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We discuss the status and open problems of recent calculations on QED effects in heavy
few-electron ions. In particular, we examine corrections in these systems which are not
of quantum electrodynamical origin but which might influence energy shifts on the same
order-of-magnitude as the accuracy of present-day QED calculations.
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1. Introduction

The experimental tests and also the theoretical predictions of quantum electro-
dynamical (QED) effects in physics belong to the most stimulating fields in science.
Up to now there is no deviation from known QED results, neither for weak nor for
strong electromagnetic fields. Although there is no indication that this will change
in the near future, during the last years a number of highly subtile setups have been
constructed to measure QED effects particularly in strong electromagnetic fields of
heavy nuclei. These strong fields provide the unique opportunity to test the validity
of QED in a regime where ordinary perturbation theory is no longer a suitable tool
when considering the external field. Furthermore, the highly relativistic bound states
in heavy hydrogenlike ions are strongly localized and, therefore, bear very high mo-
mentum components. These states also have to be investigated very carefully in the
context with the search for spontaneous positron emission [1] in critical fields.

High-precision Lamb shift measurements have been performed for a number of
hydrogenlike systems [2–4] as well as for some lithiumlike systems [5], where exper-
imental precision is even higher. Also hyperfine structure measurements on several
heavy few-electron high-Z systems have been carried out with a precision sufficient
to probe QED predictions [6–9]. For the g-factor measurement of bound electrons in
the high-Z region, only plans exist up to now, but the setup of the final experiments
is developing in a promising way [10].

The corresponding theoretical evaluations try to keep ahead of the experiments
but are still limited for several reasons as we are going to indicate in the following.
We will focus on the Lamb shift and on the g-factor of bound electrons. The hyperfine
structure is discussed elsewhere in this volume [11].
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2. Lamb shift calculations

The term “Lamb shift” is due to the famous measurement of Lamb and Retherford
in 1947 [12], in which an energy difference between the 2s1/2 and the 2p1/2 state of
hydrogen was observed. Relativistic Dirac theory predicted them to have exactly
the same energy. The shift of the 2s1/2 state was found to be due to QED effects.
Nowadays, the sum of all deviations from the point nucleus Dirac energy value for
a particular state is termed Lamb shift of this state (figure 1) except for a reduced-
mass correction which for historical reasons is omitted in this sum but should not be
separated at all [13].

In figure 2 we display the major contributions to the Lamb shift. The QED ef-
fects self energy and vacuum polarization of order α (figure 3) yield the dominant
part especially for low-Z atoms. For higher Z, also the finite extension of the nu-
cleus has to be considered. It simply alters the pure 1/r Coulomb potential which
is employed in the Dirac energy eigenvalue [14]. Therefore, also wave functions and
energy eigenvalues change slightly. As the expectation value 〈r〉 approximately scales
as
√

1− (Zα)2/Z, this contribution becomes important especially for high-Z hydro-
genlike systems.

All of these effects can be calculated with a relative precision of at least 10−5–
10−6 nowadays. For the QED effects, proper numerical methods were developed
which are able to use the propagator of a bound electron in the calculations. This
propagator obeys the equation[

γµ
(
i∂µ − eAµ(x1)

)
−me

]
SF (x1,x2) = δ4(x1 − x2). (1)

Figure 1. The energy level shifts which are sub-
sumed as “Lamb shift”.

Figure 2. The 1s1/2 Lamb shift and its dominant
contributions in relation to the binding energy.
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The propagator can be expressed in terms of an eigenfunction expansion

SF (x1,x2) = Θ(t2 − t1)
∑
n+

Φn(x2)Φn(x1)−Θ(t1 − t2)
∑
n−

Φn(x2)Φn(x1), (2)

where the sum runs over states of positive and negative energy eigenvalues separately.
In eq. (1), Aµ represents the external potential.

Employing this propagator results in a nonperturbative treatment of the external
potential of the nucleus. An expansion in powers of (Zα) is not adopted, except in
calculations for the Lamb shift in hydrogen. This advantage has its price: the use of
the analytically much simpler free electron propagator is not possible, and the handling
of the bound electron propagator requires a proper grouping of renormalization terms
[15] as well as elaborated methods in dealing with angular momenta, such as the
partial wave expansion [16]. For details we refer to original papers and to the more
elaborated recent review [13].

Except for hydrogen, these three contributions are sufficient to explain all Lamb
shifts measured up to now. Figure 4 displays the current level of experimental data
and theoretical predictions. However, with increasing experimental precision effects
may become visible that are beyond those mentioned so far.

First of all, we refer to the QED effects of second order in α. The expansion in α
indicates the number of internal photon lines and is not to be mixed up with the (Zα)
expansion mentioned above. The significance of a diagram may well be estimated by
the number of internal photon lines (and thus powers of α) also for heavy nuclei. For
Z = 90, the effects of the diagrams are about 1 eV, which has to be compared to
about 300 eV for the self energy and 80 eV for the vacuum polarization of order α.

Figure 3. Self energy (left) and vacuum polariza-
tion (right) of order α, displayed as Feynman dia-
grams. Double lines denote bound fermion prop-

agators, wavy lines denote photons.

Figure 4. Experimental values and theoreti-
cal prediction for the Lamb shift of the 1s1/2

state. The diagram is normalized according to
the dominant factor (α/π) (Zα)4mec

2.
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Table 1
One-electron Lamb shift contributions for 232Th. Values are given in eV.

State 1s1/2 2s1/2 2p1/2

Binding energy EB (point nucleus) −125655.61 −32443.85 −32443.85

Correction:

Finite nuclear size 160.52 29.92 3.29
Self energy (order α) 325.02 59.14 8.04
Vacuum polarization (order α) −78.60 −13.65 −2.23
SESE a) b) c) yet uncalculated
VPVP a) −0.18 −0.03 0.00
VPVP b) −0.13 −0.03 0.00
VPVP c) −0.54 −0.09 −0.02
SEVP a) b) c) 0.98 0.18 0.02
S(VP)E 0.11 0.02 0.00
Recoil 0.47 0.12 0.08
Nuclear polarization −0.13 −0.02 0.00

Sum of corrections 407.52 75.56 9.18
Resulting total binding energy −125248.09 −32368.29 −32434.67
Reduced mass 0.30 0.08 0.08
Lamb shift (theory) 407.22 75.48 9.10

In table 1 we display a summary of all contributions for Th. A similar table was
published earlier for uranium [17].

The ten Feynman diagrams which represent QED corrections of order α2 are
displayed in figure 5, where also the current status of their evaluation is indicated.
The three two-photon self-energy diagrams SESE a)–c) up to now have been analyzed
only partially, although several research groups work on tackling the divergencies
with promising effort ([18–20] and references therein). For the VPVP diagrams of
the second row, considerable progress was made in the last year by evaluating the
VPVP b) diagram to all orders by Plunien et al. [21]. The VPVP c) diagram is
likely to be handled somewhat similarly, but calculations to all orders in (Zα) of the
loop are not yet completed. The same holds true for the S(VP)E diagram in the last
row [17,22]. Contrary to the failure of an expansion into powers of (Zα) for self-
energy corrections, this expansion is still suitable for the loops in vacuum polarization
diagrams. Employing propagators of free electrons in these loops leads to the Uehling
contribution in vacuum polarization, where only one interaction of the loop with the
external field is considered. Even for Z = 92, higher order terms do not contribute to
more than 10% of its total vacuum polarization correction. A more detailed discussion
on this can be found in [13]. For evaluation techniques of the other diagrams we refer
to the original articles, namely [23,24] for VPVP a), [25,26] for VPVP c), and [17,27]
for SEVP a)–c).

Beneath the pure QED effects, also a few more contributions caused by properties
of the nucleus enter the Lamb shift at the same level of accuracy. These are the finite
mass of the nucleus, the uncertainty in the already mentioned nuclear size and also
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Figure 5. QED contributions of order α2 to the Lamb shift in hydrogen-like ions. The current status of
evaluation is indicated by the fermion lines. A dashed together with a solid line indicates that for this
line a complete calculation was performed only with free electron propagators up to now. The letters

correspond to the naming scheme of the tables.

the internal structure of the nucleus which allows for virtual excitations similar to self
energy and vacuum polarization in QED.

In straightforward Dirac theory, the nucleus is considered as infinitely heavy,
thus requiring no separation of any problem into relative and center-of-mass variables.
Unlike in nonrelativistic theory, where this separation is sufficient, the finite speed of
light causes retardation effects. The recoil effect for the Lamb shift was calculated
to all orders in (Zα) by Artemyev et al. [28,29]. Errors due to a nonrelativistic
approximative treatment of the nuclear motion are thought to be negligible compared
to other sources of uncertainties.

We stress that the approach of Shabaev does not distinct between any relativistic
additions and the “reduced mass” effect which results from the separation into center-
of-mass and relative variables in nonrelativistic theory only and simply leads to an
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energy shift of

∆Ereduced massnlj = − me

me +MN
Enlj , (3)

where Enlj < 0 denotes the binding energy, and me and MN are the masses of electron
and nucleus, respectively. This effect does not contribute to the classical Lamb shift
between the 2s1/2 and the 2p1/2 states. For historical reasons, it is therefore not
included in the Lamb shift of a single state, although in a fully relativistic treatment
this is by no means justified. Anyhow, we present the “Sum of corrections” and the
“classical” Lamb shift separately in table 1.

On the same scale as the nuclear recoil correction uncertainties caused by the
nuclear size and shape also enter the predictions. All calculations are carried out for
spherically symmetric nuclei. This is well justified, since deformations of the nuclei
do not affect the center of a particular state (although it may split up by electrical
hyperfine splitting even if I = 0). However, the radial nuclear charge distribution
ρ(r) determines the radial potential, and some differences in the energy eigenvalue are
visible for different charge distributions, even if the same rms-radius 〈r2〉1/2 is taken,
which is defined as 〈

r2〉 =

∫
r4ρ(r) dr

/∫
r2ρ(r) dr. (4)

The rms-radius is widely used when comparing the influence of different nuclear
models to the binding of the electrons. It is possible, however, to include higher
moments of the charge distribution as well [30].

For extended nuclear charge distributions, a number of models are employed. The
simpler one is the charged shell model, where the charge of the nucleus is considered
to be located on a shell with radius R = 〈r2〉1/2,

ρ(r) =
Ze

4πR2 δ(R − r). (5)

More realistic, but still simple enough is the assumption of a uniform charge distribu-
tion throughout the whole nuclear extension,

ρ(r) =
Ze

(4/3)πR3 Θ(R− r), (6)

where R =
√

5/3 〈r2〉1/2. More elaborated is the Fermi distribution which exists in
different forms [31]. Its two-parameter form reads

ρ(r) = Ze
N

1 + exp{(r − c)/a}
, (7)

where c denotes the half-density radius and a is a measure for the skin thickness. N is
a properly chosen normalization constant.

For gold, thorium, and uranium, we indicate the effects caused by two realistic
charge distributions in table 2. The difference in binding energies can be considered
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Table 2
Nuclear charge distribution parameters and resulting binding energies for the 1s1/2

states in different hydrogenlike ions.

197Au78+ 232Th89+ 238U91+

〈r2〉1/2 5.437 fm 5.802 fm 5.860 fm
±0.011 fm ±0.004 fm ±0.002 fm

a 0.535 fm 0.5110 fm 0.5046 fm

EB (Fermi distrib.) −93410.76 eV −125495.09 eV −132081.14 eV
EB (Hom. sphere) −93410.67 eV −125494.79 eV −132080.78 eV
Difference 0.09 eV 0.30 eV 0.36 eV
Size uncertainty 0.16 eV 0.16 eV 0.10 eV

as an upper limit to the “shape uncertainty”, whereas the “size uncertainty” merely
accounts for the error in 〈r2〉1/2 indicated in the table. Sometimes experimental mea-
surements appear with a new value for the nuclear radius which lies well outside the
error limits of an old one. For details of experimental procedures in defining nuclear
size and shape we refer to [31,32].

The QED effects of order α are also influenced by the nuclear size in a way
which is visible in precise calculations. Employing the propagator of a bound electron
implies the utilization of the proper potential in (1). Different nuclear sizes and shapes
cause different potentials and thus slightly different electron propagators. The shape
does not affect the numerical values considerably if the same rms-radius is employed
[33]. If nuclei of different size are considered, the effect is well above the numer-
ical precision. We demonstrate this for 232Th, where the published radius changed
considerably within the last twenty years. It was reported to be 〈r2〉1/2 = 5.707 fm
[34], but a newer measurement of Zumbro et al. [35] resulted in 〈r2〉1/2 = 5.802 fm.
In table 3 we display finite size effects and QED contributions of order α calcu-
lated with both nuclear radii. The main contribution to the difference results from
the size effect itself, but the change in size is also noticeable for each of the QED
contributions separately. Only when added together it becomes one order smaller in
magnitude.

Not discussed so far are effects due to the internal structure of the nucleus.
Classically speaking, we can think of vacuum polarization as an excitation of virtual
electron–positron pairs by exchanging photons with the propagating electron. The
same can be imagined for the nucleus. As it possesses internal structure, it can also
be virtually excited by coupling to the electron. This is termed nuclear polarization.
For the Lamb shift in highly charged ions, this was elaborately evaluated by Plunien
et al. [36]. We are not going to discuss this effect here in detail but refer to the
original articles and to the overview presented in [13]. For the purpose of this work it
should be noted that the nuclear states and parameters that enter the nuclear polarization
calculation, are known from experiment only and are not very precise sometimes. This
is the limit to the accuracy of nuclear polarization calculations which is thought to be
precise only to about 20% of its value.
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Table 3
Main contributions to the Lamb shift in 232Th89+ for different nuclear radii. Values

are given in eV.

Contribution 〈r2〉1/2 = 5.802 fm 〈r2〉1/2 = 5.707 fm Difference

1s1/2 state

Finite size 160.52 156.59 3.93

Self energy 325.02 325.09 −0.07
Vacuum polarization −78.60 −78.65 0.05
Total QED (order α) 246.42 246.44 −0.02

Total 406.94 403.03 3.91

2s1/2 state

Finite size 29.92 29.19 0.73

Self energy 59.14 59.16 −0.02
Vacuum polarization −13.65 −13.66 0.01
Total QED (order α) 45.49 45.50 −0.01

Total 75.41 74.69 0.72

2p1/2 state

Finite size 3.29 3.21 0.08

Self energy 8.04 8.04 0.00
Vacuum polarization −2.23 −2.23 0.00
Total QED (order α) 5.81 5.81 0.00

Total 9.10 9.02 0.08

The level schemes which are employed in the calculations are based on nu-
clear models and do not account for the quark structure of hadronic matter. This,
however, does not result in a large uncertainty alltogether since the description of
the nucleus in these model schemes is quite elaborate and reliable for our purposes.
Anyhow, the nuclear polarization determines the final limit to any QED predictions
in heavy hydrogenlike ions, since for deviations between theory and experiment on
this level of magnitude it would not be clear whether they are due to insufficiently
known nuclear structure effects or simply due to deviations of QED theory from real
nature.

Another effect which we will mention here only is the exchange of a boson
different from a photon. In electroweak interaction, the exchange of a Z0 boson
is also possible without any transfer of charge. This process normally is separated
into a “parity conserving” part and a “parity violating” part, where this terminol-
ogy refers to the occurrence of transitions which are allowed or forbidden, respec-
tively, by selection rules of pure photon exchange. The parity violating part is im-
portant for lifetime considerations of atomic levels which we are not discussing here.
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The parity conserving part, however, gives also rise to a small energy shift which
reads [37]

∆EW = 〈HW〉, (8)

where the subscript W denotes “weak interaction”. The Hamiltonian of (8) reads (in
natural units)

HW =
G

2
√

2

[
N (1− 4ξ)− Z(1− 4ξ)2]δ(r). (9)

Here, G ' 10−5 m−2
p is the Fermi coupling constant, which is expressed by the proton

mass mp. N and Z denote number of neutrons and protons in the system under
consideration, and ξ = sin2 ΘW ' 0.23 is connected to the Weinberg angle ΘW, which
relates the couplings in electroweak interaction.

For the 1s1/2 state of U91+, the associated energy shift was calculated to be
0.59× 10−5 eV [37]. By this it is clear, that any effect caused by weak interaction is
not likely to be visible in any Lamb shift measurement of hydrogenlike ions at all.

Another effect which has not been considered up to now with sufficient accuracy
is the effect of boundaries. Any spectroscopic measurement takes place in a physi-
cal chamber and (except for some trap measurements) also in the company of other
particles in the beam. These boundaries impose themselves an influence to radiative
corrections. The most prominent of the features caused by this is the attraction of two
neutral perfectly conducting plates in the vacuum [38]. This effect has been verified
experimentally and is named Casimir effect after its discoverer. For an overview, we
refer to [39]. We stress that there are no proper investigations on the actual size of
boundary effects in heavy hydrogenlike ions up to now.

So far we have considered only hydrogenlike ions. To our opinion, they represent
the simplest and also most beautiful system for investigating effects of strong electro-
magnetic fields. However, also heliumlike and lithiumlike ions have been investigated
both by experiment and theory, and the experimental results are even more precise than
in the one-electron case. For uranium, we display the current theoretical predictions
in table 4. This table is a slightly modified version of the one published in [17] due
to some improved calculations. For details we refer to [17].

This table displays some drawbacks. First, the energy eigenvalues and the elec-
tron wave functions can be computed numerically from the beginning only – in con-
tradiction to the one-electron case, where at least for the point nucleus an analytical
solution exists which can serve as a starting point. The electron–electron interaction
effects are contained in the “RMBPT” entry.

Second, due to the photon exchange between the electrons some more interactions
come into play, which also have to be corrected for QED contributions (screening
effects). Another effect is the exchange of more than one photon between the electrons
(two-photon entries). In summary, theory is well in agreement with experiment.
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Table 4
2p1/2–2s1/2 shift in Li-like U. The total theoretical error arises from an
estimated uncertainty of 0.2 eV for the missing SESE contributions.

Values are given in eV.

Correction Numerical value

RMBPT 322.33(15)
Self energy −55.87
SE screening 1.55
Vacuum polarization 12.94
VP screening −0.39
SESE a) b) c) uncalculated
SEVP a) b) c) −0.19
S(VP)E −0.02
VPVP a) 0.04
VPVP b) 0.03
VPVP c) 0.08
Two-photon reference state (box) 0.04
Two-photon reference state (cross) −0.02
Recoil −0.07
Nuclear polarization 0.03

Total theory 280.48(25)
Experiment 280.59(10)

3. g-factor calculations

The anomalous magnetic moment of the free electron is one of the most precise
theoretically known quantities in physics. It is defined as

|µ|
µB

= gS
|S|
~

, (10)

where

µB =
e~

2me
= 5.788 382 63(52) × 10−11 MeV/T (11)

is the Bohr magneton [40] and gS is the “g-factor”of the electron, which relates the
magnetic moment to the spin of the electron. Relativistic Dirac theory predicts gS = 2,
and deviations from this value are known as the “anomalous magnetic moment of the
electron spin”. They are due to QED effects only, and their prediction and measurement
have caused outstanding developments both in experimental and theoretical physics.

The experimental value of gS for the free electron is known even better than the
theoretical one (see [41,42], respectively):

gS (expt.) = 2
(
1 + 1 159 652 188.4(4.3) × 10−12), (12)

gS (theo.) = 2
(
1 + 1 159 652 201 (27) × 10−12). (13)
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Figure 6. Contributions to the deviation of the g-factor of bound electrons from the value 2. The diagram
is based on [51].

It should be mentioned, that (13) required the evaluation of 971 Feynman diagrams;
1, 7, 72 and 891 due to the first, second, third and fourth order in the power expansion
of (α/π), respectively.

Only recently attempts were made to measure the g-factor of an electron in the
very strong field of a heavy nucleus also [43]. Measurements exist up to now only for
H and He [44–46]. However, the very promising test of a setup for measurements in
much heavier ions also [10] forces theoreticians to consider seriously the calculations
for the so-called bound-state g-factor as well. Several aspects have to be taken into
account which do not exist for the g-factor of the free electron.

A summary of these effects is displayed by figure 6. We will discuss them
separately in the following.

The relativistic spin-orbit coupling was derived by Breit [47] in 1928 already. It
simply accounts for the fact that spin and angular momentum cannot be considered
separately when a central potential is present. Therefore it is also not possible to
measure the magnetic moment related to the spin of a bound electron separately. All
g-factor measurements on bound electrons will probe the magnetic moment related to
the total angular momentum J . We therefore always refer to the g-factor of bound
electrons as gJ .
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Figure 7. Feynman diagrams corresponding to the g-factor calculations for bound electrons. The triangle
denotes interaction with an external magnetic field. Diagram (a) represents the basic interaction while

diagrams (b)–(e) indicate the QED corrections of order (α/π).

The contribution due to spin-orbit coupling is known exactly and amounts to

4
3

(√
1− (Zα)2 − 1

)
' −2

3
(Zα)2 − 1

6
(Zα)4 − 1

9
(Zα)6 + O

(
(Zα)8) (14)

for the 1s1/2 state, where we indicated the expansion in powers of (Zα) as well.
Neglecting all QED and nuclear effects, the pure Dirac theory gJ -factor of an electron
bound in the 1s1/2 state can therefore be written as

gJ Dirac = 2

(
2
√

1− (Zα)2 + 1
3

)
. (15)

The diagram in figure 7(a) is the one corresponding to this simple interaction of a
bound electron with an external magnetic field.

The Breit correction “relativistic spin-orbit coupling” and the QED correction of
order (α/π)2 carry negative sign. The total QED corrections of first and second order
in (α/π) (dashed lines) contain the contributions of the anomalous magnetic moment
of the free electron as well as the corrections due to binding. These lines in the low-Z
limit therefore indicate the coefficients of these contributions to gS of the free electron.
The corrections due to binding are displayed separately as well (solid lines). For the
order (α/π)2 this contribution is given as an estimate only. The resulting uncertainty
to the total QED contribution of this order is indicated by the hatched area. For
the binding correction of order (α/π), also the first term of the (Zα)2 expansion is
indicated (dotted line (a)).

For the recoil effect, (19) is displayed. Wiggles in the curve are due to the
employed nuclear masses taken from [40].

Beneath the nuclear finite-size effect to the g-factor we also indicate its uncertainty
for the particular case of 238U. This value results from the uncertainty in the measured
nuclear rms-radius.
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All other corrections displayed in the diagram in figure 6 go beyond the point
nucleus Dirac theory. We will discuss the QED corrections first. Commonly, these
corrections are presented in the form

gJ QED = 2

[(
α

π

)
C (2)(Zα) +

(
α

π

)2

C (4)(Zα) + · · ·
]
. (16)

Here, the expansion in powers of
(
α/π

)
represents the expansion into Feynman dia-

grams with an according number of internal photon lines, similar to the Lamb shift.
The functions C (2i)(Zα) include the QED effects both for free electrons as well as for
binding. An expansion into powers of (Zα) therefore yields the “free” contribution as
the leading term. For example,

C (2)(Zα) =
1
2

+
(Zα)2

12
+ · · · . (17)

The leading term in this expansion is the famous quantum electrodynamical correction
to the g-factor of the free electron which was obtained by Schwinger in 1948 [48]. The
second term is the first correction which accounts for binding effects. It was derived
by Grotch in 1970 [49]. However, as in the Lamb shift case it is clear that for heavy
systems an expansion of the functions C (2i) into powers of (Zα) is not feasible at
all. Recently, C (2)(Zα) was calculated to all orders in (Zα) independently by two
groups [50,51]. From the diagram in figure 6 it is evident that for uranium, the total
contribution differs from the leading (Zα)2 term by almost one order of magnitude.

The techniques which were employed in calculating C (2)(Zα) are very much the
same as in Lamb shift calculations. In principle, the free fermion propagators have to
be replaced by those for bound fermions, and then care has to be taken to renormalize
and evaluate the diagrams properly. In particular, many techniques are the same as for
hyperfine contribution calculations. For details we refer to the original works.

Unlike in the case of the Lamb shift, to our knowledge, no calculations for
diagrams with more than one internal photon line have been carried out so far for the
g-factor of bound electrons. The contribution from these diagrams in the free case, on
the other hand, is analytically known to be

C (4)(Z = 0) =
197
144

+
(1

2
− 3 ln 2

)
ζ(2) +

3
4
ζ(3) ' −0.328 478 965 . . . (18)

for the (α/π)2 part.
To obtain an estimate for the magnitude of the binding effects, we simply mul-

tiplied the values obtained for the order (α/π) by another factor (α/π). This value
is also indicated in figure 6. As it is an estimate only which could carry even the
wrong sign, we both added and subtracted this term to C (4)(Z = 0). The area between
both curves is indicated in figure 6 as probable size of this yet unknown effect. It is
noteworthy, that its expected size is by at least one order of magnitude larger than the
indicated uncertainty due to the error in the determination of the radius of the uranium
nucleus. The aimed experimental precision is expected to become even better, so that
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binding effects in C (4)(Zα) will be clearly visible and therefore should be calculated
soon.

Contrary to this, the function C (6)(Zα) is not expected to be of any importance at
all. C (6)(Z = 0) = 1.181 259(40), which results in a low-Z limit of about 2.9× 10−8

in the total contribution to gJ − 2. Therefore we did not even indicate this value in
figure 6.

Beneath the quantum electrodynamical effects, also nuclear properties contribute
to the value of the g-factor. As it is the case for the Lamb shift and the hyperfine
splitting, it is the insufficient knowledge of these properties which might hinder an
exact theoretical prediction of the bound electron g-factor. However, this difficulty is
less severe than in the other test fields, as we are going to point out now.

The values in (14) and (15) are those for a point-like nucleus which gives rise to
an exact 1/r potential. Extended nuclei lead to a deviation from this potential which
also implies wave functions different from the analytically known ones [14] for point-
like nuclei. The numerical calculation of these wave functions to a suitable precision
is not a difficulty nowadays, and the indicated finite-size correction to the spin-orbit
coupling can therefore be considered as being well known, as it is the case for the
“pure” size correction for the Lamb shift. Its uncertainty is due to the error in the
nuclear radii which are utilized in the calculations. (As an example, we indicate the
uncertainty of this effect for uranium.)

It should be mentioned, that nuclear size effects are included from the beginning
in the numerical QED calculations to the order (α/π). Therefore, nuclear size effects
to QED contributions are not listed here separately.

Next to nuclear size, the finite nuclear mass affects the g-factor in a way similar
to the Lamb shift. Contrary to the latter, for the nuclear recoil contribution to the
g-factor up to now only an expansion into powers of (Zα) is available, which was
derived by Grotch and Hegstrom [52] in 1971. It yields

gJ recoil = (Zα)2
[(

me

MN

)
− (1 + Z)

(
me

MN

)2]
+ (Zα)2

(
α

π

)[
−1

3

(
me

MN

)
+

3− 2Z
6

(
me

MN

)2]
. (19)

We have grouped together terms according to the expansion into powers of (α/π) as
well, and thus it is clear which are the corrections both to the purely relativistic spin-
orbit coupling as well as to the QED effects. (19) is exact to orders (Zα)2, (α/π) and
(me/MN)2. Whereas the last two expansions are reasonable also for high-Z systems,
the expansion into powers of (Zα) can be considered as approximation only, being
even only an order-of-magnitude estimate for high-Z systems.

Not displayed in the diagram in figure 6 are the effects of internal nuclear degrees
of freedom, which also could influence the g-factor via interactions like the one shown
in figure 8. As in the Lamb shift case, these nuclear polarization contributions are
thought to be of less than the magnitude of (α/π)2-QED effects, the more so, as
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Figure 8. Feynman diagram for the nuclear polarization contribution to the g-factor.

nuclear effects tend to play only a minor role for the g-factor. These yet unknown
effects therefore are not thought to influence the g-factor at the aimed precision of
measurement, and therefore there seems to be no principal limit from the theoretical
side to calculate the g-factor of the bound electron to an accuracy to 10−7, although
this work has by far not yet been completed.

4. Conclusion

We investigated various contributions to the Lamb shift in heavy highly charged
ions and to the g-factor of bound electrons. The major contributions to both effects
are well known. Also higher order QED contributions seem to be calculable in prin-
ciple, although this work has not yet been completed. On the same level of precision,
different contributions come into play which are mainly caused by effects of non-
QED origin, such as nuclear polarization. Some of these, as Z0-boson exchange or
boundary effects seem to be negligible, some are well to handle, e.g., nuclear recoil.
Especially for contributions caused by the nucleus, experimental data enter the calcu-
lations which are not known with sufficient accuracy. Furthermore, the size of these
effects is similar to that of higher-order QED effects so that the experimental probe
of QED in strong fields is therefore inherently limited. From our discussion of both
effects it is evident, that especially g-factor measurements in the high-Z region could
test more clearly QED effects of order (α/π)2 than it might be possible with the Lamb
shift.
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O. Klepper, R. Moshammer, F. Nolden, H. Eickhoff, B. Franzke and M. Steck, Z. Phys. D 35 (1995)
169.

[5] J. Schweppe, A. Belkacem, L. Blumenfeld, N. Claytor, B. Feinberg, H. Gould, V.E. Costram,
L. Levy, S. Misawa, J.R. Mowat and M.H. Prior, Phys. Rev. Lett. 66 (1991) 1434.

[6] I. Klaft, S. Borneis, T. Engel, B. Fricke, R. Grieser, G. Huber, T. Kühl, D. Marx, R. Neumann,
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D. Marx, K. Meier, P. Merz, W. Quint, F. Schmitt, L. Völker, H. Winter, M. Würtz, K. Beckert,
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