.
The corresponding transitions rates are Ws and Wp, respectively. The weak mixing
coefficient η in Equation (19) is determined by

iη�0 = 〈
23P0

∣∣ĤW

∣∣21S0
〉
, (21)

where �0 = E21S0
− E23P0

. The theoretical predictions for europium and gadolin-
ium are listed in Table IV. Due to the admixture of states of opposite parity, in a
polarized-beam experiment a small asymmetry in the number of emitted photons
per direction should become visible, expressed by

dW(n) = Ws

4π

[
1 + ε(ζ · n)]d@, (22)

where n indicates the direction of the photon emission and ζ is the unit vector in
direction of the polarization of the ion. The coefficient of asymmetry is given by
ε = 3λ0ηR/(I+1) with R = √

Wp/Ws . Here λ0 � 1 is the degree of polarization.
In gadolinium, iη�0 = i0.155 × 10−6 eV. The total asymmetry effect turns

out to be 2ε � 0.78λ0 × 10−3, what is unusually large for parity-violation exper-
iments. However, unfortunately the lifetime of the 21S0 level defined by the 2E1
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Table IV. The theoretical results for transition rates Ws ,
Wp and for the weak mixing factor for heliumlike
europium and gadolinium

Nucl. Ws (s−1) Wp (s−1) η

151
63 Eu 0.68 × 108 0.11 × 1014 0.33 × 10−6

155
64 Gd 0.58 × 106 0.75 × 1011 0.91 × 10−6

two-photon transition is about one order of magnitude smaller than the hyperfine-
quenched 23P0 lifetime. This implies a strong background in experiments with
Gd62+ ions.

In europium the weak asymmetry effect reduces up to 2ε � 0.23λ0 × 10−3.
However, the 21S0 level lives significantly longer then the hyperfine-quenched 23P0

level. The 21S0 lifetime equals to about 1.19 ps and corresponds to a decay length
of about 0.1 mm in the laboratory. The peculiarity of the situation is that unlike in
standard hyperfine-quenching experiments we are not aiming at the measurement
of the lifetime defined in our case by the two-photon transition. The experiment
should result in a measurement of the ratio �n/n0, where n0 ± �n/2 are the
numbers of counts for two directions ζ of the beam polarization. This ratio is
directly proportional to the weak interaction matrix element: �n/n0 = 2ε.

Since photons being observed in this experiment originate from the single-
photon decays of the hyperfine- and weak-mixed F = I state, the success of the
experiment will depend on the production of a significant degree of polarization
for this state of the heliumlike ion. This is a task to address to the experimentalists
in order to employ the advantages of heavy highly charged ions for parity-violation
investigations and the search for possible new physics beyond the standard model.

5. Summary

During the last two decades there has been increasing interest in quantum electro-
dynamics of strong fields and parity-violating effects in atoms. For one-electron
systems, the fundamental QED contributions can be tested most directly in strong
fields. Therefore, in this review we considered the present status of the Lamb-
shift predictions for hydrogenlike uranium and lead. We emphasized the necessity
to include even the second-order QED corrections in the Lamb-shift calculations.
The recent evaluation of the two-photon self-energy contribution reduces the main
uncertainty in the theoretical Lamb-shift predictions. For hydrogen, the current
experimental and theoretical precision not only allows high-precision tests of QED
but also to determine fundamental constants like R∞ with high accuracy. Quan-
tum electrodynamics might therefore be helpful even for looking for new physics
beyond the standard model such as a variation of the fundamental constants.
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We demonstrate that hyperfine splitting effects are also suitable for tests of QED
in strong electromagnetic fields. For any test of QED in strong magnetic fields
by hyperfine-structure splitting, the Bohr–Weisskopf effect is the main source of
uncertainty in the present predictions, together with possibly erroneously known
magnetic moments of the nuclei. In contrast, experiments on the g factor yield an
up-to-now unmatched precision and agreement with theory on the same level for
any bound state system heavier than hydrogen.

Finally we discussed parity violation effects in few-electron systems. Up to now,
experimental data of atomic parity violation effects are available only for neutral
atoms. For highly charged ions with a Z close to Z = 64, however, the effect
of PNC is ten times larger as in neutral atoms because of the near-degeneracy
of two levels for Z = 64. In particular, to measure the parity-violation effect for
heliumlike gadolinium (Z = 64) and europium (Z = 63), we propose a quenching-
type experiment with interference of hyperfine- and weak-quenched transitions.
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