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An estimate for the last unknown gauge-invariant set of QED corrections of order α2, the
second-order self-energy correction, is presented utilizing the so-called sign approximation.
This is able to reduce the present uncertainties in Lamb-shift predictions considerably.

Highly charged ions provide an ideal scenario to demonstrate the validity of
QED in strong fields, e.g., by measurements of the Lamb shift at utmost precision. In
this respect the recent experimental progress made in measurements in hydrogen-like
uranium [1] indicates that calculations of higher-order radiative corrections become
relevant. The set of second-order QED diagrams includes all various combinations
of the first-order self-energy (SE) and vacuum polarization (VP) effects. The present
status of theoretical predictions for the Lamb shift in different one-electron ions is
presented in [2]. However, the calculations of the most difficult set of diagrams
(see figure 1), the second-order self-energy correction (SESE) are yet uncomplete [3–
6], which remains as source for major theoretical uncertainties in present Lamb-shift
predictions. To close this gap is a challenge for theory. As a step towards this, we
present an estimate for the two-photon self-energy contribution.

The graph SESE (a) consists of the irreducible and the reducible contributions.
Utilizing Feynman gauge the first part can be renormalized and calculated separately
since it does not contain infrared divergencies. The irreducible part has been calculated
in [3] for large nuclear charge numbers Z and in [4,6] for arbitrary values of Z. For
high-Z systems all results obtained coincide, while for low- and intermediate-Z values
a discrepancy between [4] and [6] has been found. In Feynman gauge, the remaining
reducible part of the SESE (a) graph and the two diagrams SESE (b) and (c) have
to be calculated simultaneously in order to cancel infrared and ultraviolet divergences
arising from different diagrams [7].

The general renormalization scheme for all two-photon self-energy diagrams has
been first presented in [7] and has been confirmed in [8]. For the calculation we employ
an approach based on the multiple commutator expansion [9,10] in combination with
the partial-wave renormalization (PWR) [11,12]. The renormalized two-loop self-
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Figure 1. Feynman diagrams corresponding to the second-order electron self-energy corrections in
hydrogen-like ions: the loop-after-loop (a), the loop-inside-loop (b), and the crossed-loops (c) contri-

butions. The double solid line indicates the bound electron.

energy shift ∆E(2)ren
n for the bound electron state |n〉 excluding the irreducible SESE
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As indicated by subscripts the various terms here denote the reducible loop-after-loop
(red), the loop-inside-loop (in), the crossed-loops (cr) contributions, and an additional
counter term (ac) of the SESE (b) graph, respectively, after partial renormalization.
Each individual term in eq. (1) is still ultraviolet divergent, but the total sum is finite.
The expression 〈n|γ0Σ̂ (1)

b (E)|n〉 evaluated at E = En corresponds to unrenormalized
one-loop self-energy shift ∆E(1)

n of the bound-electron state |n〉. The additional coun-
terterm ∆E(ac)

n derived in [7] is also ultraviolet divergent. All other counterterms in
eq. (1) are supposed to be specified in the framework of PWR approach.

In [9,10] the first order self-energy has been expressed as the sum of two con-
tributions, a logarithmic and a sign terms. Numerical calculations reveal that the
logarithmic term yields the most dominant contribution in the case of low-Z systems
(Z 6 10). However, the sign term turns out to dominate in the energy shift for high
values of Z. A numerical evaluation of the one-loop self-energy shift demonstrates that
the sign term yields indeed about 95% of the total result for Z = 92. Therefore, we
keep all the sign terms only in order to estimate the two-photon self-energy in highly
charged heavy ions. What we call sign approximation was tested for the irreducible
part of SESE (a). Compared with the exact result for this contribution [3,4,6] the
sign-approximation yields about 60% of the total result for Z = 92. One may assume
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Table 1
Lamb shift contributions for the ground state of hydrogen-like 238U91+

ions (in eV). The reduced mass correction has not been conventionally
included.

Correction Numerical value Reference

Finite nuclear sizea 198.82 ± 0.10 [2]
Self-energy 355.05 [15]
Vacuum polarization −88.60 [16]
SESE irreducible (a) −0.97 [3,4,6]
SESE reducible (a)b 0.01 ± 0.005 this work
SESE (b) −0.05 ± 0.025 this work
SESE (c) 0.51 ± 0.25 this work
VPVP −0.97 [16,17]
SEVP 1.27 [16,18,19]
Relativistic recoil 0.16 [20]
Nuclear polarization −0.2± 0.1 [21]
Total theory 465.03 ± 0.48
Experiment 470± 16 [1]

aFor a Fermi distribution with 〈r2〉1/2 = 5.860± 0.002 (fm).
bEvaluated together with the additional counter term.

that within the sign approximation a comparable level of accuracy will be achieved
for the other SESE corrections as well.

For the numerical evaluation all terms in eq. (1) were expanded into double sums
over partial waves. Accordingly, all individual partial-wave contributions are finite.
Thus we avoid the appearance of the divergent expressions in our calculations. In
sign approximation, the terms ∆E(in)

n and ∆E(cr)
n appear to be separately finite. Only

∆E(red)
n and ∆E(ac)

n are still divergent. To ensure correct cancellations both contributions
have to be calculated at once. For the evaluation of the sums over intermediate
electron states, the B-spline approach [13] with the minimal set of the parameters was
employed.

In table 1 we compile the various contributions to the ground-state Lamb shift
in hydrogen-like uranium. Our estimates for contributions of the ∆E(in)

1s , ∆E(cr)
1s , and

∆E(red)
1s + ∆E(ac)

1s terms are given separately. The crossed-loop term seems to dominate
strongly, a result which is consistent with estimates obtained earlier for low-Z sys-
tems [14]. According to the sign approximation we obtain ∆E(2)ren

1s = 0.47±0.28 (eV)
for Z = 92. We also note, that in [5] the value which represents only one (probably
not the dominant) part of ∆E(2)ren

1s = −0.325 (eV) has been reported. Because of the
inherent uncertainty of the sign approximation of about 40% together with the numer-
ical inaccuracy of the approach ('10% (see [6]) we assign a total inaccuracy of about
50% to the presented results. This estimate reduces the existing theoretical uncertainty
in the Lamb shift for hydrogen-like ions. However, the necessity to present a complete
calculation of all SESE contributions remains.
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