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A rigorous analytical solution of light propagation in Schwarzschild metric in post-

post Newtonian approximation has been presented in [1]. In [2] it has been claimed

that the sum of all those terms which are of order O
(

m2

d2

)

and O
(

m2

d2
σ

)

is not

greater than
15

4
π

m2

d2
and

15

4
π

m2

d2
σ

, respectively. All these terms can be neglected

on microarcsecond level of accuracy, leading to considerably simplified analytical

transformations of light propagation. In this report, we give formal mathematical

proofs for the inequalities used in the appendices of [2].
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I. INTRODUCTION

In [1], the rigorous analytical solution of light propagation in Schwarzschild metric has
been presented in post-post Newtonian approximation. Especially, the analytical expressions
for Shapiro delay, the three transformations between k and σ, σ and n, k and n, and the
transformation between n and σ for stars and quasars have been given explicitly. A detailed
investigation in [2] has shown that many of the terms, occurring in these five transformations,

are of order O
(

m2

d2

)

and O
(

m2

d2
σ

)

. At the microarcsecond level of accuracy all these terms

can be neglected, leading to considerably simplified analytical transformations. Furthermore,

in [2] it has been claimed that the sum of all these terms is not greater than
15

4
π

m2

d2

and
15

4
π

m2

d2
σ

, respectively. This has been demonstrated without formal proof of several

inequalities involving functions f1, f2, ..., f10 as defined in the appendices of [2]. The goal of
this report is to close this gap and to give formal proofs of these inequalities. Throughout
this report, for all estimations we use that 0 ≤ Φ ≤ π, 0 ≤ Ψ ≤ π and z ≥ 0; the angles
Φ, Ψ and variable z were defined in [2].

II. ESTIMATE OF FUNCTION f1

In this section we want to proof the inequality (A2) from Appendix A of [2]:

f1 =
2 z (1 − cos Φ)

1 + z2 − 2 z cos Φ
≤ 4 z

(1 + z)2
≤ 1 . (1)

The proof of the first inequality in (1) is straightforward and can be written as inequality

− (1 − z)2 (1 + cos Φ)≤ 0 , (2)

which is obviously valid. The second inequality in (1) is equivalent to

4 z − (1 + z)2 =− (1 − z)2 ≤ 0 . (3)

From the inequalities (2) and (3) we conclude the validity of (1).

III. ESTIMATE OF FUNCTION f2

In this section we want to proof the inequality (A4) from Appendix A of [2]:

f2 =

∣

∣

∣

∣

∣

sin Φ
z2 cos Φ − 2 z + cos Φ

1 + z2 − 2 z cos Φ
+ 15 Φ

∣

∣

∣

∣

∣

≤ 15 π . (4)

To proof the validity of (4) we consider the extremal conditions f2,Φ = 0 and f2,z = 0,
which yield

0= 7 − z3 cos3 Φ − z cos3 Φ + z4 cos2 Φ + 32 z2 cos2 Φ

+ cos2 Φ − 31 z3 cos Φ − 31 z cos Φ + 7 z4 + 16 z2 , (5)

0= sin3 Φ
(

z2 − 1
)

. (6)
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Inserting the solutions of Eq. (6), given by Φ = 0 , Φ = π , z = 1, into Eq. (5) yields the
equations

0 = (1 − z)4 , (7)

0 = (1 + z)4 , (8)

0 = (cos Φ − 1)2 (cos Φ − 15) . (9)

The solution of Eq. (7) is z = 1, while Eq. (8) has no solution, and the only solution of
Eq. (9) is Φ = 0. Thus, the extremal point Pe : (Φ = 0, z = 1) which is only one special
point of one of the boundaries of function f2. The boundaries are given by

f2

∣

∣

∣

∣

z=0

= sin Φ cos Φ + 15 Φ ≤ 15 π , (10)

f2

∣

∣

∣

∣

z=∞

= sin Φ cos Φ + 15 Φ ≤ 15 π , (11)

f2

∣

∣

∣

∣

Φ=0

= 0 , (12)

f2

∣

∣

∣

∣

Φ=π
= 15 π . (13)

From Eqs. (10) - (13) we conclude the validity of inequality (4).

IV. ESTIMATE OF FUNCTION f3

In this section we want to proof the inequality (B2) from Appendix B of [2]:

f3 =
1 − z√

1 + z2 − 2z cos Φ
+ 1≤







2 , z ≤ 1

2

1 + z
, z > 1

≤ 2 . (14)

Let us first consider the case z ≤ 1 where (14) is equivalent to the inequality

1 + z2 − 2 z ≤ 1 + z2 − 2 z cos Φ , (15)

which is obviously valid. Let us now consider the case z > 1, where we have to show

1 − z√
1 + z2 − 2 z cos Φ

≤ 1 − z

1 + z
, (16)

or (note, that 1 − z is negative)

√
1 + z2 − 2 z cos Φ≤ 1 + z , (17)

which is obviously valid. Thus, by means of (15) and (17), we have shown the validity of
(14).
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V. ESTIMATE OF FUNCTION f4

In this section we want to proof the inequality (B4) from Appendix B of [2]:

f4 = z (1 + z)
1 − cos Φ

1 + z2 − 2z cos Φ

(

1 +
1 − z√

1 + z2 − 2z cos Φ

)

≤







16

27
(1 + z), 1

2
≤ z ≤ 1,

4
z

(1 + z)2
, z < 1

2
or z > 1 .

(18)

A. 1/2 ≤ z ≤ 1

Let us first consider the case 1/2 ≤ z ≤ 1, where (18) reduces to the inequality

16

27
− z (1 − w)

1 + z2 − 2 w z
≥ z (1 − w) (1 − z)

(1 + z2 − 2 w z)3/2
, (19)

where w = cos Φ. Note, while the r.h.s. of (19) is obviously positive, the l.h.s. of (19) is
also positive, because the inequality

16

27
− z (1 − w)

1 + z2 − 2 w z
≥ 0 (20)

leads to 16 + 16 z2 − 5 w z − 27 z ≥ 16 (1 − z)2 ≥ 0. Therefore, by squaring both sides of
(19), we obtain the equivalent inequality

(

8 − 25 w z + 9 z + 8 z2
) (

w z + 4 − 9 z + 4 z2
)2 ≥ 0 . (21)

Since the quadratic term in (21) is by definition larger than zero, we have only to show that

h1 = 8 − 25 w z + 9 z + 8 z2 ≥ 0 . (22)

The extremal conditions h1,w = 0 and h1,z = 0 yield

−25 z =0 , (23)

−25 w + 9 + 16 z =0 . (24)

The solution of (23) is z = 0, however the region under consideration is 1/2 ≤ z ≤ 1, that
means there is no extremal point. The boundaries of function h1 are

h1

∣

∣

∣

∣

z=1/2

=
29

2
− 25

2
w > 0 , (25)

h1

∣

∣

∣

∣

z=1

=25 (1 − w) ≥ 0 , (26)

h1

∣

∣

∣

∣

w=−1

=8 z2 + 34 z + 8 > 0 , (27)

h1

∣

∣

∣

∣

w=1

=8 (z − 1)2 ≥ 0 . (28)

From Eqs. (25) - (28) we conclude the validity of inequality (22) and (19).
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B. z > 1

The case z > 1 has actually been shown already, because by means of inequality (1) we
obtain the estimate

f4 ≤
2 z

(1 + z)

(

1 +
1 − z√

1 + z2 − 2 z cos Φ

)

, (29)

and with the aid of inequality (14) we just obtain the estimate (18) for z > 1.

C. z < 1/2

Let us now consider the case z < 1/2, where the inequality (18) reduces to

(1 + z)3 (1 − w)

1 + z2 − 2 w z
+

(1 + z)3 (1 − w) (1 − z)

(1 + z2 − 2 w z)3/2
≤ 4 . (30)

We simplify (30) as follows:

z2 − z2 w − 4 w z + 3 + w≥ (1 + z)3 (1 − w)√
1 + z2 − 2 w z

. (31)

Squaring both sides of (31), which obviously are positive, yields the relation
(

−z5 − 8 z4 − 14 z3 + 8 z2 − z
)

w2 +
(

4 z5 + 16 z4 + 8 z3 + 16 z2 − 12 z
)

w

−3 z5 − 4 z4 − 10 z3 − 3 z + 4 ≥ 0 . (32)

In order to proof the validity of (32), we recall that −1 ≤ w ≤ 1, that means the inequality
(32) is valid, if the following inequality is satisfied:

h2 =
∣

∣

∣−z5 − 8 z4 − 14 z3 + 8 z2 − z
∣

∣

∣+
∣

∣

∣ 4 z5 + 16 z4 + 8 z3 + 16 z2 − 12 z
∣

∣

∣

+
∣

∣

∣−3 z5 − 4 z4 − 10 z3 − 3 z
∣

∣

∣ ≤ 4 . (33)

To proof inequality (33), we first note that
∣

∣

∣ 4 z5 + 16 z4 + 8 z3 + 16 z2 − 12 z
∣

∣

∣≤ 4 z5 +
∣

∣

∣ 16 z4 + 8 z3 + 16 z2 − 12 z
∣

∣

∣ . (34)

Second, we note the obvious inequalities

−z5 − 8 z4 − 14 z3 + 8 z2 − z = −z
(

z2 + 4 z − 1
)2 ≤ 0 , (35)

16 z4 + 8 z3 + 16 z2 − 12 z = 4 z (2 z − 1)
(

2 z2 + 2 z + 3
)

≤ 0 , (36)

−3 z5 − 4 z4 − 10 z3 − 3 z ≤ 0 . (37)

Accordingly, by means of relation (34) and inequalities (35) - (37), we obtain

h2 ≤ z
(

z2 + 4 z − 1
)2

+ 4 z (1 − 2 z)
(

2 z2 + 2 z + 3
)

+
(

3 z5 + 4 z4 + 10 z3 + 3 z
)

+ 4 z5 ≤ 4 . (38)
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Accordingly, we have to show the inequality

h3 = z
∣

∣

∣ 2 z4 − z3 + 4 z2 − 6 z + 4
∣

∣

∣ ≤ 1 . (39)

The extremal condition h3,z = 0 yields

5 z4 − 2 z3 + 6 z2 − 6 z + 2= 0 . (40)

Eq. (40) has no real solution due to 5 z4−2 z3+6 z2−6 z+2 ≥ 2 (1 − z)3 > 0 for 0 ≤ z ≤ 1/2.
Thus, there are no extremal points of h3 in the region under consideration. The boundaries
of function h3 are given by

h3

∣

∣

∣

∣

z=0

= 0 , (41)

h3

∣

∣

∣

∣

z=1/2

= 1 . (42)

From (41) and (42) we conclude the validity of inequality (39), and by means of which we
conclude the validity of inequality (30).

VI. ESTIMATE OF FUNCTION f5

In this section we want to proof the inequality (B6) from Appendix B of [2]:

f5 =

∣

∣

∣

∣

∣

− z(z2 − 1) sin3 Φ

(1 + z2 − 2 z cos Φ)2
− 15 arccos

1 − z cos Φ√
1 + z2 − 2 z cos Φ

+15
z (cos Φ − z) Φ

1 + z2 − 2 z cos Φ
+ 15 π

∣

∣

∣

∣

∣

≤ 15 π . (43)

The extremal conditions f5,Φ = 0 and f5,z = 0 yield

0= sin Φ z (z − 1) (z + 1)
(

− 3 z2 sin Φ cos Φ + 15 z2 Φ + 2 z sin Φ cos2 Φ

+4 z sin Φ − 30 z Φ cos Φ − 3 sin Φ cos Φ + 15 Φ
)

, (44)

0=C0 + C1 z + C2 z2 + C3 z3 + C4 z4 , (45)

with

C0 = C4 = − sin3 Φ + 15 sin Φ − 15 Φ cos Φ , (46)

C1 = C3 = 30 Φ + 30 Φ cos2 Φ − 2 sin3 Φ cos Φ − 60 sin Φ cos Φ , (47)

C2 =−90 Φ cos Φ + 30 sin Φ + 60 sin Φ cos2 Φ + 6 sin3 Φ . (48)

The complete set of solutions of extremal condition (44) reads

z =0 , (49)

z =1 , (50)

Φ =π , (51)

Φ =0 . (52)
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Note, that the expression in the parentheses of Eq. (44) vanishes only at Φ = 0 (see Appendix
A) which, however, represents no additional solution because it is already considered in
Eq. (52). Inserting the solutions (49) - (51) into (45) considerably simplifies the extremal
condition f5,z = 0 and yields the relations

0=− sin3 Φ + 15 sin Φ − 15 Φ cos Φ , (53)

0= (1 − cos Φ)2 (15 Φ + sin Φ (1 + cos Φ) + 15 sin Φ) , (54)

0= (z + 1)4 , (55)

while inserting the solution (52) into (45) yields an identity 0 = 0, that means no additional
solution. The only solution of (53) and (54) is given by (see Appendix B)

Φ =0 , (56)

while Eq. (55) has obviously no solution. In view of the solutions (49) - (52) and (56) we
obtain the extremal points Pe1 : (z = 0, Φ = 0) and Pe2 : (z = 1, Φ = 0). These extremal
points are only two points on one of the boundaries. The boundaries are given by

f5

∣

∣

∣

∣

z=0

= 15 Φ ≤ 15 π , (57)

f5

∣

∣

∣

∣

z=∞

= | −15 π + 15 Φ | ≤ 15 π , (58)

f5

∣

∣

∣

∣

Φ=0

= 15 π

(

1 − arccos
1√

1 + z2

)

≤ 15 π , (59)

f5

∣

∣

∣

∣

Φ=π
=

15 π

1 + z
≤ 15 π . (60)

From Eqs. (57) - (60) we conclude the validity of inequality (43).

VII. ESTIMATE OF FUNCTION f6

In this section we want to proof the inequality (C2) from Appendix C of [2]:

f6 =

(

1 − z cos Φ√
1 + z2 − 2z cos Φ

+ 1

)

z (1 − cos Φ)

1 + z2 − 2z cos Φ
≤ 4z

(1 + z)2
≤ 1 . (61)

The second inequality has been shown in Eq. (3), thus we focus on the first inequality only.
By inserting (1) into first inequality of (61), we recognize that we have only to show the
considerably simpler inequality

∣

∣

∣

∣

∣

1 − z cos Φ√
1 + z2 − 2z cos Φ

∣

∣

∣

∣

∣

≤ 1 , (62)

or

(1 − z cos Φ)2 ≤ 1 + z2 − 2 z cos Φ . (63)

The inequality (63) is, however, obviously valid. Thus we have shown the validity of first
inequality of (61).
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VIII. ESTIMATE OF FUNCTION f7

In this section we want to proof the inequality (C4) from Appendix C of [2]:

f7 =
∣

∣

∣ 16 sin Ψ + sin Ψ cos Ψ − 2 sin3 Ψ cos Ψ − 15 π + 15 Ψ
∣

∣

∣ ≤ 15 π . (64)

The extremal condition f7,Ψ = 0 yields

(1 + cos Ψ)2
(

cos2 Ψ − 2 cos Ψ + 2
)

= 0 . (65)

The only solution of Eq. (65) is Ψ = π that means the extremal point is Pe : (Ψ = π), which
is basically the boundary given below in Eq. (67). The boundaries are given by

f7

∣

∣

∣

∣

Ψ=0

= 15 π , (66)

f7

∣

∣

∣

∣

Ψ=π
= 0 . (67)

From Eqs. (66) and (67) we conclude the validity of (64).

IX. ESTIMATE OF FUNCTION f8

In this section we want to proof the inequality (D2) from Appendix D of [2]:

f8 =
z (1 − cos Φ)√

1 + z2 − 2z cos Φ
≤ 2z

1 + z
, (68)

which is equivalent to the inequality

h4 = w + 2 w z + z2 w − 3 + 2 z − 3 z2 ≤ 0 . (69)

The extremal conditions h4,z = 0 and h4,w = 0 yield

w + w z + 1 − 3 z =0 , (70)

(1 + z)2 =0 . (71)

Eq. (71) has obviously no real solution for variable z ≥ 0, and, therefore, the function h4

has no extremal points. The boundaries of h4 are given by

h4

∣

∣

∣

∣

z=0

=w − 3 ≤ 0 , (72)

h4

∣

∣

∣

∣

z=∞

=(w − 3) lim
z→∞

z2 ≤ 0 , (73)

h4

∣

∣

∣

∣

w=−1

=−4 (1 + z)2 ≤ 0 , (74)

h4

∣

∣

∣

∣

w=1

=−2 (1 − z)2 ≤ 0 . (75)

From Eqs. (72) - (75) we conclude the validity of (69) and (68).
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X. ESTIMATE OF FUNCTION f9

In this section we want to proof the inequality (D4) from Appendix D of [2]:

f9 =
z2 (1 + z) (1 − cos Φ)2

(1 + z2 − 2z cos Φ)2
≤ 4z2

(1 + z)3
, (76)

which is equivalent to the inequality

h5 = z2 w − 3 z2 + 6 w z − 2 z + w − 3 ≤ 0 , (77)

where w = cos Φ. The extremal conditions h5,z = 0 and h5,w = 0 yield

w z − 3 z + 3 w − 1= 0 , (78)

z2 + 6 z + 1= 0 . (79)

Eq. (79) has obviously no real solution for variable z ≥ 0, and, therefore, the function h5

has no extremal points. The boundaries of h5 are given by

h5

∣

∣

∣

∣

z=0

=w − 3 ≤ 0 , (80)

h5

∣

∣

∣

∣

z=∞

=(w − 3) lim
z→∞

z2 ≤ 0 , (81)

h5

∣

∣

∣

∣

w=−1

=−4 (1 + z)2 ≤ 0 , (82)

h5

∣

∣

∣

∣

w=1

=−2 (1 − z)2 ≤ 0 . (83)

From Eqs. (80) - (83) we conclude the validity of (77) and (76).

XI. ESTIMATE OF FUNCTION f10

In this section we want to proof the inequality (D6) from Appendix D of [2]:

f10 =

∣

∣

∣

∣

∣

z (16z − z cos Φ − 15) sin Φ

1 + z2 − 2z cos Φ
+

z(1 − 3z2 + 2z3 cos Φ) sin3 Φ

(1 + z2 − 2z cos Φ)2
+

15z (cos Φ − z) Φ

1 + z2 − 2z cos Φ

∣

∣

∣

∣

∣

≤ 15 π . (84)

With |a + b| ≤ |a| + |b|, and the inequality (see Appendix C)

∣

∣

∣

∣

∣

z(1 − 3z2 + 2z3 cos Φ) sin3 Φ

(1 + z2 − 2z cos Φ)2

∣

∣

∣

∣

∣

≤ 8 sin Φ , (85)

we get

f10 ≤
∣

∣

∣

∣

∣

z (16z − z cos Φ − 15) sin Φ + 15z (cos Φ − z) Φ

1 + z2 − 2z cos Φ

∣

∣

∣

∣

∣

+ 8 sin Φ . (86)
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Due to the inequality (see Appendix D)

z (16 z − z cos Φ − 15) sin Φ + 15 z (cos Φ − z) Φ≤ 0 , (87)

and since sin Φ ≥ 0, we can write

f10 ≤
∣

∣

∣

∣

∣

sin Φ
16z2 − 15z − z2 cos Φ

1 + z2 − 2z cos Φ
− 8 sin Φ + 15

z Φ (cos Φ − z)

1 + z2 − 2z cos Φ

∣

∣

∣

∣

∣

. (88)

Since the expression in the parentheses of Eq. (88) is negative, we can replace cos Φ by 1 in
the nominator of the first term (note, that 1 + z2 − 2 z cos Φ ≥ 0) and obtain

f10 ≤
∣

∣

∣

∣

∣

15 sin Φ
z (z − 1)

1 + z2 − 2z cos Φ
− 8 sin Φ + 15

z Φ (cos Φ − z)

1 + z2 − 2z cos Φ

∣

∣

∣

∣

∣

. (89)

This expression can further be simplified by means of the inequality (see Appendix E)

∣

∣

∣

∣

∣

z Φ (cos Φ − z)

1 + z2 − 2z cos Φ

∣

∣

∣

∣

∣

≤ z π

1 + z
. (90)

Thus we obtain

f10 ≤
∣

∣

∣

∣

∣

15 sin Φ
z (z − 1)

1 + z2 − 2z cos Φ
− 15 sin Φ − 15

z π

1 + z

∣

∣

∣

∣

∣

, (91)

where we also made the replacement −8 sin Φ by −15 sin Φ for getting an expression more
convenient for subsequent considerations. This expression can simplified with the aid of the
inequality (see Appendix G)

∣

∣

∣

∣

∣

sin Φ
z (z − 1)

1 + z2 − 2z cos Φ
− sin Φ

∣

∣

∣

∣

∣

≤ 2

1 + z
, (92)

by means of which we obtain

f10 ≤ 15
∣

∣

∣

∣

2

1 + z
+

z π

1 + z

∣

∣

∣

∣

≤ 15
∣

∣

∣

∣

π

1 + z
+

z π

1 + z

∣

∣

∣

∣

= 15 π . (93)

Thus, we have shown the validity of inequality (84).

[1] Sergei A. Klioner, Sven Zschocke, report GAIA-CA-TN-LO-SK-002-2.

[2] Sven Zschocke, Sergei A. Klioner, report GAIA-CA-TN-LO-SZ-002-2.
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APPENDIX A: PROOF THE NON-EXISTENCE OF OTHER SOLUTIONS OF

EQ. (44)

If we set the parentheses of Eq. (44) to zero, we obtain the following equation:

0=−3 z2 sin Φ cos Φ + 15 z2 Φ + 2 z sin Φ cos2 Φ

+4 z sin Φ − 30 z Φ cos Φ − 3 sin Φ cos Φ + 15 Φ . (A1)

We want to show that Eq. (A1) has the only solution Pe : (z = 1, Φ = 0). The both solutions
of Eq. (A1) for variable z are given by

z1,2 =
1

3

sin3 Φ − 3 sin Φ + 15 Φ cos Φ ±
√

T1

5 Φ − sin Φ cos Φ
, (A2)

where the discriminant is defined by

T1 =− sin2 Φ
(

− cos4 Φ + 5 cos2 Φ − 30 Φ sin Φ cos Φ + 225 Φ2 − 4
)

≤ 0 . (A3)

The inequality (A3) can also be expressed by

h6 =−w4 + 5 w2 − 30
√

1 − w2 w arccos w + 225 arccos2 w − 4 ≥ 0 , (A4)

where w = cos Φ. The extremal condition h6,w = 0 leads to

0=120 arccos w − 10 w
√

1 − w2 − 15 w2 arccos w + w3
√

1 − w2 , (A5)

with the only solution w = 1, that means Φ = 0 (it is straightforward to show, that the
first derivative of expression (A5) is always negative; thus the expression (A5) represents a
monotonically decreasing function and since w = 1 is obviously a solution of equation (A5)
it is, therefore, the only one). Inserting Φ = 0 into Eq. (A2) yields z1 = z2 = 1. Thus, the
extremal point is given by

Pe : (z = 1, w = 1) . (A6)

The boundaries of function h6 are given by

h6

∣

∣

∣

∣

w=−1

= 225 π2 > 0 , (A7)

h6,
∣

∣

∣

∣

w=1

= 0 . (A8)

From Eqs. (A7) and (A8) we conclude the validity of inequality (A4) and (A3). That means,
the only real solution of Eq. (A1) is given by Eq. (A6), that means Pe : (z = 1, Φ = 0).

APPENDIX B: PROOF THAT EQ. (56) IS THE ONLY SOLUTION OF EQ. (53)

AND EQ. (54)

Eq. (53) is given by

0=− sin3 Φ + 15 sin Φ − 15 Φ cos Φ , (B1)
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and Eq. (54) is given by

0= (1 − cos Φ)2 (15 Φ + sin Φ (1 + cos Φ) + 15 sin Φ) . (B2)

The only solution of (B2) is (it is straightforward to show that the first derivative of
15 Φ + sin Φ (1 + cos Φ) + 15 sin Φ is always positive, that means this expression represents
a monotonically increasing function; thus (B3) is, therefore, the only solution of (B2))

Φ = 0 . (B3)

Inserting the solution (B3) into Eq. (B1) yields an identity 0 = 0. Thus, the only solution
of Eqs. (B1) and (B2) is given by (B3).

APPENDIX C: PROOF OF INEQUALITY (85)

The inequality in Eq. (85) is given by

sin3 Φ

(1 + z2 − 2 z cos Φ)2

∣

∣

∣z − 3 z3 + 2 z4 cos Φ
∣

∣

∣≤ 8 sin Φ , (C1)

which can be written as

1 − w2

(1 + z2 − 2 w z )2

∣

∣

∣ z − 3 z3 + 2 w z4

∣

∣

∣≤ 8 , (C2)

where w = cos Φ. In order to show the validity of Eq. (C2) it is convenient to simplify this
expression with the aid of the following inequality:

1 − w2

(1 + z2 − 2 w z )2

∣

∣

∣ z − 3 z3 + 2 w z4
∣

∣

∣≤ 2
1 − w

(1 + z2 − 2 w z )2

∣

∣

∣ z − 3 w z3 + 2 z4
∣

∣

∣ . (C3)

The proof of inequality (C3) can be shown as follows. Due to 1 − w2 ≤ 2 (1 − w) for
−1 ≤ w ≤ 1, we have only to show | z − 3 z3 + 2 w z4 | ≤ | z − 3 w z3 + 2 z4 |. Squaring both
of these sides and subtracting from each other leads to the inequality

z4 (w − 1) (3 + 2 z)
(

2 w z3 − 3 w z2 + 2 + 2 z3 − 3 z2
)

≤ 0 . (C4)

That means, in order to proof (C3), one has actually to show the inequality

g =2 w z3 − 3 w z2 + 2 + 2 z3 − 3 z2 ≥ 0 . (C5)

The extremal point is given by Pe (z = 3/2, w = −1) where g |Pe
= 2 , and the boundaries

are g |z=0 = 2 ≥ 0, g |z=∞
= 2 (1 + w) z3 ≥ 0, g |w=−1 = 2, g |w=1 = 4 z3 −6 z2 +2 ≥ 0. Thus,

we have shown the validity of (C5) and (C3), respectively. Let us turn back to the original
inequality (C1),

h7 =
1 − w

(1 + z2 − 2 w z )2

∣

∣

∣ z − 3 w z3 + 2 z4

∣

∣

∣ ≤ 4 , (C6)
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which follows from the combination of (C2) and (C3). In order to show the validity of (C6),
we consider the extremal conditions h7,z = 0 and h7,w = 0 which yield

(1 − w)
(

1 + 2 w z − 3 z2 − 9 w z2 + 8 z3 + 6 w2 z3 − 5 w z4
)

=0 , (C7)

z (z − 1)3
(

−2 z2 − z + 2 w z + 1
)

=0 . (C8)

The solutions of (C8) are given by

z1 = 0 , (C9)

z2 = 1 , (C10)

z3,4 =
2 w − 1

4
±

√
9 − 4 w + 4 w2

4
, (C11)

w =
2 z2 + z − 1

2 z
. (C12)

Inserting (C9) - (C12) into extremal condition (C7) yields the relations

1 − w =0 , (C13)

(1 − w)3 =0 , (C14)

(7 w + 20) (4 w + 5) (w − 1)4 =0 , (C15)

(z − 1)3 (z + 2) (2 z + 1) (2 z + 7) =0 . (C16)

The relevant solutions of (C13) - (C16), respectively, are given by

w = 1 , (C17)

z = 1 . (C18)

Thus, the extremal point is given by Pe : (z = 1, w = 1), which is just one point of one of
the boundaries. The boundaries of h7 are given by

h7

∣

∣

∣

∣

z=0

=0 , (C19)

h7

∣

∣

∣

∣

z=∞

=2 (1 − w) ≤ 4 , (C20)

h7

∣

∣

∣

∣

w=−1

=2 z
1 + 3 z2 + 2 z3

(1 + z)4
≤ 4 , (C21)

h7

∣

∣

∣

∣

w=1

=0 . (C22)

From Eqs. (C19) - (C22) we conclude the validity of inequality (C6), that means the validity
of (C1) and (C2), respectively.

APPENDIX D: PROOF OF INEQUALITY (87)

Since z ≥ 0, Eq. (87) can also be written by

h8 = sin Φ (16 z − 15 − z cos Φ) + 15 (cos Φ − z) Φ ≤ 0 . (D1)
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The extremal conditions h8,z = 0 and h8,Φ = 0 yield

0 =16 sin Φ − sin Φ cos Φ − 15 Φ , (D2)

0 =16 z cos Φ − z cos2 Φ + z sin2 Φ − 15 z − 15 Φ sin Φ . (D3)

The only solution of Eq. (D2) is given by (note, that it is straightforward to show that the
first derivative of (D1) is negative, i.e. (D1) represents a monotonically decreasing function;
thus the given solution (D4) is indeed the only possible solution)

Φ =0 . (D4)

Inserting the solution (D4) into (D3) yields an identity 0 = 0. That means the function h8

does not have an extremal point, while h8 takes extremal values at the boundary Φ = 0.
Especially, the boundaries are given by

h8

∣

∣

∣

∣

z=0

=−15 sin Φ + 15 Φ cos Φ ≤ 0 , (D5)

h8

∣

∣

∣

∣

z=∞

= lim
z→∞

(−15 Φ − sin Φ cos Φ + 16 cos Φ) z ≤ 0 , (D6)

h8

∣

∣

∣

∣

Φ=0

=0 , (D7)

h8

∣

∣

∣

∣

Φ=π
=−15 π (1 + z) ≤ 0 . (D8)

From Eqs. (D5) - (D8) we conclude the validity of inequality (D1).

APPENDIX E: PROOF OF INEQUALITY (90)

Eq. (90) can be written by

∣

∣

∣

∣

∣

Φ (cos Φ − z)

1 + z2 − 2 z cos Φ

∣

∣

∣

∣

∣

≤ π

1 + z
, (E1)

that means we have to show the validity of

Φ2 (cos Φ − z)2

(1 + z2 − 2 z cos Φ)2
− π2

(1 + z)2
≤ 0 . (E2)

Obviously, the following inequality is valid:

(cos Φ − z)2

(1 + z2 − 2 z cos Φ)
≤ 1 . (E3)

Thus, that means by inserting (E3) into (E2), we have to show the inequality

h9 =
Φ2

1 + z2 − 2 z cos Φ
− π2

(1 + z)2
≤ 0 . (E4)
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The extremal conditions h9,z = 0 and h9,Φ = 0 lead to

0=−z Φ − 2 z2 Φ − z3 Φ + Φ cos Φ + 2 z Φ cos Φ + z2 Φ cos Φ

+π
(

1 + z2 − 2 z cos Φ
)3/2

, (E5)

0= 1 + z2 − 2 z cos Φ − z Φ sin Φ . (E6)

The relation (E6) represents an quadratic equation in variable z and has the both solutions

z1,2 =cos Φ +
1

2
sin Φ ± 1

2

√

T2 , (E7)

where the discriminant T2 is given by

T2 =sin Φ
(

−4 sin Φ + 4 Φ cos Φ + Φ2 sin Φ
)

≤ 0 , (E8)

where the inequality (E8) is shown in Appendix F. The discriminant T2 = 0 at Φ = 0. Thus,
in view of Eq. (E7) and (E8), the only real solution of Eq. (E6) is given by P (z = 1, Φ = 0).
Inserting this solution into Eq. (E5) yields

0=π (z − 1)3 . (E9)

Thus, the extremal point is given by

Pe : (z = 1, Φ = 0) , (E10)

which is just one point on one of the boundaries. The boundaries of function h9 are given
by

h9

∣

∣

∣

∣

z=0

=Φ2 − π2 ≤ 0 , (E11)

h9

∣

∣

∣

∣

z=∞

=0 , (E12)

h9

∣

∣

∣

∣

Φ=0

=− π2

(1 + z)2
≤ 0 , (E13)

h9

∣

∣

∣

∣

Φ=π
=0 . (E14)

From Eqs. (E11) - (E14) we conclude the validity of inequality (E4) and (E1), respectively.

APPENDIX F: PROOF OF INEQUALITY (E8)

Inequality (E8) is given by

T2 = sin Φ
(

−4 sin Φ + 4 Φ cos Φ + Φ2 sin Φ
)

≤ 0 , (F1)

that means, due to sin Φ ≥ 0, we have to show the inequality

h10 =−4 sin Φ + 4 Φ cos Φ + Φ2 sin Φ ≤ 0 . (F2)
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The extremal condition h10,Φ = 0 leads to

0=Φ (Φ cos Φ − 2 sin Φ) , (F3)

with the only solution (the first derivative of (F3) is always negative, thus the expression
on the r.h.s. of Eq. (F3) represents a monotonically decreasing function and, therefore, the
given solution (F4) is in fact the only possible solution)

Pe : (Φ = 0) . (F4)

The extremal point (F4) is just one point on one of the both boundaries. The boundaries
are given by

h10

∣

∣

∣

∣

Φ=0

= 0 , (F5)

h10

∣

∣

∣

∣

Φ=π
=−4 π . (F6)

From Eqs. (F5) and (F6) we conclude the validity of inequality (F1).

APPENDIX G: PROOF OF INEQUALITY (92)

Eq. (92) is given by
∣

∣

∣

∣

∣

sin Φ
z (z − 1)

1 + z2 − 2z cos Φ
− sin Φ

∣

∣

∣

∣

∣

≤ 2

1 + z
, (G1)

which is equivalent to the inequality

h11 =
(1 − w2) (2 w z − z − 1)2 (1 + z)2

(1 + z2 − 2 w z)2
− 4 ≤ 0 . (G2)

The extremal conditions h11,z = 0 and h11,w = 0 lead to the both relations

0= (1 + z)
(

1 − w2
)

(2 w z − z − 1)
(

2 z2 w2 − 2 w z − z2 + 1
)

, (G3)

0= (1 + z)2 (2 w z − z − 1)

×
(

4 w3 z2 − 4 w2 z3 − 4 w2 z + w z3 + w z2 + w z + w + 2 z3 − 2 z2
)

. (G4)

The solutions of (G3) are given by

w1 =−1 , (G5)

w2 = 1 , (G6)

w3 =
1 + z

2 z
, (G7)

w4,5 =
1 ±

√
2 z2 − 1

2 z
, (G8)

z1 =
1

2 w − 1
, (G9)

z2,3 =
w ±

√
1 − w2

2 w2 − 1
. (G10)
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Inserting (G5), (G6), (G8) and (G10) into (G4) yields

0=
(

7 z2 + 3 z3 + 5 z + 1
)

, (G11)

0= (z − 1)4 , (G12)

0= 2 z5 + z4 − 2 z3 − 2 z2 + 1 ±
√

2 z2 − 1
(

−z4 − 2 z3 + 2 z2 + 2 z − 1
)

, (G13)

0= w
(

1 − w2
) (

1 + w2
)

[

(

8 w7 − 16 w5 + 12 w4 + 2 w3 − 12 w2 + 6 w − 1
)√

1 − w2

±
(

8 w7 − 12 w6 − 16 w5 + 24 w4 + 2 w3 − 11 w2 + 6 w − 1
)

]

, (G14)

while inserting (G7) or (G9) into (G4) yields an identity 0 = 0. Obviously, Eq. (G11) has
no real solution for variable z ≥ 0. The only solution of Eq. (G12) is given by

z1 =1 . (G15)

In order to find the solutions of (G13), we first have to bring all those terms proportional
to

√
2 z2 − 1 on the left side, then squaring both sides and obtain

0= (1 + z)4 (z − 1)6 , (G16)

according to which it follows that the only solution of (G13) is already given by (G15). In
order to find the solutions of (G14), we first have to bring all those terms proportional to√

1 − w2 on the left side, then squaring both sides and obtain

0=w2
(

1 − w2
) (

2 w2 − 1
)6

. (G17)

The solutions of Eq. (G17) are given by (G5), (G6) and

w6,7 =± 1√
2

. (G18)

Collecting the results (G5) - (G8), (G15) and (G18) together, we obtain the extremal points

Pe1 : (z = 1, w = 0) , (G19)

Pe2 : (z = 1, w = 1) . (G20)

While the extremal point Pe2 is just one point on one of the boundaries, the numerical value
of function h11 at the extremal point Pe1 is given by

h11

∣

∣

∣

∣

Pe1

= 0 . (G21)

The boundaries are given by

h11

∣

∣

∣

∣

z=0

=−3 − w2 ≤ 0 , (G22)

h11

∣

∣

∣

∣

z=∞

=
(

1 − w2
)

(2 w − 1)2 − 4 ≤ 0 , (G23)

h11

∣

∣

∣

∣

w=−1

=−4 , (G24)

h11

∣

∣

∣

∣

w=1

=−4 . (G25)

From Eqs. (G21) - (G25) we conclude the validity of inequality (G2) and (G1), respectively.


