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Efficient computation of the quadrupole light deflection for both stars/quasars
and solar system objects within the framework of the baseline Gaia relativity model
(GREM) is discussed. Two refinements have been achieved with the goal to improve
the performance of the model:

– The quadrupole deflection formulas for both cases are simplified as much as pos-
sible considering the Gaia nominal orbit (only approximate minimal distances
between Gaia and the giant planets were used here), physical parameters of the
giant planets and the level of up to 0.1 µas for individual systematic effects to be
considered in the model. The recommended formulas are given by Eq. (31) for
stars/quasars and by Eq. (77) for solar system objects.

– Simple expressions for the upper estimate of the quadrupole light deflection have
been found allowing, with a few additional arithmetical operations, to judge a
priori if the quadrupole light deflection should be computed or not for a given
source and for a given requested accuracy. The recommended criteria are given
by Eq. (37) for stars/quasars and by Eq. (90) for solar system objects.

The obtained expressions have been incorporated into the current reference C
implementation of the GREM. Numerical experiments with the C implementation
show that the derived formulas are both correct and efficient.
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I. THE QUADRUPOLE LIGHT DEFLECTION FOR STARS AND QUASARS

The impact of quadrupole field of massive bodies on the light deflection and the cor-
responding data reduction have been examined in [2, 3]. The quadrupole light deflection
for star and quasars is obtained by inserting Eqs. (44) - (47) into Eq. (62) of [3], and looks
as follows (γ is the PPN parameter, and the form and notations used in this report are
taken from Section 6.1 of [4]):

δσQ(to) =
1 + γ

2

∑
A

G

c2

[
α

′
A
U̇A(to)

c
+ β

′
A

ĖA(to)

c
+ γ

′
A

ḞA(to)

c
+ δ

′
A
V̇A(to)

c

]
, (1)

with

U̇A(to)

c
=

dA

r3
oA

2 roA − σroA

(roA − σroA)2
=

1

d3
A

[
2 + 3

σ roA

roA

− (σ roA)3

r3
oA

]
, (2)

ĖA(to)

c
=

r2
oA − 3 (σroA)2

r5
oA

, (3)

ḞA(to)

c
= −3 dA

σroA

r5
oA

, (4)

V̇A(to)

c
= − 1

r3
oA

, (5)

and the time-independent vectorial coefficients are

α
′ k
A = −M̂A

ij σi σj dk
A

dA

+ 2 M̂A
kj

dj
A

dA

− 2 M̂A
ij σi σk dj

A

dA

− 4 M̂A
ij

di
A dj

A dk
A

d3
A

, (6)

β
′ k
A = 2M̂A

ij σi dj
A dk

A

d2
A

, (7)

γ
′ k
A = M̂A

ij

di
A dj

A dk
A

d3
A

− M̂A
ij σi σj dk

A

dA

, (8)

δ
′ k
A = −2 M̂A

ij σi σj σk + 2 M̂A
kj σj − 4 M̂A

ij σi dj
A dk

A

d2
A

. (9)

The quadrupole formula (1) is valid for sources at infinite distance from the observer. The
sum over A in (1) runs, in principle, over all bodies inside the solar system, but only the
giant planets contribute within the accuracy of 1 µas. The vector

rA = xp(t)− xA (10)

is time-dependent and directed from body A toward the position of photon at time t,
where xA is the BCRS position of body A, while the vector
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roA = xp(to)− xA = xo(to)− xA (11)

is directed from body A toward the position of photon at observation time to which, of
course, coincides with the position of observer. The vector

dA = σ × (roA × σ) (12)

is time-independent and directed from object A towards the trajectory (σ dA = 0), dA =
|dA|, roA = |roA|, and G is the gravitational constant. The symmetric and tracefree
quadrupole moment of an object A are defined as

M̂A
ij =

∫
A

d3x ρA(x)
(
ri rj − 1

3
δi j r2

)
, ri = xi − xi

A , (13)

with the mass density ρA, and the integral is taken over the volume of body A; the
Kronecker symbol δij = 1 for i = j and zero otherwise.

II. APPROXIMATION OF THE QUADRUPOLE LIGHT DEFLECTION
FORMULA FOR STARS AND QUASARS

The numerical evaluation of exact quadrupole formula (1) for all of the aimed obser-
vation of 109 stars by GAIA mission is time-consuming. This, however, can be improved
if (1) can be substituted by a simpler formula. In this section we will derive an approxi-
mation of (1) sufficient for the envisaged accuracy of at least 1 µas. From (1) one obtains
the estimate

| δσQ(to)| ≤
1 + γ

2

∑
A

G

c2

[
|α′

A|
|U̇A(to)|

c
+ |β′

A|
|ĖA(to)|

c
+ |γ′

A|
|ḞA(to)|

c
+ |δ′

A|
|V̇A(to)|

c

]
,

(14)

where to is the time moment of observation by the GAIA satellite. Note that since δσQ

is perpendicular to σ the absolute value | δσQ(to)| directly gives, in the adopted post-
Newtonian approximation, the change of the calculated or observed direction to star or
quasar due to the quadrupole light deflection.

A. Estimate of the vectorial coefficients

The vectorial coefficients of the last three individual terms in (14) can be estimated
as follows. For an axial symmetric body (this approximation is sufficient for the giant
planets and goal accuracy of 1 µas) one has

M̂A
ij = MA JA

2 P 2
A

1

3
R̂


1 0 0

0 1 0

0 0 − 2

 R̂T , (15)
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where R̂ is the rotational matrix giving the orientation of the symmetry (rotational) axis
of a planet in the BCRS, MA is the mass of body A, JA

2 is the coefficient of the second
zonal harmonic of the gravitational field, PA is the minimal radius of a sphere containing
the body A and whose center coincides with the center of mass of A (for the giant planets
PA is just the equatorial radius). Below we are only looking for the maximal possible

absolute value of the coefficients |β′
A|, |γ

′
A|, |δ

′
A|. Therefore, R̂ can be omitted.

Inserting (15) into (6)–(9) yields

α
′

A = −MAJA
2 P 2

A

1

dA

[(
1− (σe3)

2 − 4
(dA e3)

2

d2
A

)
dA + 2(dAe3)e3 − 2 (σ e3)(dAe3) σ

]
,

(16)

β
′

A = −2 MA JA
2 P 2

A

1

d2
A

(σe3) (dAe3) dA , (17)

γ
′

A = −MA JA
2 P 2

A

1

d3
A

[
(dA e3)

2 dA − (σ e3)
2 d2

A dA

]
, (18)

δ
′

A = 2 MA JA
2 P 2

A

[
(σe3)

2 σ +
2

d2
A

(σe3)(dAe3) dA − (σ e3) e3

]
, (19)

where e3 is the unit direction along the axis of symmetry (rotation). Here, (σe3) and
(dAe3) are the projections of the vectors σ and dA, respectively, on the axis of symmetry.
With the aid of (17)–(19) we can explicitly determine the maximal absolute values of the
last three individual terms in (14):

|β′
A| ≤ 2 MA JA

2 P 2
A

[
|(σe3)|

|dA e3|
dA

]
≤ MA JA

2 P 2
A , (20)

|γ′
A| = MA JA

2 P 2
A

∣∣∣∣∣(dAe3)
2

d2
A

− (σe3)
2

∣∣∣∣∣ ≤ MA JA
2 P 2

A , (21)

|δ′
A| ≤ 2 MA JA

2 P 2
A

[
(σe3)

2 + 2
|(σe3)(dAe3)|

dA

+ (σe3)

]
≤ 6 MA JA

2 P 2
A , (22)

where for the estimates (20) and (22) we have taken into account that

|σ e3|
|dA e3|

dA

≤ 1

2
, (23)

valid due to σ dA = 0.

B. Estimate of the scalar functions

Furthermore, from (3)–(5) we deduce the estimates

|ĖA(to)|
c

≤ [roA(to)]
2 + 3[roA(to)]

2

[roA(to)]5
= 4

1

[roA(to)]3
, (24)
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Parameter Jupiter Saturn Uranus Neptune

GMA/c2 [m] 1.40987 0.42215 0.064473 0.076067

JA
2 [10−3] 14.697 16.331 3.516 3.538

PA [106 m] 71.492 60.268 25.559 24.764

rmin
oA [1012 m] 0.59 1.20 2.59 4.31

GMA JA
2 P 2

A/c2 [1015 m3] 0.106 0.025 0.000148 0.000165

TABLE I: Numerical parameters of the giant planets taken from [1, 6].

|ḞA(to)|
c

≤ dA
3 roA(to)

[roA(to)]5
≤ 3

1

[roA(to)]3
, (25)

|V̇A(to)|
c

=
1

[roA(to)]3
. (26)

By inserting these estimates (20)–(22) and (24)–(26) into (14) we get

G

c2
|β′

A|
|ĖA(to)|

c
≤ 4

G

c2
MA JA

2 P 2
A

1

(rmin
oA )3

, (27)

G

c2
|γ′

A|
|ḞA(to)|

c
≤ 3

G

c2
MA JA

2 P 2
A

1

(rmin
oA )3

, (28)

G

c2
|δ′

A|
|V̇A(to)|

c
≤ 6

G

c2
MA JA

2 P 2
A

1

(rmin
oA )3

. (29)

The quantity rmin
oA represents the minimal distance between the object A and the observer

(GAIA satellite).

C. Collection of all terms

Table I summarizes physical parameters of the giant planets. In the Table and in the
following discussion we use values of rmin

oA computed under assumtion that the observer
(Gaia) is within a few million kilometers from the Earth’s orbit. From the values given
in Table I and (27)–(29) we deduce (γ can be safely set to unity for these estimates)

G

c2

[
|β′

A|
|ĖA(to)|

c
+ |γ′

A|
|ḞA(to)|

c
+ |δ′

A|
|V̇A(to)|

c

]
≤ 1.61× 10−9 µas for Jupiter ,

≤ 4.52× 10−11 µas for Saturn ,

≤ 2.64× 10−14 µas for Uranus ,

≤ 7.66× 10−15 µas for Neptune .

(30)
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Obviously, by comparing the estimates given in (30) with the envisaged accuracy of 1µas
we can conclude that these last three terms in (1), i.e. β

′
A ĖA and γ

′
A ḞA and δ

′
A V̇A, can

safely be neglected. Accordingly, the simplified formula for the quadrupole light deflection
for stars and quasars is

δσQ(to) =
∑
A

1 + γ

2

G

c2
α

′
A
U̇A(to)

c
, (31)

with U̇A given by (2) and α
′
A given by (6).

III. AN UPPER ESTIMATE OF THE QUADRUPOLE LIGHT DEFLECTION
FOR STARS AND QUASARS

Due to the complexity of (31) it is advantageous to find a simple criterion which
allows one, with a few additional arithmetical operations, to judge if the quadrupole light
deflection should be computed for a given source and for a given accuracy. Therefore, we
first evaluate the absolute value of the vectorial coefficient (16),

|α′
A| = MA JA

2 P 2
A

(
1− (σ e3)

2
)

, (32)

which yields for the absolute value of light deflection angle caused by the quadrupole field
of objects A,

|δσQ(to)| =
1 + γ

2

∑
A

GMA

c2
JA

2 P 2
A

(
1− (σ e3)

2
) 1

d3
A

(
3

σ roA

roA

− (σ roA)3

r3
oA

+ 2

)
. (33)

From Eq. (63) in [3], we deduce the corresponding absolute value of deflection angle caused
by the spherically symmetric part of objects A,

| δσpN(to)| =
1 + γ

2

∑
A

2 GMA

c2

1

dA

(
1 +

σ roA

roA

)
. (34)

A direct comparison of (33) with (34) and taking into account the fact

3
σ roA

roA

− (σ roA)3

r3
oA

+ 2 ≤ 9

4

(
1 +

σ roA

roA

)
, (35)

we obtain the criterion

| δσQ(to)| ≤
9

8

P 2
A

d2
A

JA
2

(
1− (σe3)

2
)
| δσpN(to)| . (36)

Due to 1 ≥ (σe3)
2, the estimate (36) can be further approximated by

| δσQ(to)| ≤
9

8
JA

2

P 2
A

d2
A

| δσpN(to)| . (37)
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This criterion relates the quadrupole light deflection for stars and quasars to the simpler
case of spherically symmetric part. It is recommended for GAIA to use (37) as a criterion
if the quadrupole light deflection has to be computed for a given star or quasar. For
completeness let us quote the well-known estimate of the monopole light deflection

| δσpN(to)| ≤
2 (1 + γ) GMA

c2 dA

. (38)

Eq. (33) can be used to estimate | δσQ(to)| directly:

| δσQ(to)| ≤
2 (1 + γ) GMA

c2

P 2
A

d3
A

JA
2 ≤

2 (1 + γ) GMA

c2 dA

JA
2 . (39)

Estimate (39) coincides with the results of [2].

IV. THE QUADRUPOLE LIGHT DEFLECTION FOR SOLAR SYSTEM
OBJECTS

While (1) is valid for stars and quasars, the formulas considered in this Section describe
light deflection due to quadrupole field of massive bodies for sources in the solar system.
This issue has also been examined in [3]. Substituting Eqs. (36)–(47) into Eq. (69) of [3],
the quadrupole light deflection for sources in the solar system can be written as follows
(the notations are again taken from Section 6.1 of [4])

δkQ(to) =
1 + γ

2

∑
A

G

c2

[
α

′′
A
AA(to)

c
+ β

′′
A

BA(to)

c
+ γ

′′
A

CA(to)

c
+ δ

′′
A
DA(to)

c

]
, (40)

with

AA(to)

c
=

1

dA

1

R

(
1

reA

reA + k reA

reA − k reA

− 1

roA

roA + k roA

roA − k roA

)
+

dA

r3
oA

2 roA − k roA

(roA − k roA)2
, (41)

BA(to)

c
=

1

R

(
k reA

r3
eA

− k roA

r3
oA

)
+

r2
oA − 3 (k roA)2

r5
oA

, (42)

CA(to)

c
=

dA

R

(
1

r3
eA

− 1

r3
oA

)
− 3 dA

k roA

r5
oA

, (43)

DA(to)

c
= − 1

d2
A

1

R

(
k reA

reA

− k roA

roA

)
− 1

r3
oA

, (44)

and the time-independent vectorial coefficients in spatial component notation are

α
′′ k
A = −M̂A

ij ki kj dk
A

dA

+ 2 M̂A
kj

dj
A

dA

− 2 M̂A
ij ki kk dj

A

dA

− 4 M̂A
ij

di
A dj

A dk
A

d3
A

, (45)
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β
′′ k
A = 2M̂A

ij ki dj
A dk

A

d2
A

, (46)

γ
′′ k
A = M̂A

ij

di
A dj

A dk
A

d3
A

− M̂A
ij ki kj dk

A

dA

, (47)

δ
′′ k
A = −2 M̂A

ij ki kj kk + 2 M̂A
kj kj − 4 M̂A

ij ki dj
A dk

A

d2
A

. (48)

Thereby, the following vectors have been used. The vector

reA = xs(te)− xA , (49)

is directed from body A toward the position of the source xs at the moment of emission
te of the signal which is observed at xo(to), while the vector

R = xo(to)− xs(te) = roA − reA , (50)

is directed from source toward the observer. Furthermore, the unit direction from source
to observer is

k =
R

R
, (51)

and R = |R|, reA = |reA|. In the following we will investigate how (40) can be simplified
for a goal accuracy of at least 1 µas and taking into account that in the case of Gaia the
observer is situated within a few million kilometers from the Earth’s orbit.

V. APPROXIMATION OF QUADRUPOLE LIGHT DEFLECTION FOR
SOLAR SYSTEM OBJECTS

To determine the magnitude of the individual terms in (40) we first notice that at
observation time to,

| δkQ(to)| ≤
1 + γ

2

∑
A

G

c2

[
|α′′

A|
|AA(to)|

c
+ |β′′

A|
|BA(to)|

c
+ |γ′′

A|
|CA(to)|

c
+ |δ′′

A|
|DA(to)|

c

]
.

(52)

Here again since δkQ is perpendicular to k the absolute value | δkQ(to)| directly gives,
in the adopted post-Newtonian approximation, the change of the calculated or observed
direction to a solar system object due to the quadrupole light deflection.

Then again, in order to estimate the maximal value of vectorial coefficients we make
use of the diagonalized form of quadrupole moment given in (15), which yields for the
vectorial coefficients (45)–(48)
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α
′′

A = −MA JA
2 P 2

A

1

dA

×
[(

1− (k e3)
2 − 4

(dA e3)
2

d2
A

)
dA + 2(dA e3) e3 − 2(k e3)(dA e3) k +

2

3
(k dA) k

]
,

(53)

β
′′

A = −2 MA JA
2 P 2

A

1

d2
A

[
(k e3) (dA e3) dA −

1

3
(k dA) dA

]
, (54)

γ
′′

A = −MA JA
2 P 2

A

1

d3
A

[
(dA e3)

2 dA − (k e3)
2d2

A dA

]
, (55)

δ
′′

A = 2 MA JA
2 P 2

A

[
(k e3)

2 k +
2

d2
A

(k e3)(dA e3) dA − (k e3) e3 −
2

3

1

d2
A

(k dA) dA

]
,

(56)

where k e3 and dA e3 are the projections of the vectors k and dA, respectively, on the
axis of symmetry.

A. Estimate of vectorial coefficients

From (54)–(56) we deduce the following absolute values for the last three vectorial
coefficients,

|β′′

A| ≤ 2 MA JA
2 P 2

A

[
|k e3|

|dA e3|
dA

+
1

3

|k dA|
dA

]
≤ MA JA

2 P 2
A , (57)

|γ ′′

A| = MA JA
2 P 2

A

∣∣∣∣∣ |dA e3|2

d2
A

− |k e3|2
∣∣∣∣∣ ≤ MA JA

2 P 2
A , (58)

|δ′′

A| = 2 MA JA
2 P 2

A

[
4

3

1

d2
A

(
3 (k e3)

3 − (k e3)
)

(k dA)(dA e3)

−4

3

1

d2
A

(k dA)2(k e3)
2 − (k e3)

4 + (k e3)
2 +

4

9

1

d2
A

(k dA)2
]1/2

≤ MA JA
2 P 2

A , (59)

where for the estimates (57) and (59) we have taken into account that

|k e3|
|dA e3|

dA

≤ 1

2
, (60)

(k e3)
2 − (k e3)

4 ≤ 1

4
. (61)

The first estimate uses the fact that k dA = O (c−2). In the following we estimate the
magnitude of the scalar functions (42)–(44).
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1. Estimate of BA

The coefficient given in (42) can be written as follows,

BA(to)

c
=

1√
r2
eA + r2

oA − 2 reA roA

(
k reA

r3
eA

− k roA

r3
oA

)
+

r2
oA − 3(k roA)2

r5
oA

. (62)

Inserting the definition of vector k yields

BA(to)

c
=

1

r2
eA + r2

oA − 2 reA roA

(
reA

r2
oA

cos α +
roA

r2
eA

cos α− 1

reA

− 1

roA

)

+
r2
oA − 3(k roA)2

r5
oA

, (63)

where cos α = (roA reA)/(|roA| |reA|). By means of the inequality (with x = reA, y = roA)

∣∣∣∣∣ 1

x2 + y2 − 2 x y cos α

(
x

y2
cos α +

y

x2
cos α− 1

x
− 1

y

)∣∣∣∣∣ ≤ x + y

x2 y2
(64)

valid for any x ≥ 0 and y ≥ 0, we obtain the estimate

|BA(to)|
c

≤ reA + roA

r2
eA r2

oA

+
4

r3
oA

≤ 1

dA r2
oA

+
1

d2
A roA

+
4

r3
oA

. (65)

2. Estimate of CA

The coefficient given in (43) can be written as follows,

CA(to)

c
=

dA

r3
eA r3

oA

r3
oA − r3

eA√
r2
eA + r2

oA − 2 reAroA

− 3 dA
k roA

r5
oA

. (66)

Since

1√
r2
eA + r2

oA − 2 reAroA

≤ 1√
(reA − roA)2

, (67)

we find for the absolute value

|CA(to)|
c

≤ dA

r3
eA r3

oA

|r3
eA − r3

oA|
|reA − roA|

+ 3
dA

r4
oA

. (68)

By means of the inequality
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|x3 − y3|
|x− y|

≤ 3

2

(
x2 + y2

)
(69)

that is valid for any x and y, we obtain the estimate

|CA(to)|
c

≤ 3

2
dA

r2
eA + r2

oA

r3
eA r3

oA

+ 3
dA

r4
oA

≤ 3

2

1

r3
oA

+
3

2

1

d2
A roA

+ 3
dA

r4
oA

. (70)

3. Estimate of DA

The coefficient given in (44) can be written as follows,

DA(to)

c
= − 1

d2
A

1√
r2
eA + r2

oA − 2 reA roA

(
k reA

reA

− k roA

roA

)
− 1

r3
oA

. (71)

Inserting the definition of vector k yields

DA(to)

c
= − 1

d2
A

reA cos α + roA cos α− reA − roA

r2
eA + r2

oA − 2 reA roA

− 1

r3
oA

. (72)

With the aid of the inequality

∣∣∣∣∣x cos α + y cos α− x− y

x2 + y2 − 2 x y cos α

∣∣∣∣∣ ≤ 2

x + y
(73)

valid for x ≥ 0 and y ≥ 0, we obtain the estimate

|DA(to)|
c

≤ 2
1

d2
A

1

roA

+
1

r3
oA

. (74)

B. Collection of all terms

Altogether, by inserting the estimates of vectorial coefficients, (57)–(59), and the scalar
coefficients (65), (70), (74) into (52) yields

G

c2

[
|β′′

A|
|BA(to)|

c
+ |γ′′

A|
|CA(to)|

c
+ |δ′′

A|
|DA(to)|

c

]

≤ G

c2
MA JA

2 P 2
A

[
9

2

1

d2
A roA

+
1

dA r2
oA

+
13

2

1

r3
oA

+ 3
dA

r4
oA

]

≤ G

c2
MA JA

2 P 2
A

[
9

2

1

P 2
A rmin

oA

+
1

PA (rmin
oA )2

+
19

2

1

(rmin
oA )3

]
, (75)
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where we have used that PA ≤ dA ≤ roA. Note, in the last line of (75) the first term in
the brackets is at least by a factor of ' 104 larger than the other two terms. Using the
parameters given in Table I we obtain for the giant planets (γ can be safely set to unity
for these estimates)

G

c2

[
|β′′

A|
|BA(to)|

c
+ |γ′′

A|
|CA(to)|

c
+ |δ′′

A|
|DA(to)|

c

]
≤ 3.26× 10−2µas for Jupiter

≤ 5.32× 10−3µas for Saturn

≤ 8.11× 10−4µas for Uranus

≤ 5.79× 10−5µas for Neptune

(76)

In view of these estimates, for the envisaged accuracy of 1 µas the quadrupole light
deflection (40) for sources in the solar system can be approximated by

δkQ(to) =
1 + γ

2

∑
A

G

c2

[
α

′′
A
AA(to)

c

]
(77)

with AA given by (41) and α
′′
A given by (45).

VI. AN UPPER ESTIMATE OF THE QUADRUPOLE LIGHT DEFLECTION
FOR SOLAR SYSTEM OBJECTS

The absolute value of the vectorial coefficient (53) is given by

|α′′
A| = MA JA

2 P 2
A

(
1− (σ e3)

2
)

, (78)

so that an estimate of the absolute value (77) is

| δkQ(to)| =
∑
A

G

c2
MA JA

2 P 2
A

(
1− (σ e3)

2
) |AA(to)|

c
, (79)

where the scalar coefficient AA is given in (41). Due to

(k × reA)2 = (k × roA)2 = d2
A + O

(
1

c2

)
, (80)

we obtain

AA(to)

c
=

1

d3
A

1

R

(
1

reA

(reA + kreA)2 − 1

roA

(roA + kroA)2
)

+
1

r3
oA

1

d3
A

(2 roA − kroA) (roA + kroA)2 . (81)
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Inserting the explicit form of vector k defined in (51) and (50), respectively, and collecting
all terms together we obtain

AA(to)

c
=

1

d3
A

1

R3
(1 − cos α)2

(
2 r3

eA + r2
oA reA + 2 r2

eA roA + r3
eA cos α

)
. (82)

By means of the inequality (see Appendix A for a proof)

(1− cos α)2 2x3 + x y2 + 2x2 y + x3 cos α

(x2 + y2 − 2 x y cos α)3/2

≤ 3
x

(x2 + y2 − 2xy cos α)1/2

sin2 α

1 + cos α
, (83)

valid for any x ≥ 0 and y ≥ 0 and with the aid of

reA

R
sin α =

dA

roA

, (84)

we obtain the estimate,

AA(to)

c
≤ 3

1

roA

1

d2
A

sin α

1 + cos α
, (85)

and, therefore, with the aid of (77) and (78) we achieve

|δkQ(to)| ≤
3 (1 + γ)

2

GMA

c2

1

d2
A

1

roA

JA
2 P 2

A

(
1− (σ e3)

2
) sin α

1 + cos α
. (86)

This result can be related to the spherically symmetric part, given in Eq. (70) in [3] by

δkpN(to) = −
∑
A

(1 + γ)
GMA

c2

R× (reA × roA)

R r2
oA reA (1 + cos α)

, (87)

and it’s absolute value, respectively,

| δkpN(to)| =
∑
A

(1 + γ)
GMA

c2

1

roA

sin α

1 + cos α
. (88)

A direct comparison between (86) and (88) yields the criterion

|δkQ(to)| ≤
3

2

P 2
A

d2
A

JA
2

(
1− (σe3)

2
)
| δkpN(to)| . (89)

Due to 1 ≥ (σe3)
2, the estimate (89) can be further approximated by
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| δkQ(to)| ≤
3

2
JA

2

P 2
A

d2
A

| δkpN(to)| . (90)

This criterion relates the quadrupole light deflection of sources in the solar system to the
simpler case of spherically symmetric part. For GAIA it is recommended to use (90) as
a criterion if the quadrupole light deflection has to be calculated for a given solar system
object. The estimate of the monopole light deflection for solar system objects

| δkpN(to)| ≤
2 (1 + γ) GMA

c2 dA

≤ 2 (1 + γ) GMA

c2 PA

, (91)

which is easy to prove from (88) can be used in the case when | δkpN(to)| is not available.
From (79) and (82) one can directly see that (for a proof see Appendix B)

| δkQ(to)| ≤ 2 (1 + γ)
GMA

c2

P 2
A

d3
A

J2 ≤ 2 (1 + γ)
GMA

c2 PA

J2 . (92)

VII. NUMERICAL TESTS

The obtained simplified formulas given by Eq. (31) for stars/quasars and by Eq. (77)
for solar system objects and the a priori criteria given for these objects by Eq. (37) and
(90), respectively, have been incorporated into the current reference C implementation of
GREM as described by Klioner & Blankenburg [4] and Klioner [5].

Numerical experiments with the C implementation have confirmed the correctness and
the efficiency of the estimates and criteria. In the experiments we used about 108 objects
(both randomly distributed over the sky and specially generated to give grazing rays to
the giant planets). The results can be summarized as follows:

I. Stars and quasars.

– The maximal difference between the full quadrupole deflection formula (1) and
the simplified one (31) amounts to 1.1 × 10−10 µas in good agreements with
(30). Therefore, the actual values of the neglected terms are in case of Gaia
about 10–15 times less than given by (30).

– The upper estimate (37) holds and is attainable for randomly distributed
sources.

– The mean value of the ratio between the actual value of the quadrupole light
deflection and its upper estimate (37) amounts to 0.48 for randomly distributed
sources that indicates the high numerical efficiency of the estimate.

II. Solar system objects.

– The maximal difference between the full quadrupole deflection formula (40)
and the simplified one (77) amounts to 0.0017 µas in good agreements with
(76). Therefore, the actual values of the neglected terms are again about 10–15
times less than given by (76).
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– The upper estimate (90) holds and is attainable for randomly distributed
sources.

– The mean value of the ratio between the actual value of the quadrupole light
deflection and its upper estimate (90) amounts to 0.40 for randomly distributed
sources that again indicates the high numerical efficiency of the estimate.

Implementation of the criteria (37) and (90) has allowed to significantly reduce the
number of “false alarms” (cases for which the full quadrupole deflection has been computed
and turned out to be much smaller than the requested goal accuracy). The “false alarms”
were caused by the use of a more primitive ad hoc criteria implemented in the C code
of GREM previously. This, in turn, slightly increases the performance of the GREM
implementation.

VIII. SUMMARY

Let us summarize the results of this report.

1. The quadrupole light deflection (1) for stars and quasars can be approximated by
(31) for the Gaia nominal orbit and for the accuracy of 1 µas.

2. Eq. (37) can be used as an a priori criterion if the quadrupole light deflection (1)
has to be computed for a given source.

3. The quadrupole light deflection (40) for solar system sources can be approximated
by (77) for the Gaia nominal orbit and for the accuracy of 1 µas.

4. Eq. (90) can be used as an a priori criterion if the quadrupole light deflection (77)
has to be computed for a given solar system object.
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APPENDIX A: PROOF OF EQ. (83)

In this Appendix we prove the inequality (83). The latter can be rewritten as

(1− cos α)2 (2x3 + x y2 + 2x2 y + x3 cos α) ≤ 3 x (x2 + y2 − 2xy cos α) (1− cos α) .

(A1)

Denoting z = x/y we obtain the relation

f ≡ −1− 2 z2 + 2 z − cos α + 4 z cos α− cos2 α− z2 cos α ≤ 0 . (A2)

To prove the inequality (A2) it is sufficient to investigate the values of f at extrema and
at the boundaries given by z ≥ 0 and 0 ≤ α ≤ π. To determine the extrema of this
function we set the first derivatives zero,

fz = −4 z + 2 + 4 cos α− 2 z cos α = 0 , (A3)

fα = sin α (1− 4 z + 2 cos α + z2) = 0 . (A4)

The only solutions of the coupled system (A3), (A4) are

P1 = (z = 0, α =
2

3
π) , P2 = (z = 1, α = 0) . (A5)

The values of f at these points are

f(P1) = −3

4
, f(P2) = 0 . (A6)

At the boundaries we get

f(z = 0) = −1− cos α− cos2 α < 0 , (A7)

f(z →∞) = −z2(2 + cos α) < 0 , (A8)

f(α = 0) = −3(1− z)2 ≤ 0 , (A9)

f(α = π) = −z(z + 2) ≤ 0 . (A10)

From the results (A5)–(A10) we conclude the validity of the inequality (A2) and (A1).
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APPENDIX B: PROOF OF EQ. (92)

From (79) it is clear that (92) is true if for AA defined by (82) one has

AA(to)

c
≤ 4

d3
A

. (B1)

To prove this it is sufficient to demonstrate that

1

R3
(1 − cos α)2

(
2 r3

eA + r2
oA reA + 2 r2

eA roA + r3
eA cos α

)
≤ 4 , (B2)

or introducing again z = reA/roA

g ≡ (1− cos α)2 z ((1 + z)2 + z2 (1 + cos α))

4 (1 + z2 − 2z cos α)3/2
≤ 1 . (B3)

The derivatives of g with respect to α and z vanish simultaneously only for α = 0 which
is one of the boundaries. At the boundaries we get

g(z = 0) = 0 , (B4)

lim
z→∞

g =
1

4
(1− cos α)2 (2 + cos α) ≤ 1 , (B5)

g(α = 0) = 0 , (B6)

g(α = π) =
z

1 + z
≤ 1 . (B7)

From this we conclude that (B2) and, therefore, (B1) and (92) are valid.
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APPENDIX C: PROOF OF SEVERAL FURTHER INEQUALITIES USING
MAPLE

A Maple worksheet is attached where several additional inequalities are proved. The
worksheet, although rather trivial, is available from the authors upon request.



Proof of inequalities (29) and (66):
> restart;
> with(linalg):
Warning, the protected names norm and trace have been redefined and 
unprotected 

The goal is to prove that the product of projections of two perpendicular unit vectors v1 and v2 
on an arbitrary third unit vector v3 is not greater than 1/2. Since the scalar products are 
independent of the orientation of the coordinates we choose the orientation where the problem 
looks as simple as possible. Without loss of generality the first vector can be chosen to 
coincide with axis z:

> v1:=vector([0, 
            0, 
            1]);

 := v1 [ ], ,0 0 1

Again without loss of generality we can consider that v3 lies in the x-z plane and its y 
component vanishes. This v3 is a unit vector it can be represented as

> v3:=vector([cos(delta), 
            0, 
            sin(delta)]);

 := v3 [ ], ,( )cos δ 0 ( )sin δ

Now the orientation of the coordinate is completely fixed and the second unit vector v2 is than

> v2:=vector([cos(alpha2)*cos(delta2), 
            sin(alpha2)*cos(delta2), 
            sin(delta2)]);

 := v2 [ ], ,( )cos α2 ( )cos δ2 ( )sin α2 ( )cos δ2 ( )sin δ2

The orthogonality condition of v1 and v2 gives

> ortho:=dotprod(v1,v2,'orthogonal')=0;

 := ortho  = ( )sin δ2 0

which means that delta2=0 and the representation of v2 can be simplified as

> v2:=simplify(subs(delta2=0,evalm(v2)));

 := v2 [ ], ,( )cos α2 ( )sin α2 0

Now, the function the maximum of which should be found reads

> f:=dotprod(v1,v3,'orthogonal')*dotprod(v2,v3,'orthogonal');



 := f ( )sin δ ( )cos α2 ( )cos δ

and since

> f=combine(coeff(f,cos(alpha2)))*cos(alpha2);

 = ( )sin δ ( )cos α2 ( )cos δ
1
2

( )sin 2 δ ( )cos α2

and angles delta and alpha2 are independent it becomes evident that f does not exceed 1/2. 
QED.

Proof of inequality (70):
> restart;

With the definitions

> R:=sqrt(x^2+y^2-2*x*y*cos(alpha));

 := R  +  − x2 y2 2 x y ( )cos α
> LHS:=(1/R^2)*(x/y^2*cos(alpha)+y/x^2*cos(alpha)-1/x-1/y);

 := LHS

 +  −  − 
x ( )cos α

y2

y ( )cos α

x2

1
x

1
y

 +  − x2 y2 2 x y ( )cos α
> RHS:=(x+y)/(x^2*y^2);

 := RHS
 + x y

x2 y2

the inequality (68) states that f <= 0 with 

> f:=LHS-RHS;

 := f  − 

 +  −  − 
x ( )cos α

y2

y ( )cos α

x2

1
x

1
y

 +  − x2 y2 2 x y ( )cos α

 + x y

x2 y2

Consider the factorized form

> f:=factor(f);

 := f
( ) + x y ( ) +  + y2 x y x2 ( ) − ( )cos α 1

( ) +  − x2 y2 2 x y ( )cos α x2 y2



Since both x and y are non-negative, all the factors in f are non-negative expect for 
cos(alpha)-1 that is non-positive. Therefore f<=0. QED.

Proof of inequality (75):
> restart;

Definitions:

> LHS:=(x^3-y^3)/(x-y);

 := LHS
 − x3 y3

 − x y

which for any x and y can be simplified to be 

> LHS:=simplify(LHS);

 := LHS  +  + x2 y x y2

> RHS:=(3/2)*(x^2+y^2);

 := RHS  + 
3 x2

2
3 y2

2

The inequality (73) states that g <= 0

> g:=LHS-RHS;

 := g −  +  − 
1
2

x2 y x
1
2

y2

The factorized simplified form of g

> g:=factor(g);

 := g −
( ) − x y 2

2

 makes it evident that g is non-positive. QED.

Proof of inequality (79):
> restart;

Definitions:

> R:=sqrt(x^2+y^2-2*x*y*cos(alpha));

 := R  +  − x2 y2 2 x y ( )cos α
> LHS:=(x*cos(alpha)+y*cos(alpha)-x-y)/R^2;



 := LHS
 +  −  − x ( )cos α y ( )cos α x y

 +  − x2 y2 2 x y ( )cos α
> RHS:=2/(x+y);

 := RHS
2

 + x y

The left-hand side can be factored 

> LHS:=factor(LHS);

 := LHS
( ) − ( )cos α 1 ( ) + x y

 +  − x2 y2 2 x y ( )cos α

which make it evident that LHS is non-positive (considering that both x and y are 
non-negative). Therefore the absolute value of LHS is -LHS:

> ABSLHS:=-LHS;

 := ABSLHS −
( ) − ( )cos α 1 ( ) + x y

 +  − x2 y2 2 x y ( )cos α

The inequality (77) states that h <= 0 with

> h:=ABSLHS-RHS;

 := h −  − 
( ) − ( )cos α 1 ( ) + x y

 +  − x2 y2 2 x y ( )cos α

2
 + x y

The factored form of function h:

> h:=factor(h);

 := h −
( ) − x y 2 ( ) + 1 ( )cos α

( ) +  − x2 y2 2 x y ( )cos α ( ) + x y

makes it evident that h is non-positive. QED.

> 


