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Abstract

To provide predictions of the Lamb shift of highly charged ions on the level of
accuracy of about 10~° has been achieved after exact results for the contri-
butions of all two-photon self-energy diagrams have been performed. We
report on the present status of our Lamb-shift calculations including all
QED-corrections of first- and second-order in the finestructure constant
o and all relevant nuclear effects. An excellent agreement between the most
recent experimental data for Lamb shift of the 1s-ground state in hydrogenlike
uranium can be stated. This can serve as a sensitive test of QED in the
strongest electric fields accessible in nature. In a second part of this article
we report about an all-order numerical evaluation of the one-photon
selfenergy at low nuclear charge (Z =1, ...,5). A sensitive comparison of
our numerical approach with analytical approach to the one-photon
selfenergy confirms the consistency of these two different approaches
(numerical and analytic) to very high precision.

A precise knowledge concerning the validity of quantum
electrodynamic (QED) in strong external fields is crucial
for the detection of new physics beyond QED. The possible
test of QED in strong external electric and magnetic fields
has initiated intensive theoretical and experimental
activities. Measurements of the Lamb shift and the hyperfine
structure splitting in one-electron systems at utmost pre-
cision are considered as ideal scenarios for this purpose.
In this paper we will report on the present status and recent
calculations with respect to QED corrections to the Lamb
shift for the one—electron systems uranium and lead as well
as for hydrogen.

At the SIS/ESR facility at GSI in Darmstadt one is aiming
at an accuracy of about leV in measurements of the
ground-state Lamb shift for hydrogen-like uranium [1,2].
Accordingly, to provide predictions for the ground-state
energy in H-like uranium with relative accuracy of about
107> or even 107° — this ultimate limit is set by nuclear
polarization effects and uncertainties in the parameters —
necessitates the evaluation of all QED corrections of order
o but to all orders Zo in the interaction with the Coulomb
field of the nucleus. We performed a complete calculation
for the lead system as well. This system seems more
favorable for precision tests of QED in strong fields since
nuclear uncertainties are expected to be about one order
of magnitude smaller.

The complete set of second-order radiative corrections are
displayed in Fig. 1. These diagrams are naturally divided
into separately gauge invariant subsets: the two-photon
self-energy SESE (a),(b),(c), the second-order vacuum
polarization VPVP (d),(e),(f), the mixed self-energy vacuum
polarization SEVP (g),(h) and the effective self-energy
S(VP)E (i). The abbreviation SE stands for self energy
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and VP denotes vacuum polarization. Most of these correc-
tions have been already -calculated numerically for
28U and 2°°Pb*'* jons [3,4].

The contributions of the two-photon self energy SESE (a),
SESE (b) and SESE (c) were considered to represent the
major theoretical uncertainty.

The diagram SESE (a) consists of an irreducible (irred.)
and a reducible (red.) part. The contribution SESE (a)
(irred.) can be renormalized and evaluated separately. It
has been calculated first in Ref. [5] for high nuclear charge
numbers Z and recently for arbitrary values of Z in Refs.
[6,7]. Although the results obtained are in fair agreement
for high Z a discrepancy between those in Refs. [6] and

(a) (b) (c)
(d) (e) )
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Fig. 1. Feynman diagrams corresponding to the second-order radiative cor-
rections in hydrogen-like ions. The double solid line denotes the bound elec-
tron and the wavy line indicates the photon.
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[7] has been observed in the case of low and intermediate Z
values. Here we report on the solution of this challenging
problem and present exact results for the energy shift of
the 1s-ground state in H-like uranium due to the SESE dia-
grams. For our complete evaluation of SESE we adopt
the renormalization scheme, which is based on (double)
partial wave expansions. To evaluate summations over
the Dirac spectrum we utilize the B-Spline method. For
the first time a rigorous calculation of all second-order
self-energy diagrams for the 1s;,,-state in H-like uranium
and lead is now available [8]. In Table I the results are
compiled for uranium together with all relevant QED-
corrections of order « and o> and nuclear effects. The cor-
rections VPVP (e) and S(VP)E (i) are known only in Uehling
approximation. The inaccuracies assigned to these rather
small corrections are estimated as the average of the
inaccuracies of the Uehling approximation deduced from
exact results for the corrections VPVP (f) and SEVP (g),(h).

In Table IT we collected the results for lead. The inaccur-
acy of the Uehling approximation for the VPVP (e) and
S(VP)E (i) corrections is neglected. The zero value presented
for the nuclear polarization is due to the cancellation of the
usual nuclear polarization with the mixed nuclear polari-

Table 1. Lamb shift contribution for the ground state of
233U jon (in eV ). The finite nuclear—size correction is cal-
culated for a Fermi distribution with (r*)!'/* = 5860+
0.002 (fm).

Binding energy Ep (point nucleus) -132279.66 eV

Finite nuclear size 198.82 40.10
Self Energy (order o) 355.05

Vacuum Polarization (order o) -88.60

SESE (a) (irred.) -0.97

SESE (a) (red.) (b) (c) 1.28 +0.15
VPVP (d) -0.22

VPVP (e) (Uehling approx.) -0.60 +0.10
VPVP (f) -0.15

SP (g),(h) 1.12

S(VP)E (i) (Uehling approx.) 0.13

relativistic recoil 0.16

Nuclear polarization -0.20 +0.10
Lamb Shift (theory) 465.82 +0.45
Lamb Shift (experiment) 469 +16

Table 11. Lamb shift contribution for the ground state of
208ppSI+ jon (in eV). The notations are the same as in

Table I. The finite nuclear size correction is calculated for
a Fermi distribution with (r*)"/?> = 5.505 4+ 0.001 fin.

Binding energy Ep (point nucleus) -101581.37eV

Finite nuclear size 67.25

Self Energy (order o) 226.33

Vacuum Polarization (order o) -48.41

SESE (a) (irred.) -0.51

SESE (a) (red.) (b) (c) 0.73 +0.09
VPVP (d) -0.09

VPVP (e) (Uehling approx.) -0.34

VPVP (f) -0.07

SEVP (g),(h) 0.53

S(VP)E (i) (Uehling approx.) 0.07

relativistic recoil 0.10

Nuclear polarization 0.00

Lamb Shift (theory) 245.59 +0.09
Lamb Shft (experiment) 290.0 +75
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zation (NP)-vacuum polarization correction. The latter
effect arises when the nucleus interacts with a virtual elec-
tron—positron pair. For lead, due to the collective monopole
vibrations, specific for this nucleus, the mixed NP-VP effect
becomes rather large. Therefore, nuclear polarization effects
which otherwise limit very precise Lamb shift predictions are
almost completely negligible for 2°Pb, making this ion
especially suitable for most precise theoretical predictions.

With the present result at hand the most serious QED
uncertainty in present Lamb-shift predictions has been
removed.

Let us now turn to another interesting atomic system, the
case of hydrogen. Precise values for the magnetic moment
of the proton are available [9]. Predictions of the hyperfine
structure splitting in this system are effected by the
insufficiently known size and the internal structure of the
proton. However, it is possible to deduce an accurate value
for the proton radius from measurements of the Lamb shift
in muonic hydrogen.

Accurate QED calculations in hydrogen are of crucial
importance for the determination of fundamental constants
like the Rydberg constant. Such calculations serves also
as a basis for a detailed comparison between the numerical
and the analytic approaches to the self-energy problem.

But as in the case for the two-photon self-energy correc-
tion for one-electron systems with high nuclear charge
the numerical evaluation of one-loop self-energy corrections
to all orders in the binding Coulomb field represented a
long-standing problem for hydrogenlike systems with low
nuclear charge. We have performed an all-order numerical
evaluation of the one-photon self energy at low nuclear
charge [10]. As we mentioned already for systems with a high
nuclear charge number, extensive numerical evaluations
have been performed over the past decades, and the available
data are very precise (see also [11,12]). Due to convergence
problems and numerical cancellations, the numerical calcu-
lations have been confined to high nuclear charge. For
low Z, the preferred method of evaluation has been the
semi-analytic expansion in the strength Zo of the binding
Coulomb field [by the term semi-analytic we refer to an
expansion in the quantities (Z«) and In(Zx)~%]. For low
Z, the best theoretical predictions for the Lamb shift have
been obtained by a combination of analytic results (for
low Z) and numerical results (for high Z) through extrapol-
ation of the available numerical data [13]. However, this
treatment is still not completely satisfactory because of
the unknown higher-order terms in the semi-analytic
expansion. The extrapolation method exploys an incomplete
approximation to the unknown higher-order terms. It there-
fore contains a component of uncertainty that is difficult to
reliably assess. In order to quantify the uncertainty from
the as yet unknown higher-order terms, we observe that
termination of the power series at the order of « (Zx)® leads
to an error of 27 kHz as compared to the all-order numerical
result for hydrogen listed in Table III. After the inclusion of
a result recently obtained in [14] for the logarithmic term
of order «(Zo)' In(Zu)™ the difference between the
truncated semi-analytic expansion and the numerical result
is still 13 kHz. This has to be compared to the best available
experimental values for the 1S-2S transition frequency in
hydrogen which has an uncertainty of 46 Hz [15]. Addition-
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Table III. Nonperturbative self-energy
remainder function for low-Z hydrogenlike
systems [10].

z Gse(Z)

1 -30.290 24(2)

2 29.770 967(5)

3 -29.299 170(2)
4 28.859 222(1)
5 28.443 472 3(8)

ally, it should be pointed out that further experimental pro-
gress is likely in the near future.
The energy shift AEsg due to the electron self energy is

Z 4
x %mc & F(Z4). (1)
n
For the function F(Z«), the semi-analytic expansion is given
by (the coefficients are list e.g. in [16])

F(ZOC) = Ay 111(20!)72 + A40
+(Zo) Aso + (Z9)? [Aex In*(Za)™?
+Ag1 11’1(ZOC)72 + GSE(ZOC)] .

Numerical data for the nonperturbative self-energy remain-
der function Gsg(Zo) of the 1S ground state are given in
Table III.

A sensitive comparison of numerical and analytic
approaches to the self energy can be made by extrapolating
the nonperturbative self-energy remainder function
Gsg(Za) to the point Za = 0. We find that our numerical
data is consistent with the value

Ago = Gsp(0) = —30.92415(1) Q)
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[17]. The numerical value of Agy = —30.924 15(1) has been
obtained by K. Pachucki after reevaluation of certain poorly
convergent one-dimensional numerical integrals in his
calculation [17]. This result is important because it confirms
the consistency of the two completely different approaches
to the self energy (numerical and analytic) to very high
precision. Hydrogenlike systems (both for low and high
Z) belong to the most accurately understood physical sys-
tems today.
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