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The transformation n to k in post-post-Newtonian order is simplified. All post-

post-Newtonian terms of the order O
(

m
2

d
2

)

are neglected and we show that the

total sum of these terms is smaller than 15
4 π

m
2

d
2 . This simpler transformation will

improve the efficiency of Gaia data reduction.
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I. INTRODUCTION

The approximative analytical solution of the problem of light deflection has been pre-
sented in [1–3]. One of the main result of these investigations is the transformation n to k

for solar system objects in post-post-Newtonian approximation. A detailed analysis [3, 4]
has shown that most of the terms in this transformation can be neglected at the micro-
arcsecond level of accuracy, leading a simplified formula n to k for the data reduction. This
simplified formula n to k has been given in Eqs. (92) and (93) in [1] and in Eqs. (52) and
(53) in [3]. In this report we will show that this transformation can be further simplified.
The report is organized as follows. In Section II we will present the transformation n to
k in post-post-Newtonian order. The estimate of post-post-Newtonian terms and the new
simplified transformation n to k in given in Section III. A new estimation will be given in
Section IV. A summary is given in Section V. Detailed proofs of the estimates used are
given in the appendices.

II. TRANSFORMATION n TO k IN POST-POST-NEWTONIAN ORDER

The transformation n to k in post-post-Newtonian order has been given in Eq. (87) in
[1], Eq. (57) in [2], and in Eq. (45) in [3]. We will present this transformation in the following
equivalent form:
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Here we have classified the nature of the individual terms by labels N (Newtonian), pN
(post-Newtonian), ppN (post-post-Newtonian) and ∆pN (terms that are formally of post-



3

post-Newtonian order, but may numerically become significantly larger than other post-
post-Newtonian terms, see estimates in (6)).

III. SIMPLIFIED TRANSFORMATION n TO k

The effect of all the “ppN” terms in (1) can be estimated as (cf. Eq. (91) in [1] or Eq. (50)
in [3])
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∣ω
′

ppN

∣

∣

∣≤ 15

4
π

m2

d2
. (2)

The proof of (2) is given in Appendix A. These terms can attain 1 µas only for observations
within about 3.3 angular radii from the Sun and can be neglected. Accordingly, we obtain
a simplified formula for the transformation from k to n keeping only the post-Newtonian
and “enhanced” post-post-Newtonian terms labelled as “pN” and “∆pN” in (1):

n =k + dP (1 + P x1) + O
(

m2

d2

)

+ O(m3) , (3)

P =−(1 + γ)
m

d2
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R
+

k · x1

x1

)

. (4)

The simplified transformation n to k given in Eq. (3) has now simpler structure than the
former expression given in Eq. (92) in [1] or in Eq. (52) in [3]. Therefore, (3) is more efficient
for the data reduction. Furthermore, the transformation in Eq. (3) has now similar structure
as the simplified transformation n to σ given in Eq. (102) in [1] or in Eq. (62) in [3].

IV. A NEW ESTIMATION

The enhanced post-post-Newtonian term
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∣ in Eq. (1) is, for γ = 1, given by (cf.

Eq. (89) in [1] or Eq. (48) in [3])
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This term differs from the corresponding term |ω∆pN | defined in Eq. (89) in [1] or Eq. (48)

in [3] only by a factor R
x0 + x1

≤ 1. Therefore, we conclude that the estimates given in

Eqs. (89) and (90) of [1] or in Eqs. (48) and (49) of [3] are also valid for
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where the first expression given in (6) represents a new estimation. Another estimation can
be given, namely (cf. Eq. (90) in [1] or Eq. (49) in [3])
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|ω ′

∆pN | ≤ 64

27
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d
, (7)

which cannot be related to the estimations in (6) and reflect different properties of
∣

∣

∣ω
′

∆pN

∣

∣

∣

as function of multiple variables.

V. SUMMARY

In Eq. (57) in [2] the complete transformation n to k in post-post-Newtonian order has
been given. In [3] we have shown that most of the terms can be neglected because they are

of the order O
(

m2

d2

)

and can attain 1 µas only for observations within about 3.3 angular

radii from the Sun. These investigations have yielded a simplified transformation, given in
Eqs. (92) and (93) in [1] or in Eqs. (52) and (53) in [3], and applicable for an efficient data
reduction. In this report we have shown that Eq. (92) in [1] or Eq. (52) in [3] can further
be simplified. The main result of this report is Eq. (3), where we give a new simplified
transformation n to k which will improve the efficiency of Gaia data reduction. We have

shown that the total sum of the neglected ppN-terms is smaller than 15
4 π m2

d2 . Furthermore,

estimations of the enhanced post-post-Newtonian term has been given in Eqs. (6) and (7).
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APPENDIX A: PROOF OF INEQUALITY (2)

The sum of all ppN-terms in Eq. (1) can be written as follows (here α = β = γ = ε = 1):

∣
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4
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d2
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where the function is defined by (cf. with f10 defined in Eq. (84) in [4])
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∣

∣

∣
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Here we have used the notation Φ = δ (x0, x1) and z = x0
x1

. By means of the inequalities

(note that (A4) improves the inequality given in Eq. (C1) in [4])

f2 =16
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(

1 + z −
√
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)

(1 + z2 − 2 z cos Φ) sin Φ
≤ 8 sin Φ , (A3)
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(1 + z2 − 2z cos Φ)2 ≤ 3 sin Φ , (A4)

(proof of (A3) and (A4) are shown in Appendices B and C, respectively) we obtain
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In [4] we have shown z (16z − z cos Φ − 15) sin Φ + 15z (cos Φ − z) Φ ≤ 0. Accordingly, due
to sin Φ ≥ 0, we obtain
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where, for convenience, we have replaced the term 11 sin Φ by the larger term 15 sin Φ.
Furthermore, in [4] we have shown that
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Thus, we obtain

f ′

10 ≤ 15 π . (A8)

The inequality (A8) in combination with (A1) shows the validity of inequality (2).
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APPENDIX B: PROOF OF INEQUALITIES (A3)

In order to show (A3), we rewrite this inequality as follows:

z (1 − cos Φ)

1 + z2 − 2 z cos Φ

1 + z −
√

1 + z2 − 2 z cos Φ

1 + cos Φ
≤ 1

2
. (B1)

The inequality (B1) can be splitted into two factors satisfying the following inequalities:

z (1 − cos Φ)

1 + z2 − 2 z cos Φ
≤ 1

2
, (B2)

1 + z −
√

1 + z2 − 2 z cos Φ

1 + cos Φ
≤ 1 . (B3)

The inequality (B2) is obviously valid, because by multiplying (B2) with the denominator
we obtain − (1 − z)2 ≤ 0. The inequality (B3) is also straightforward, because it can be
rewritten as z − cos Φ ≤

√
1 + z2 − 2 z cos Φ, which is obviously valid due to z − cos Φ ≤

| z − cos Φ |. Thus we have shown the validity of inequality (B1) and (A3), respectively.
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APPENDIX C: PROOF OF INEQUALITY (A4)

Using the notation w = cos Φ, the inequality (A4) can be written as follows:

f3 =
z | 1 − 3 z2 + 2 z3 w | (1 − w2)

(1 + z2 − 2 w z)2 ≤ 3 . (C1)

Using the inequality (proof see below)

∣

∣

∣ 1 − 3 z2 + 2 z3 w
∣

∣

∣≤ 1 − 3 w z2 + 2 z3 , (C2)

we obtain

f3 ≤
z (1 − 3 w z2 + 2 z3) (1 − w2)

(1 + z2 − 2 w z)2 = h1 + h2 ≤ 3 . (C3)

In (C3) the relation 1 − 3 w z2 + 2 z3 = (1 + z2 − 2 w z) + (−3 w z2 + 2 z3 − z2 + 2 w z) has
been used. The functions are defined by

h1 =
z (1 − w2)

1 + z2 − 2 w z
≤ 2 z (1 − w)

1 + z2 − 2 w z
≤ 1 , (C4)

h2 =
z2 | −3 w z + 2 z2 − z + 2 w | (1 − w2)

(1 + z2 − 2 w z)2 ≤ 2 . (C5)

The inequality (C4) has been shown in [4]. In order to show (C5), we factorize the function
h2 as follows:

h2 = hA
2 hB

2 , (C6)

hA
2 =

z2 (1 − w2)

1 + z2 − 2 w z
≤ 1 , (C7)

hB
2 =

| −3 w z + 2 z2 − z + 2 w |
1 + z2 − 2 w z

≤ 2 . (C8)

Thus, by means of the inequalities (C2) and (C4) - (C8) we have shown the validity of
inequality (C1) and (A4), respectively. We still have to proof of inequalities (C2), (C7) and
(C8).

Let us consider (C2). First, we remark that 1−3 w z2+2 z3 ≥ 0 because of 1−3 z2+2 z3 ≥
0. Then, squaring both sides of (C2) and subtracting from each other leads to

h3 = 2 z3 + 2 w z3 − 3 z2 − 3 w z2 + 2 ≥ 0 . (C9)

The boundaries of h3 are
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lim
w→−1

h3 = 2 ≥ 0 , (C10)

lim
w→+1

h3 = 2 (2 z + 1) (z − 1)2 ≥ 0 , (C11)

lim
z→0

h3 = 2 ≥ 0 , (C12)

lim
z→∞

h3 = 2 (1 + w) lim
z→∞

z3 ≥ 0 . (C13)

The extremal conditions h3 , w = 0 and h3 , z = 0 lead to

z2 (2 z − 3)=0 , (C14)

z (1 + w) (z − 1)=0 . (C15)

The common solutions of (C14) and (C15) are given by

P1 (w = −1 , z = 0) , (C16)

P2

(

w = −1 , z =
3

2

)

. (C17)

The numerical values of h3 at these turning points are

h3 (P1) = 2 ≥ 0 , (C18)

h3 (P2) = 2 ≥ 0 . (C19)

Thus, we have shown (C9) and, therefore, the validity of inequality (C2).
Now we consider the inequality (C7). Multiplying both sides of this relation with the

denominator leads to the inequality

h4 =−z2 w2 − 1 + 2 w z ≤ 0 . (C20)

The boundaries of h4 are

lim
w→−1

h4 =− (1 + z)2 ≤ 0 , (C21)

lim
w→+1

h4 =− (1 − z)2 ≤ 0 , (C22)

lim
z→0

h4 =−1 ≤ 0 , (C23)

lim
z→∞

h4 =−w2 lim
z→∞

z2 ≤ 0 . (C24)
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The extremal conditions h4 , w = 0 and h4 , z = 0 lead to

z (1 − w z) = 0 , (C25)

w (1 − w z) = 0 . (C26)

The common solution of (C25) and (C26) is given by

P3 (w = 0 , z = 0) , (C27)

and the numerical value of h4 at this turning point is

h4 (P3)=−1 ≤ 0 . (C28)

Thus, we have shown (C20) and, therefore, the inequality (C7).
Now we consider the inequality (C8). Squaring both sides of (C8) and subtracting from

each other leads to the inequality

h5 = 4 z2 − z − 7 w z + 2 + 2 w ≥ 0 . (C29)

The boundaries of h5 are

lim
w→−1

h5 = 2 z (3 + 2 z) ≥ 0 , (C30)

lim
w→+1

h5 = 4 (z − 1)2 ≥ 0 , (C31)

lim
z→0

h5 = 2 (1 + w) ≥ 0 , (C32)

lim
z→∞

h5 = 4 lim
z→∞

z2 ≥ 0 . (C33)

The extremal conditions h5 ,w = 0 and h5 z = 0 lead to

−7 z + 2 =0 , (C34)

8 z − 1 − 7 w =0 . (C35)

The common solution of (C34) and (C35) is given by

P4

(

w =
9

49
, z =

2

7

)

, (C36)

and the numerical value of h5 at this turning point is

h5 (P4)=
100

49
≥ 0 . (C37)

Thus, we have shown (C29) and, therefore, the inequality (C8).


