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A generalized lens equation for weak gravitational fields of Schwarzschild metric and

valid for finite distances of source and observer from the light deflecting body is

suggested. The magnitude of neglected terms in the generalized lens equation is

estimated to be smaller than or equal to
15π

4

m2

d ′2
, where m is the Schwarzschild

radius of masive body and d ′ is Chandrasekhar’s impact parameter. The main ap-

plications of this generalized lens equation are extreme astrometrical configurations,

where Standard post-Newtonian approach as well as Classical lens equation cannot be

applied. It is shown that in the appropriate limits the proposed lens equation yields

the known post-Newtonian terms, ’enhanced’ post-post-Newtonian terms and the

Classical lens equation, thus provides a link between these both essential approaches

for determining the light-deflection.
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I. INTRODUCTION

The accuracy of GAIA mission necessitates theoretical predictions of light-deflection by
massive bodies on microarcsecond (µas) level. In principle, such an astrometric precision on
microarcsecond level can be achieved by numerical integration of geodesic equation of light-
propagation. However, the GAIA mission determines the positions and proper motions of
approximately one billion objects, each of which is observed about one hundred times. The
data reduction of such huge amount of observations implies the need of analytical solutions,
because the numerical investigation of geodesic equation is by far too time-consuming.

The metric of a massive body can be expanded in terms of multipoles, i.e. monopole term,
quadrupole term and higher multipoles. Usually, the largest contributions of light-deflection
originates from the spherically symmetric part (Schwarzschild) of the massive body under
consideration. The exact analytical solution of light-propagation in Schwarzschild metric
[1] inherits elliptic integrals, but their evaluation becomes comparable with the time effort
needed for a numerical integration of geodesic equation. Thus, approximative analytical so-
lutions valid on microarcsecond level of accuracy are indispensible for a highly time-efficient
data reduction.

In the same way, exact lens equations of light-deflection have been obtained in [9, 10, 11].
Such exact relations are also given in terms of elliptic integrals and imply numerical efforts
comparable with a numerical solution of geodesic equation. Therefore, also approximations
of these exact solutions which are valid up to a given astrometric accuracy are very welcome.
An excellent overview of such approximative lens equations has recently been presented in
[12].

Basically, two essential approximative approaches for determining the light-deflection in
weak gravitational fields are known:

The first one is the standard parameterized post-Newtonian approach (PPN) [7, 8] which
is of the order O (m). During the last decades, it has been the common understanding
that the higher order terms O (m2) are negligible even on microarcsecond level, except for
observations in the vicinity of the Sun. Recent investigations [2, 3, 4, 5] have revealed that
the post-post-Newtonian approximation [6, 7], which is of the order O (m2), is needed for
such high accuracy. Both approximations are applicable for d � m, where d being the
impact parameter of the unperturbed light ray.

The second one is the standard weak-field approximative lens equation, which usually is
called classical lens equation, see Eq. (67) in [11] or Eq. (24) in [12]. One decisive advantage
of classical lens equation is it’s validity for arbitrarily small values of impact parameter d.
The classical lens equation is valid for astrometrical configurations where source and observer
are far ernough from the lens, especially in case of A � d and B � d, where A = k · x1

and B = −k · x0, where x0 and x1 are the three-vectors from the center of the massive
body to the source and observer, respectively, and k is the unit vector from the source to
the observer. However, the classical lens equation is not applicable for determine the light-
deflection of moons of giant planets in the solar system, because astrometrical configurations
with B = 0 are possible.

Moreover, there are astrometric configurations where neither the standard post-
Newtonian approach nor the classical lens equation are applicable. In order to investigate
the light-deflection in such systems a link between these both approaches is needed. Such a
link can be provided by a generalized lens equation which, in the appropriate limits, coin-
cides with standard post-Newtonian approach and classical lens equation. Accordingly, the
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aim of our investigation is an analytical expression for the generalized lens equation having
a form very similar to the classical lens equation. We formulate the following conditions
under which our generalized lens equation should be applicable:

1. valid for d = 0 , A = x1 � m , B = x0 � m,

2. valid for A = 0 , d� m , B 6= 0,

3. valid for B = 0 , d� m , A 6= 0.

These conditions imply that the light-path is always far enough from the lens, thus inherit
weak gravitational fields, i.e. small light deflection angles. In order to control the numerical
accuracy, the generalized lens equation is compared with the numerical solution of exact
geodesic equation in the Schwarzschild metric (throughout the paper, we work in harmonic
gauge):

g00 =−
1 − a

1 + a
, gi0 = 0 ,

gij =(1 + a)2
δij +

a2

x2

1 + a

1 − a
xi xj . (1)

Here, a =
m

x
and m =

GM

c2
is the Schwarzschild radius and M is the mass of massive

body, G is Newtonian constant of gravitation and c is the speed of light. Latin indices take
values 1, 2, 3, and the Euclidean metric δij = 1(0) for i = j (i 6= j). The absolute value

of a three-vector is denoted by x = |x| =
√

x2
1 + x2

2 + x2
3. The exact geodesic equation in

Schwarzschild metric reads, cf. [4]

ẍ=
a

x2

[

−c2
1 − a

(1 + a)3
− ẋ · ẋ + a

2 − a

1 − a2

(

x · ẋ

x

)2
]

x + 2
a

x2

2 − a

1 − a2
(x · ẋ) ẋ , (2)

where a dot denotes time derivative in respect to the coordinate time t, and x is the three-
vector pointing from the center of mass of the massive body to the photon trajectory at
time moment t. The scalar product of two three-vectors with respect to Euclidean metric

δij is a · b =
3
∑

i,j=1

δij a
ibj. The numerical solution of this equation will be used in order to

determine the accuracy of approximative solutions. We abbreviate the angle between two

three-vectors a and b by δ(a, b), which can be computed by means of δ(a, b) = arccos
a · b

a b
.

The report is based on our recent article [20] and is organized as follows: In Section II
the standard post-Newtonian approach is presented. In Section III the steps of post-post-
Newtonian approach are shown which are relevant for this investigation, and some main
results of our work [4] are summarized. The generalized lens equation is obtained in Section
IV and discussed in Section V. A summary is given in Section VI.

II. POST-NEWTONIAN APPROXIMATION

Let us consider the trajectory of a light-signal in post-Newtonian Schwarzschild metric:

g00 =−1 + 2 a+ O
(

c−4
)

, gi0 = 0 ,

gij = δij + 2 γ a δij + O
(

c−4
)

. (3)
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Here, γ is the parameter of the Parametrized Post-Newtonian (PPN) formalism, which
characterizes possible deviation of the physical reality from general relativity theory where
γ = 1. The light-ray is being emitted at a position x0 at time moment t0 and received at
position x1 at a time moment t1, see FIG. 1.

observer

deflecting body

source

light path

k

n
d

σ

light at
t =−∞

x1 x0

FIG. 1: A geometrical representation of the boundary problem under consideration for a light-

propagation from the source to the observer.

Light propagation is governed by geodesic equation, in post-Newtonian order given by

ẍ=−(1 + γ) c2
ax

x2
+ 2 (1 + γ)

a ẋ (ẋ · x)

x2
+ O(c−2) . (4)

The unit tangent vector at the point of observation is n =
ẋ(t1)

|ẋ(t1)|
, and the unit tangent

vector k =
R

R
, where R = x1 − x0 and the absolute value is R = |R|. Furthermore, the

unit tangent vector at remote past σ = lim
t→−∞

ẋ(t)

c
is introduced.

Up to post-Newtonian order, the differential equation (4) can be solved analytically. The
solution for the transformation between n and k reads

n= k − (1 + γ)
m

d ′

d ′

d ′

x0 x1 − x0 · x1

Rx1

+ O
(

m2
)

, (5)

in terms of the coordinate-independent impact vector d ′, cf. Eq. (57) of [4]:

d ′ = lim
t→−∞

σ × (x(t) × σ) . (6)

This impact parameter is identical to Chandrasekhar’s impact parameter [4, 14] which in

vectorial form is given by d ′ = L
E

, where L is the orbital three-momentum and E is the

energy of the photon on the light-trajectory; cf. Eq. (215) in chapter 20 of [1].
By means of sinϕ = |n × k|, we find the light-deflection angle ϕ = δ(n,k) in post-

Newtonian approximation:

ϕ=(1 + γ)
m

d ′

x0 x1 − x0 · x1

Rx1

+ O
(

m2
)

. (7)
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Note that
x0 x1 − x0 · x1

Rx1

≤ 2, and therefore ϕ ≤
4m

d ′
. One problem of post-Newtonian

solution (5) or (7) is, that one can only state that the higher order terms are of order
O (m2), but their magnitude remains unclear. In order to make a statement about the
upper estimate of the higher order terms one needs to consider the geodesic equation in
post-post-Newtonian approximation.

III. POST-POST NEWTONIAN APPROXIMATION

Now let us consider the trajectory of a light-signal in post-post-Newtonian Schwarzschild
metric:

g00 =−1 + 2 a− 2 β a2 + O
(

c−6
)

, gi0 = 0 ,

gij = δij + 2 γ a δij + ε

(

δij +
xi xj

x2

)

a2 + O
(

c−6
)

. (8)

The geodesic equation of light-propagation in post-post-Newtonian approximation is given
by [4]

ẍ =−(1 + γ) c2
ax

x2
+ 2 (1 + γ)

a ẋ (ẋ · x)

x2

+2 c2 (β − ε + 2 γ (1 + γ))
a2 x

x2
+ 2 ε

a2 x (ẋ · x)2

x4

+2 (2(1 − β) + ε− 2 γ2)
a2 ẋ (ẋ · x)

x2
+ O

(

c−4
)

. (9)

In general relativity the parameters β, γ and ε characterize possible deviation of physical
reality from general relativity theory where β = γ = ε = 1. The solution of (9) and the
transformation between the unit vectors n and k in post-post-Newtonian order has been
given in [4], cf. Eqs. (108) and (109) ibid., and reads

n = k − (1 + γ)
m

d ′

d ′

d ′

x0 x1 − x0 · x1

Rx1

+ O

(

m2

d ′2

)

. (10)

The terms of the order O

(

m2

d ′2

)

can be estimated to be smaller or equal than
15 π

4

m2

d ′2
.

From Eq. (10) the expression

ϕ=(1 + γ)
m

d ′

x0 x1 − x0 · x1

Rx1

+ O

(

m2

d ′2

)

(11)

is obtained. The solutions (10) and (11) are identical to the post-Newtonian solution (5)
and (7), respecticvely. This fact means that the post-post-Newtonian terms in the metric
(8) and also the post-post-Newtonian terms in the geodesic equation (9) contribute only

terms which can be estimated to be smaller or equal than
15 π

4

m2

d ′2
. Therefore, the only

difference between (11) and (7) here is, that the post-post-Newtonian approximation allows
to estimate the magnitude of the regular post-post-Newtonian terms.
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IV. GENERALIZED LENS EQUATION

Usually, in practical astrometry the position of observer x1 and the position of light-
deflecting body is known (here, the position of massive body coincides with the center of
coordinate system), but the impact parameter d ′ is not accessible. Therefore, the solutions
(10) or (11) are not applicable in the form presented. Instead, one has to rewrite these
solutions in terms of the impact vector of unperturbed light-trajectory:

d= k × (x1 × k) . (12)

For that one needs a relation between impact vector d ′ defined in Eq. (6) and impact vector
d defined in Eq. (12). Such a relation has been given in [4], cf. (62) ibid., and reads (note,
d ′ = d+ O (m)):

d ′ = d+ (1 + γ)
m

d′
x0 + x1

R

x0 x1 − x0 · x1

R
+ O

(

m2
)

. (13)

Eq. (13) is actually an quadratic equation for d ′, and their both solutions correspond to the
two possible light-trajectories. A comparison of (13) with (11) yields the relation

d ′ = d+ x1 ϕ+
x0 + x1 − R

R
x1 ϕ+ O

(

m2
)

, (14)

where ϕ is given by Eq. (11) and a term
x0 + x1 − R

R
x1 ϕ has been separated, which can be

shown to contribute to the light-deflection ϕ only to order O

(

m2

d ′2

)

, see Appendix A. By

inserting (14) into (11) an quadratic equation is obtained which has the solution

ϕ1,2 =
1

2

(
√

d2

x2
1

+ 4 (1 + γ)
m

x1

x0 x1 − x0 · x1

R x1

∓
d

x1

)

+ O

(

m2

d ′2

)

. (15)

The solution with the upper (lower) sign is denoted by ϕ1 (ϕ2). For astrometry the solution
ϕ1 can be considered to be the more relevant solution, because ϕ2 represents the second image
of one and the same source. Eq. (15) represents the generalized lens equation, which is valid
in all those extreme astrometrical configurations defined in 1. - 3. in the introductionary

Section. One can show, by means of the inequalities in [16], that the terms O

(

m2

d ′2

)

are

smaller or equal than
15 π

4

m2

d ′2
. The generalized lens equation (15) is applicable for extreme

astrometric configurations. Especially, it allows an analytical investigation of light-deflection
in binary systems [21]. In the following Section it will be shown that the formula (15)
represents a link between standard post-Newtonian approach and classical lens equation.

V. DISCUSSION OF GENERALIZED LENS EQUATION

A. Comparison with standard post-Newtonian and post-post-Newtonian approach

In this Section we compare the generalized lens equation (15) with the standard post-
Newtonian and post-post-Newtonian approach of light-deflection. A series expansion of the
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solution ϕ1 in Eq. (15) for d� m yields

ϕ1 =ϕpN + ϕppN + O
(

m3
)

+ O

(

m2

d ′2

)

, (16)

with

ϕpN = (1 + γ)
m

d

x0 x1 − x0 · x1

Rx1

≤ 4
m

d
, (17)

ϕppN =−(1 + γ)2 m
2

d2

(x0 x1 − x0 · x1)
2

R2 d x1

≤ 16
m2

d2

x1

d
. (18)

Expression (17) is called Standard post-Newtonian solution, cf. Eq. (24) in [4]. The expres-
sion (18) is just the ’enhanced’ post-post-Newtonian term, cf. Eqs. (3) and (4) in [17]. It
should be noticed that the difference between Eqs. (3) and (4) in [17] and Eqs. (92) and (93)

in [4] is just of order O

(

m2

d ′2

)

, as it has been pointed out in [17].

The ’enhanced’ term (18) can be arbitrarily large for small d and large x1. That is the
reason why the standard post-Newtonian and post-post-Newtonian solution is not applicable
for extreme configurations like binary stars. It is essential to realize that the terms O (m3)

can be larger than the neglected terms O

(

m2

d ′2

)

, as we will see below.

B. Comparison of generalized lens equation and classical lens equation

The standard weak-field lens equation is usually called classical lens equation and given,
for instance, in Eq. (67) in [11] or Eq. (24) in [12]. Let us briefly reconsider the classical lens
equation.

A B

observer

source

deflecting body

A tanϕ

δ (
µ

k

n
d

x1 x0

FIG. 2: A geometrical representation for the classical lens equation (23).

According to the scheme in FIG. 2, we obtain the following geometrical relations

ϕ+ ψ= δ , (19)

A tanϕ=B tanψ , (20)
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where ψ = δ(µ,k) and µ =
ẋ(t0)

|ẋ(t0)|
. If source and observer are infinitely far from the massive

body, then the total light-deflection angle δ = δ (n,µ) in Schwarzschild metric reads [18]

δ=2 (1 + γ)
m

d ′
+ O

(

m2

d ′2

)

, (21)

which is a coordinate independent result. The terms of order O

(

m2

d ′2

)

can be estimated to

be smaller or equal than
15 π

4

m2

d ′2
, see [18]. In the classical lens approach, the approximation

d ′ ' d+A tanϕ is used, see FIG. 2. Inserting this relation into (21), by means of geometrical
relations (19) and (20), and using tanϕ = ϕ+O(ϕ3) and tanψ = ψ+O(ϕ3), we obtain the
quadratic equation

ϕ2 +
d

A
ϕ− 2 (1 + γ)

m

A

B

A +B
= 0 . (22)

The solution of Eq. (22) is the classical lens equation:

ϕclass
1,2 =

1

2

(

√

d2

A2
+ 8(1 + γ)

m

A

B

A+B
∓
d

A

)

, (23)

which is valid in case of A,B � d; the solution with the upper (lower) sign is denoted by
ϕclass

1 (ϕclass
2 ). In the limit of large distances of source and observer Eq. (23) coincides with

Eq. (67) of Ref. [11].
It is important to notice, that in (23) not only the light-deflection angle ϕ is assumed to

be small, but also that source and observer are far from the massive body, i.e. δ(x0,x1) ' π.
Therefore, the classical lens equation is not applicable for extreme configurations like binary
systems or light-deflection of moons of giant planets in the solar system.

It can easily be shown that the classical lens equation (23) follows straightforward from
the generalized lens equation (15). That means, if we rewrite (15) in terms of A = k · x1

and B = −k ·x0 and perform a corresponding series expansion of generalized lens equation
(15), then we just obtain the classical lens equation (23) as the leading term in this series.

Furthermore, in the limit d → 0, known as Einstein ring solution, the generalized lens
equation (15) and the classical lens equation (23) yield the same result:

lim
d→0

ϕ1,2 =

√

2 (1 + γ)
m

x1

x0

x0 + x1

= lim
d→0

ϕclass
1,2 . (24)

Finally, we note that in the extreme configuration B = 0 (in this limit ϕ2 does not exist)
we obtain from (15) the result

lim
B→0

ϕ1 =
1

2

(
√

d2

x2
1

+ 4 (1 + γ)
m

x1

dA

(x1 + d) x1

−
d

x1

)

≤

√

(1 + γ)
m

x1

, (25)

while the classical lens equation yields simply ϕclass
1 = 0. Obviously, in the limit A → 0

the second expression in (25) yields zero as it has to be because in this limit the distance
between source and observer vanishes, that means no light deflection.
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C. Comparison with exact solution

The accuracy of (15) and the stated estimate that the neglected terms are smaller or equal

than
15 π

4

m2

d ′2
has also been confirmed by a comparison with the exact numerical solution

of (2).

15.0

10.0

5.0

0.0
200150100500

ϕ n
u
m
 
-
 

ϕ 1
 
 
[

µa
s
]

 x0 [AU]

(A)
1.0

0.5

0.0
200150100500

ϕ n
u
m
 
-
 

ϕ 1
 
[
1
0
-
3
 

µa
s
]

 x0 [AU]

(B)

FIG. 3: Comparison of solution ϕ1 of generalized lens equation (15) with exact numerical solution

ϕnum for the case of a grazing ray at Sun (A) (x1 = (−1 a.u., 0, 0),m� = 1476.6m, d ′ = 696.0 ×

106 m) and Jupiter (B) (x1 = (−6.0 a.u., 0, 0),mX = 1.40987m, d ′ = 71.492 × 106 m), where

a.u. = 1.496 × 1011 m denotes astronomical unit.

For that, we have solved the geodesic equation (2) in Schwarzschild metric by numerical
integrator ODEX [19] for several extreme astrometrical configurations. Using forth and back
integration a numerical accuracy of at least 10−24 in the components of position and velocity
of the photon is guaranteed. Thus, the numerical integration can be considered as an exact
solution of geodesic equation, which we denote by ϕnum. This numerical approach has been
described in some detail in [4]. In all considered extreme configurations the validity of (15)
and the given estimate of neglected terms have been confirmed. As example, in FIG. 3 we
present the results for light-deflection of a grazing ray at Sun and Jupiter. Especially, the
accuracy of generalized lens equation (15) for a grazing ray at Jupiter in FIG. 3 (B) is much
beyond what is needed for GAIA accuracy. Moreover, the accuracy shown in FIG. 3 (B) is
considerably better than the post-post-Newtonian solution investigated in detail in [4, 15],
cf. FIG. 3 (B) with FIG. 2 in [15]. In order to understand the numerical difference between
the here shown FIG. 3 (B) and FIG. 2 in [15], we perform a further series expansion of
Eq. (15) up to terms of order m4, that means

ϕ1 =ϕpN + ϕppN + ϕpppN + O
(

m4
)

+ O

(

m2

d ′2

)

, (26)

where the ’enhanced’ terms beyond post-post-Newtonian terms are:

ϕpppN = 2 (1 + γ)3 m
3

d3

(x0 x1 − x0 · x1)
3

R3 d2 x1

≤ 128
m3

d3

x2
1

d2
. (27)

The given estimation in (27) shows, that for large x1 this term can be considerably larger

than the neglected terms of order O

(

m2

d ′2

)

. Moreover, it can be shown that the numerical

difference between the here shown FIG. 3 (B) and FIG. 2 in [15] is just given by this term,
while the terms of higher order O (m4) are negligible in this case.
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VI. SUMMARY

The astrometric mission GAIA needs highly precise approximative solutions for light-
deflection on microarcsecond level of accuracy. In our investigation we have suggested a
generalized lens equation (15) for Schwarzschild metric which is valid for weak gravitational
fields, i.e. for areas where m

d ′
� 1, and which is valid for finite distances of source and

observer from the light deflecting body. The results of this report were recently published
in our article [20].

The derivation is based on the solution of geodesic equation (11) in post-Newtonian metric
and Chandrasekhar’s coordinate independent impact parameter d ′ (6) and it’s relation to
the light-deflection angle ϕ given in (14). The neglected terms in (15) can be estimated

to be smaller or equal than
15 π

4

m2

d ′2
. The accuracy of generalized lens equation (15) is

considerably better than the standard post-Newtonian and post-post-Newtonian approach,
which has been investigated in some detail in [4, 15] and the reason for this fact has been
pointed out. Furthermore, the distance of source and observer from light-deflecting body is
finite and can be chosen arbitrarily.

The generalized lens equation satisfies three conditions formulated in the introductionary
Section. Moreover, we have shown that in the appropriate limits we obtain the post-
Newtonian terms, ’enhanced’ post-post-Newtonian terms and the classical lens equation.
Thus, the generalized lens equation (15) provides also a link between these essential ap-
proaches to determine the light-deflection. Numerical investigations have confirmed the
analytical results obtained.

The generalized lens equation (15) allows an analytical understanding and investigation of
light-deflection in extreme astrometric configurations. Especially, the determination of light-
deflection in binary systems using of generalized lens equation (15) have been investigated
in a further report [21].
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APPENDIX A: ESTIMATE OF THE THIRD TERM IN EQ. (14)

Let us consider the third term in Eq. (14), given by

x0 + x1 − R

R
x1 ϕ≤ (1 + γ) mf1 , (A1)

where the expression for the light-deflection angle ϕ in Eq. (11) and the inequality d ′ ≥ d

has been used, and the function is given by

f1 =

(

1 + z −
√

1 + z2 − 2 z cos δ(x0 , x1)
)

(1 − cos δ(x0 , x1))

sin δ(x0 , x1)
≤ 1 . (A2)

Using the inequalities (A1) and (A2), we conclude the inequality
x0 + x1 −R

R
x1 ϕ ≤ 2m,

and obtain

d ′ = d+ x1 ϕ+ O (m) , (A3)

where we have omitted the term of order O (m2). By inserting this expression into (11) we
obtain an quadratic equation for the light-deflection angle ϕ:

ϕ2 +
d

x1

ϕ− (1 + γ)
m

x1

x0 x1 − x0 · x1

Rx1

= ε , (A4)

where ε1 = O

(

m

x1

ϕ

)

. The both solutions of (A4) are

ϕ1,2 =
1

2

(
√

d2

x2
1

+ 4 (1 + γ)
m

x1

x0 x1 − x0 · x1

R x1

+ ε1 ∓
d

x1

)

. (A5)

Since ε is much smaller in comparison with the other terms in the square root, we can
perform a series expansion of (A5) in terms of ε1 and obtain

ϕ1,2 =
1

2

(
√

d2

x2
1

+ 4 (1 + γ)
m

x1

x0 x1 − x0 · x1

R x1

∓
d

x1

)

+ ε2 . (A6)

The term ε2 can be estimated to be of the order

ε2 =O

(

m2

d ′2

)

, (A7)

where we have used expression (11), and an expression for d ′ which follows from the
quadratic equation (13).
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