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GAIA will detect about 108 binaries. We investigate the light-deflection among

the components of a binary system on microarcsecond level, an effect which has not

been observed so far. In order to determine the total number of such binaries, an

inclination formula has been derived by means of generalized lens equation. It turns

out that there exist about 103 binaries having orbital parameters that the light-

deflection amounts to be on microarcsecond level ϕ ≥ 1µas, but only a very few

systems with ϕ ≥ 25µas being the best positional accuracy of GAIA in the ideal

case of a bright star. The orbital parameters of such possibly relevant systems are

determined, which however, take rather extreme values. Thus, only in a very few

and rather extreme binary systems the light-deflection effect might be detectable by

GAIA. This conclusion is supported by additional numerical investigations.
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I. INTRODUCTION

The light-deflection effect in binary systems has not been observed so far. GAIA will
observe 109 stars brighter than 20th apparent magnitude and with an astrometric accuracy
on microarcsecond level; for the end-of-mission parallax-standard-error see [1]. Detailed
numerical simulations predict the detection of about 108 (resolved, astrometric, eclipsing,
spectroscopic) binary systems by GAIA mission [2, 3], which is a considerable increase
compared to the 105 binary systems known so far; 109087 systems in the ”Washington Double

Star Catalog” in 2011 [4]. Thus the question arises about the existence of binaries having
such parameters that the light-deflection among the components is on microarcsecond level
and, therefore, might be detectable by GAIA mission, hence providing a new observational
science of the effects in general theory of relativity.

In order to investigate the light-deflection effect in binaries one needs a simple analytical
formula which allows to determine the light-deflection on microarcsecond level. As we will
see, a post-Newtonian or post-post-Newtonian solution of light-propagation in Schwarzschild
metric, as given for instance in [5–8], does not allow to study light-deflection in binary
systems. Moreover, the classical lens equation is also not appropriate to study the light-
deflection in binary systems. Recently, in [9, 10] we have derived a generalized lens equation
which allows to determine the light-deflection of binary systems on microarcsecond level. By
means of this generalized lens equation we derive an expression for the inclination of a binary
system having a given light-deflection angle ϕ. This inclination formula allows to determine
the number of relevant binaries having a given light-deflection angle. Furthermore, in order
to determine the number of relevant binaries, we have taken into account the distribution
of stellar masses and semi-major axes in binary systems. With the aid of these three basic
tools (1. generalized lens equation, 2. inclination formula, and 3. probability distribution
of stellar masses and semi-major axes) we are in the position to determine the number of
relevant binaries observable by GAIA mission.

The report is organized as follows: In Section II some basics about orbital elements of
binary systems are given. The generalized lens equation and the inclination formula are
presented in Section III. In Section IV we present two stringent conditions on the orbital
elements of any binary system (astrometric, spectroscopic, eclipsing and resolved binaries)
in order to have a light-deflection which is observable by GAIA mission. In Section V we
have considered the special case of resolved binareis and present an additional condition for
such kind of systems. The total number of binaries which have a given light-deflection is
estimated in Section VI. A Summary is given in Section VII.

Without loss of generality, throughout our investigation we consider the light-deflection
of component B at component A. Hence, component A is considered to be the massive body,
while component B is the light-source. We will use fairly standard notations:

• G is the Newtonian constant of gravitation.

• c is the velocity of light.

• γ is the parameter of the Parametrized Post-Newtonian (PPN) formalism which char-
acterize possible deviation of the physical reality from general relativity theory (γ = 1
in general relativity).

• The 3-dimensional coordinate quantities (“3-vectors”) referred to the spatial axes of
the corresponding reference system are set in boldface: a.
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• The absolute value (Euclidean norm) of a “3-vector” a is denoted as |a| or, simply, a
and can be computed as a = |a| = (a1 a1 + a2 a2 + a3 a3)1/2.

• The scalar product of any two “3-vectors” a and b with respect to the Euclidean
metric δij is denoted by a · b and can be computed as a · b = δij a

i bj = ai bi, where
latin indices i = 1, 2, 3.

• For any two vectors a and b, the angle between them is designated as δ(a, b). Clearly,
for an angle between two vectors one has 0 ≤ δ(a, b) ≤ π. The angle δ(a, b) can be

computed by δ(a, b) = arccos
a · b
a b

.

• a.u. = 1.496 × 1011 m stands for astronomical unit.

• pc = 3.086 × 1016 m stands for parallax of one arcsecond.

• m� = 1.476 × 103m is the gravitational radius of the Sun.

• 1µas = π
180×60×60

× 10−6 rad is one microarcsecond.

II. ORBITAL ELEMENTS OF A BINARY SYSTEM

We consider a binary system, component A with mass MA at coordinate rA and com-
ponent B with mass MB at coordinate rB. In order to express the light-deflection effect in
terms of orbital elements, we introduce spherical coordinates, illustrated in FIG. 1.

The center of coordinate system is situated at the center of mass (CMS), i.e.

rCMS =
1

MA +MB

(MA rA +MB rB) . (1)

Thus, the vector r, which points from CMS to the observer, is given by

r =















r cosω sin i

r sinω sin i

r cos i















, (2)

where r = | r |, the argument of periapsis is denoted by ω, and i is the inclination, see
FIG. 1. The solution of equation of motion yields for vectors rA and rB the expression
given by Eqs. (A22) - (A26). The vector x1 points from the mass center of massive body to
the observer, and vector x0 points from the mass center of massive body to the source, see
also FIG. 1. The coordinates of these vectors can be expressed by the orbital elements of
the binary star as follows:

x1 = r − rA =































r cosω sin i− A (cosE − e)

1 + MA
MB

r sinω sin i− A
√

1 − e2 sinE

1 + MA
MB

r cos i































, (3)
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FIG. 1: The seven orbital elements which define the orbit of a binary system: distance vector r,

semi-major axis A, inclination i, eccentricity e, eccentric anomaly E, periapsis ω, and mass ration

MA/MB . The orbit of the binary system spans the (x, y)-plane and the z-axis is perpendicular to

the orbital plane. The x-axis is oriented along the semi-major axis of the orbit of the binary system,

while the y-axis is perpendicular to the x-axis. The vector r is directed from the center-of-mass

(CMS) of the binary system, see Eq. (1), to the observer. The center of spherical coordinate system

is situated at the CMS of binary system, that means rCMS = 0. The inclination 0 ≤ i ≤ π is the

angle between r and z-axis; i = π/2 is called edge-on and i > π/2 corresponds to retrograd orbit.

The dotted line indicates the projection of r onto orbital (x, y)-plane, i.e. z-component of r equals

zero. The angle between this projection and x-axis is called argument of periapsis 0 ≤ ω ≤ π. The

orbital elements semi-major axis A, eccentricity 0 ≤ e ≤ 1 and mass ratio MA/MB govern uniquely

the geometric shape of both ellipses. The eccentric anomaly 0 ≤ E ≤ 2π (not plotted here), is

defined in Eq. (A16) of Appendix A and determines the actual position of the bodies A and B on

their orbit.

x0 = rB − rA = −

















A (cosE − e)

A
√

1 − e2 sinE

0

















. (4)

Here, A is the semi-major axis, e is the eccentricity, and E is the eccentric anomaly, see
Appendix A. The vectors (3) and (4) will be used to express the light-deflection in terms of
orbital elements of the binary system.
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FIG. 2: Binary star composed of component A being the massive body, and component B consid-

ered to be the light-source.

III. INCLINATION FORMULA FROM GENERALIZED LENS EQUATION

The light-deflection angle ϕ = δ (k,n), where k is the unit vector pointing from source
to observer, and n is the unit tangent vector of light-trajectory at position of observer.

Recently, we have derived a generalized lens equation in [9, 10], which allows to deter-
mine the light-deflection is extreme astrometric configurations like binary systems. This
generalized lens equation reads

ϕ1,2 =
1

2

(
√

d2

x2
1

+ 4 (1 + γ)
m

x1

x0 x1 − x0 · x1

Rx1
∓ d

x1

)

+

(

m2

d ′2

)

, (5)

where the impact vector d = k × (x1 × k) and its absolute value d = |d|, see also FIG. 2.
The vector x1 points from the mass center of massive body to the observer, and vector x0

points from the mass center of massive body to the source; R = x0 − x1 and its absolute

value R = |R|, and m =
GM

c2
is the Schwarzschild radius of massive body, i.e. of component

A of the binary system. In Eq. (5) there are two solutions ϕ1 (ϕ2) belonging to the minus
(plus) sign according to the two light-trajectories, however in what follows we will consider
only ϕ1 which is the relevant solution, because ϕ2 is just the second image of one and the
same source.

Here, d ′ =
L

E
is Chandrasekhar’s impact parameter [12], where L being the orbital

momentum and E is the energy of the photon in the gravitational field of massive body.
Basically, the light-ray of component B cannot be observed if d ′ is smaller than the radius
of massive body A. For stars, the radius is much larger than Schwarzschild radius m, hence
m2

d ′2
� 1. Furthermore, the generalized lens equation (5) is finite for d→ 0 and b→ 0, both

of which are possible astrometric configurations in binary systems.
In the following, we will apply (5) in order to determine the light-deflection in binary

systems. For that, we will use the coordinates x0 and x1 in the form as given by Eqs. (3)
and (4), respectively. A typical light-curve of a binary system, calculated by means of
generalized lens equation (5) is shown in FIG. 3.

Now we derive an inclination formula from the generalized lens equation (5). The impact
of eccentricity is neglected, i.e. we consider circular orbite e = 0 which implies ω = 0.
Thus, we obtain the coordinates (B1) and (B2) given in Appendix B. Furthermore, we are
interested in the maximal value of light-deflection of a binary system, i.e. we consider here
the astrometric configuration E = 0. Then, by inserting these coordinates in the generalized
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FIG. 3: A typical lightcurve of a binary system, determined using generalized lens equation (5) or

(B11), respectively. The parameters chosen are: distance r = 1pc, semi-major axis A = 100 a.u.

inclination i = 31
64 π, mass MA = 2M�, mass ratio MA

MB
= 2.0, eccentricity e = 0.25, argument of

periapsis ω = π
4 .

lens equation (5) we obtain (see Eq. (B14) in Appendix B):

ϕ =
1

2





√

A2

r2
cos2 i+ 8

m

r

A

r
(1 + sin i) − A

r
| cos i |



+ O




A

r

√

m

r

A

r



 , (6)

where for simplicity we take γ = 1. The minimal value and maximal value of light-deflection
for the astrometric position E = 0 follow from Eq. (6):

ϕmin = ϕ (i = 0) =
1

2





√

A2

r2
+ 8

m

r

A

r
− A

r



 = 2
m

r
+ O

(

m2

r A

)

, (7)

ϕmax = ϕ
(

i =
π

2

)

= 2

√
mA

r
. (8)

The expression (6) can be reconverted in terms of inclination (see Appendix C):

∣

∣

∣

∣

π

2
− i

∣

∣

∣

∣

= arccos



−p
2

+

√

p2

4
− q



 , (9)

where

p =
8m2A− 4mr2 ϕ2

A (r2 ϕ2 + 4m2)
, (10)

q = − A2 r2 ϕ2 + 4mAr2 ϕ2 − 4m2A2 − r4 ϕ4

A2 (r2 ϕ2 + 4m2)
. (11)

For a given value of light-deflection ϕ, the inclination formula (9) yields the corresponding
value of maximal inclination i of a binary system. Note, that the values of ϕ cannot be
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chosen arbitrarily, but they are restricted by ϕmin and ϕmax given by Eqs. (7) and (8),
respectively.

The inclination formula (9) can considerably be simplified. From (10) and (11) we obtain
by series expansion

p = −4
m

A
+ 8

m2

r2 ϕ2
+ O

(

m3
)

, (12)

q = −1 − 4
m

A
+ 8

m2

r2 ϕ2
− 4

m2

A2
+
r2ϕ2

A2
+ O

(

m3
)

. (13)

By means of (8), the last term in (13) can be estimated to be smaller than 4
m

A
� 1.

Here, we underline that mA � m
rϕ even at large distances r ' 103 pc and small values for

semi-major axis A ' 1 a.u.. Thus, we neglect all terms of order O
(

m

A

)

and obtain

∣

∣

∣

∣

π

2
− i

∣

∣

∣

∣

= arccos

(

1 − 8
m2

r2 ϕ2

)

+ O
(

m

A

)

= 2 arctan

(

2
m

rϕ

)

+ O
(

m3

r3 ϕ3

)

+ O
(

m

A

)

,

(14)

where we have used arccos (1 − 8 x2) = 2 arctan 2 x+ O (x3) for x� 1. We underline, that
the applicability of (14) is restricted by the condition (D5). Here, it should be noticed that
x = 2 m

r ϕ � 1, even in such an extreme case like r = 1 pc, m = m� and ϕ ' 1.0µas

we obtain x = 0.019; for an analytical proof use the exact expression for ϕmin. Due to
m
A � m

rϕ , the impact of semi-major axis is of lower order and can be neglected in the

inclination formula. We notice that expression (14) agrees with an inclination formula
derived in [13]; because the manuscript [13] has not been published, the arguments of this
work are represented in Appendix D.

IV. STRINGENT CONDITIONS ON ORBITAL PARAMETERS FOR BINARY

SYSTEMS

In this Section we present two stringent conditions on the orbital elements of binary
systems to have a light-deflection which could be observed by GAIA mission. This strict
conditions are valid for any binary system, that means for astrometric, spectroscopic, eclips-
ing and resolved binaries.

The first stringent condition on the orbital elements folows from the inclination formula
in the simplified form as given by Eq. (14). For a better illustution we will present this
condition in terms of angular degrees instead of radians. Using arctanx = x + O(x3) we
obtain

| 90◦ − i | ≤ 2.25◦
m

m�

pc

r

µas

ϕ
. (15)

According to this strict condition, the inclination i of a binary system with mass m and at
distance r must not exceed the given value in order to have a light-deflection ϕ.

Two remarks are in order. First, the GAIA accuracy for one individual positional mea-
surement in ideal case amounts to be 25µas, which implies ϕ ≥ 25µas. Second, inside
a sphere of 10 pc almost every star or binary system is known by RECONS data [14].
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Since inside that sphere there is no such a binary system having a light-deflection beyond
microarcsecond level, we have to assume r ≥ 10 pc. According to condition (15), these

both remarks imply in total a factor of
1

250
. Therefore, even in the best case we conclude

| 90◦ − i | ≤ 0.01◦
m

m�

, that means the binaries must be in fact almost edge-on in order to

have a light-deflection observable by the GAIA facility.
The second stringent condition follows from the maximal light-deflection angle (8), given

by

ϕ ≤ 200µas

√

m

m�

A

a.u.

pc

r
. (16)

Also for this restrictive condition two remarks are in order. First, even rather extreme values
of m = 10m� and A = 103 a.u. yield an maximal upper distance of r ≤ 825 pc of the binaries
in order to to have a light-deflection observable by the GAIA instrumentation. And second,
like for condition (15) we have to assume r ≥ 10 pc because of the RECONS data. This

value implies actually in the best case
m

m�

A

a.u.
≥ 2.

The observability of light-deflection effect in binaries implies the realization of both these
stringent conditions (15) and (16) simultaneously for a given binary system. But even in case
a given binary system satisfies the both condition, the observability of light-deflection effect
is no guaranteed, because the astrometric position E = 0 has to be reached during mission
time and we have assumed the highest accuracy of 25µas for one positional measurement,
which is only valid for bright stars. Nonetheless, as soon as the orbital elements r, A, m and
i of the binaries are known, these both stringent conditions (15) and (16) allow to scan the
GAIA data in order to find a possible candidate for being a relevant binary system where
the light-deflection effect might be observable by GAIA mission. However, as we will see in
Section VI, the existence of such systems is highly unprobable.

V. SPECIAL CASE: CONDITIONS ON ORBITAL PARAMETERS FOR

RESOLVED BINARIES

In this Section we consider the special case of a resolved binary system.

A. Resolving power of GAIA

The core of GAIA optical instrumentation consists of two identical mirror telescopes,
ASTRO-1 and ASTRO-2, with a rectangular pupil whose dimensions are A = 0.50 m, B =
1.45 m, and f = 35 m is the effective focal length. The intensity is given by [26, 27]:

I(zA, zB) = I0

(

sin2(zA)

z2
A

sin2(zB)

z2
B

)

, (17)

where zA = π A/λ sinΘA, zB = π B/λ sinΘB, A and B the width and lenght of recangular
mirror, λ is the wavelength of incident light-ray, and ΘA,ΘB are the angle of observation, i.e.
the angle between the axis of the rectangular aperture and the line between aperture center
and observation point. The intensity of incident light-ray at ΘA = 0,ΘB = 0 is denoted
by I0. The function I(zA, zB)/I0 in Eq. (17) is the (by ΘA = ΘB = 0 normalized) Point
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FIG. 4: Point Spread Function (PSF) for a rectangular telescope according to Eq. (17). The inci-

dent monochromatic light-ray has a wavelenght of λ = 350 nm. The parameters of the rectangular

telescope are: A = 0.5m, B = 1.45m.

Spread Function (PSF) for monochromatic incident light with wavelenght λ for a rectangular
aperture. The PSF of ASTRO-1 and ASTRO-2 has been discussed in [26, 27]. The optical
spectrum of stars is λ = (350 − 750) nm. In FIG. 4 the PSF for an incident monochromatic
light-ray with λ = 350 nm is represented for GAIA telescopes.
Most of the light is concentrated in the central bright rectangular shaped pattern. The
lenght lA and width lB of this rectangle is determined by the first zero-roots of (17) at
zA ' π and zB ' π, respectively. From this follows, that sinΘA = π λ/(π A) = λ/A, and
sinΘB = π λ/(π B) = λ/B. Furthermore, if the diffraction pattern is shown on a screen at
a distance f , then the lenght and width is given by [28]

LA = 2
f λ

A
, (18)

LB = 2
f λ

B
, (19)

where f is the focal length of the optic, i.e. of the rectangular GAIA mirror. Accordingly,
by means of the given numerical values A = 0.50 m, B = 1.45 m, and λ = 350 nm results
in LA = 49.0 µm and LB = 16.9 µm for the lenght and width of ”Airy rectangle” of GAIA
optics. Note, that the ”Airy rectangle” has the same order of magnitude than the pixel size
(10µm × 30µm) of the 110 CCDs of astrometric field part of the focal plane. In order to
separate two pointlike sources, the distance between their centers of the rectangle has to be
larger than either LA or LB. Since LB < LA, in our study we will take the better resolution
value LB, which corresponds to a resolution angle of

δ =
LB

2 f
=
λ

B
. (20)



11

The resolving power is the minimal angular distance between two objects to get separable
by GAIA instrumentation. With the parameters given above we obtain the resolving power
δ of GAIA optics:

δ = 0.24 × 10−6 rad = 49.7 mas . (21)

In what follows this parameter is of fundamental importance in order to determine the ability
of GAIA to determine the light-deflection in binary systems.

B. Orbital parameters of resolved binaries observable by GAIA

In this Section the question is addressed, which and how many binary systems can be
separated by GAIA instrumentation among all those relevant binaries found in the previous
Section; see FIG. 6. In average, GAIA will observe each object 80 times, but will not con-
stantly observe these objects during mission time. However, for simplicity we approximate
the scanning law of GAIA by assuming a permanent observation of all objects during the
whole mission time.

Furthermore, we consider visual binaries, i.e. binaries which are separable by GAIA
telescopes. The both largest telescopes of GAIA have a resolution angle δ discussed in
the previous Section, see Eqs. (20) and (21). For binary systems, this resolution angle δ
corresponds to a minimal distance between the components A and B to get separable within
GAIA optics. Using (B6) and (20) we obtain the condition

d = A |cos i| ≥ δ r =
λ

B
r , (22)

where r is the distance between the remote objects and GAIA observer. Here we note,
that this condition is by far much more important than taking into account the effect of
finite radius of the stars, which would imply A |cos i| ≥ RA, where RA being the radius of
component A. If we insert the extreme case A |cos i| = δ r into (6), we obtain

ϕ =
1

2





√

δ2 + 8 (1 + sin i)
m

r

A

r
− δ



 ' 1

2





√

δ2 + 16
m

r

A

r
− δ



 ' 4
m

r

A

r

1

δ
. (23)

Here, in the second term we have used i ' π

2
, that means sin i = 1 + O

(

(

i− π

2

)2
)

, and

in the last term we have neglected higher order O (m2) in the series expansion. Relation
(23) is an expression for the maximal light-deflection angle of a binary system when taking
into account the resolving power of GAIA. Eq. (23) is a much stricter restriction than the
generalized lens equation (6), because (23) determines the light-deflection angle only of
those binary systems having a resolution angle δ of GAIA optical instrumentation, while (6)
determines the light-deflection angle of any possible binary system. We notice, that from
Eq. (23) follows the maximal possible distance of visual binaries:

r ≤
√

4
mA

ϕδ
= 0.18 pc

√

m

m�

A

a.u.
, (24)

where in the second expression we have used the optimal values δ = 0.24 × 10−6 rad and
ϕ = 25µas. We note, that condition (24) can also be written by

A ≥ 30 a.u.
m�

m

r2

pc2
. (25)



12

These both conditions (24) and (25) imply rather extreme orbital parameters on visual
binaries. For instance, condition (24) implies a maximal distance of r ≤ 18 pc for solar-mass
type binaries even with a huge semi-major axis of A = 104 a.u., while condition (25) implies
a large semi-major axis for solar-mass type binaries aoutside a sphere of r ≥ 10 pc. It is
almost for sure, that such extreme parameters will not be realized in reality.

VI. TOTAL NUMBER OF BINARIES WITH A GIVEN LIGHT-DEFLECTION

By means of numerical simulations it has been estimated that GAIA will detect ∼ 108

(resolved, astrometric, eclipsing, spectroscopic) binaries [2, 3]. This is an enormous increase
of known binaries compared to the so far discovered ∼ 105 systems; 109087 systems in
the ”Washington Double Star Catalog” in 2011 [4]. However, it is obvious that by far not
all binaries are relevant objects in respect to an observable light-deflection effect of one
component at the other. In the previous Sections we have determined the orbital conditions
for a binary system in oder to have a light-deflection which might be observed during GAIA
mission. In this Section we will consider the possible total number of such relevant binaries.
In order to estimate the total number of binaries having a given light-deflection ϕ we will
apply the following formula:

N (ϕ) =

Rmax
∫

Rmin

d3r ρ(r)

Amax
∫

Amin

dA f(A)

µmax
∫

µmin

dµ f(µ) P (i) . (26)

Here, ρ(r) is the density of binaries, f(A) is the semi-major axis distribution of binary

systems, f(µ) is the mass distribution of stars where µ =
M

M�

is the mass-ratio of massive

body (component A) and solar mass. The probability distribution P (i) to find a binary
system with given inclination 0 ≤ i ≤ π, is a function of µ, A and the given light-deflection
angle ϕ. According to (9), the probability distribution P (i) is given by (the inclination of
binary systems is of course a random distribution)

P (i) =
2

π
arccos



−p
2

+

√

p2

4
− q



 , (27)

where p and q are given by Eqs. (10) and (11).
For the minimal distance of a binary system from the Sun we may safely assume Rmin =

1 pc. From (8) follows that beyond a sphere with radius Rmax = 2000 pc only a very few
exceptional binary systems might have a light-deflection of more than 1µas. The Sun is
located in the Orion arm which has about 1000 pc across and approximately 3000 pc in
length. For the estimate according to (26), we will assume that the stars are homogeneously
distributed inside the Orion arm. For the uniform star density we take ρstars = 0.1 star/pc3,
a value which is in line with the data of Research Consortium on Nearby Stars (RECONS)
[14]. Furthermore, we take the common presumption, that about 50 percent of all stars
are components of a binary or multiple system [15, 16]. Then we obtain for the density of
binaries

ρ(r) ' 0.025 binaries/pc3 . (28)

Let us now consider the distribution of semi-major axis A in binary systems. Statistical
investigations show that the distribution of binary semi-major axis is flat in a logarithmic
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scale over the range of six orders of magnitude, that means assumed to be valid in the large
range Amin = 10R� ≤ a ≤ 104 a.u. = Amax, [17]. The lower limit Amin is determined by the
semi-major axis at which Roche lobe overflow occurs, while the upper limit Amax depends
on how large the averaged star density is. The logarithmic distribution is known as ”Öpik’s

law” (1924) after its discoverer and given by f(A) ∼ 1

A
, a law which has also been confirmed

by recent investigations, e.g. [18]. This distribution is a consequence of the process of star
formation as well as of the dynamical history of the binary system. Here we will take this
law as a given fact in our numerical study. Accordingly, we have (see Appendix E)

f(A) =
1

A

(

ln
Amax

Amin

)−1

. (29)

Furthermore, for the mass distribution f (µ) we recall the initial mass function (IMF) which
is the probablity that a star is newly formed with a stellar mass M and is frequently assumed
to be a power law f(M) ∼ M−α. Originally, the IMF has been introduced by Salpeter in
1955 [19] for solar neighborhood region who gave the value α = 2.35 and a validity region
for stars with masses between 0.4M� and 10M�. During the past decades the IMF has
been refined by several investigations. Especially, the numerical values of slope parameter
α and regions of validity have been proposed in subsequent investigations, e.g. [20–24],
for a review see [25]. Moreover, the IMF does not necessarily coincide with the real mass
distribution of stars, because IMF describes mass distribution of a star formation, while the
solar neighboorhood mainly consists of evolved stars of main sequence. Here, for simplicity
we will use this distribution as a given fact with α = 2.35 and take the proposed region of
validity µmin = 0.4, and µmax = 10. According to IMF, we find for α 6= 1 (see Appendix E)

f(µ) =
(1 − α) µ−α

µ
(1−α)
max − µ

(1−α)
min

. (30)

In order to motivate that distribution further, we have also compared (30) with the RECONS
data [14] and have found a fair agreement. Using (27) - (30), the results of the estimate (26)
are shown in FIG. 5. According to FIG. 5, in total there are about N ∼ 103 binaries having
a light-deflection of at least ϕ = 1µas.

In Eq. (26) we have determined the number of binaries with a given maximal possible
light-deflection ϕ, just by taking for eccentric anomaly the value E = 0, that means the ideal
configuration where the light-deflection take its maximal value (note, the eccentricity e = 0).
It is, however, obvious that during the most part of the orbital motion we will have E 6= 0
and the light-deflection will be much smaller than the maximal possible light-deflection angle
ϕ. On the other side, the mission time of GAIA is about Tmission ' 5 years while the orbital
period T of relevant binaries, given by Eq. (A21), might easily exceed the mission time of
GAIA. Therefore, it will be not very probable, that the component B will be just at the
relevant position near the value E = 0, where the light-deflection becomes observable on
microarcsecond level. In order to determine that number of observable relevant binaries, we
have to extend Eq. (26) as follows,

N (ϕ) =

Rmax
∫

Rmin

d3r ρ(r)

Amax
∫

Amin

dA f(A)

µmax
∫

µmin

dµ f(µ) P (i) P (E) . (31)

Here, P (E) is the probability for the binary system to be in the region E, where the light
deflection is larger than a given value for ϕ.
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FIG. 5: Total number of binaries according to Eq. (26), having parameters such that the light-

deflection of component B at component A is larger than a given value for ϕ.
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FIG. 6: Total number of binaries according to Eq. (31) where the binary system reaches the

configuration E = 0 and having orbital such that the light-deflection of component B at component

A is larger than a given value for ϕ.

In the very same way, as we have derived the inclination formula (9), we reconvert (B15)
in terms of eccentric anomaly E and find the eccentric anomaly formula:

E = ± arccos



−p
2

+

√

p2

4
− q



 , (32)

where p and q are given by Eqs. (10) and (11). For a given value of light-deflection ϕ, the
formula (32) yields the value of eccentric anomaly E of a binary system characterized by
semi-major axis A and mass m at a distance r. However, the values of ϕ cannot be chosen
arbitrarily, instead they are restricted by ϕmin and ϕmax given by (of course, we take into

account only astrometric positions with 0 ≤ E ≤ π

2
, because for the area

π

2
≤ E ≤ π the
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light-deflection is negligible):

ϕmin = ϕ
(

E = ±π
2

)

=
1

2





√

A2

r2
+ 8

m

r

A

r
− A

r



 = 2
m

r
+ O

(

m2

r A

)

, (33)

ϕmax = ϕ (E = 0) = 2

√
mA

r
. (34)

These expressions resemble the corresponding expressions in Eqs. (7) and (8). According
to Eq. (32), the region where the binary system has a light-deflection larger or equal ϕ is
given by 2E. We have also to take into account that during GAIA mission time Tmission

the component B moves along the orbit and could reach into the region 2E. Therefore, the
probability P (E) that the binary system is during GAIA mission time at least ones inside
the relevant astrometric position with the value E in (32), is given by

P (E) = P1





1

π
arccos



−p
2

+

√

p2

4
− q



+
Tmission

T



 , (35)

where the operator is given by P1 (x) = x + Θ (x− 1) (1 − x) with Θ-function defined by
Θ(y) = 0 for y < 0 and Θ(y) = 1 for y ≥ 0, that means

P1 (x) =
x if x < 1 ,
1 if x ≥ 1 .

(36)

The probability distribution (35) has to be implemented in Eq. (31) in order to determine
the number of binary systems having a given light-deflection ϕ and to be observable during
GAIA mission time Tmission. The results of Eq. (31) are shown in FIG. 6. According to FIG. 6,
there are only a very few binaries ∼ 102 having a light-deflection of at least ϕ = 1µas.

VII. SUMMARY

In this study, the light-deflection in binary systems has been considered. So far, this
effect has not been observed and, since GAIA will detect about 108 binary systems, might
be considered as a challenge for the astrometric GAIA mission. To investigate this effect
of light-deflection, an inclination formula (9) has been derived by means of generalized lens
equation (5), and these both equations are the theoretical basis for investigating the light-
deflection effect in binary systems.

In Section IV two stringent conditions are given by Eqs. (15) and (16) and valid for
any kind of binary system in order to have a light-deflection which could be detected by
GAIA msission. These conditions allow to scan the GAIA data to search for relevant binary
systems as far as the orbital elements r, A, m and i are known. The special case of resolved
binaries has been considered in Section V Two conditions were presented in Eqs. (24) and
(25) for such special kind of systems. It has been shown that these systems take rather
extreme orbital parameters for binary systems and their existence is highly unprobable.

Furthermore, the inclination formula allows to estimate the number of relevant binaries
with the aid of Eq. (26). We have estimated the total number of relevant binaries using a
semi-major axis distribution according to ”Öpik’s law” and a mass distribution according
to ”Salpeter’s mass distribution”. The Monte-Carlo simulation shows that there are only
a very few binaries having a light-deflection which reaches the the technical limit of GAIA
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mission, see FIG. 5. Even more, by taking into account the probability to find the system
in the ideal astrometric position E = 0 where the light-deflection becomes maximal, it has
been found that there is not any relevant binary system during GAIA mission time, see
FIG. 6.

In summary, the main results are presented by the conditions (15) and (16) and by the
diagram FIG. 6. Accordingly, we come to the conclusion that the detectability of light-
deflection in binary systems reaches the technical limit of GAIA mission and might be
detected only in case of a very few and highly exotic binary systems. It is, however, very
unlikely that such extreme binaries might exist.
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APPENDIX A: TWO-BODY PROBLEM

The calculations in this Appendix follow mainly Ref. [29]. Consider two massive bodies,
one component having a mass MA and spatial coordinate rA, and second component with a
mass MB and spatial coordinate rB, respectively. They orbit around their common center
of mass rCMS,

rCMS =
1

MA +MB
(MA rA +MB rB) . (A1)

The Lagrangian L of the two-body problem is given by

L =
MA

2
ṙ

2
A +

MB

2
ṙ

2
B − U(|rA − rB|) , (A2)

where U is the potential. With the aid of relative coordinate rAB = rA − rB and reduced
mass M = MA MB/(MA + MB), the two-body problem can be transformed into into one-
body problem,

L =
M

2
ṙ

2
AB − U(rAB) . (A3)

Polar coordinates (rAB , φ) yield (polar angle φ should not be confused with light-deflection
angle ϕ)

L =
1

2

(

M ṙ2
AB + r2

AB φ̇2
)

− U (rAB) . (A4)

The orbital angular momentum L is conserved

L = M r2
AB φ̇ = const , (A5)

by means of which we obtain for the total energy of the two-body system the expression

E =
M

2
ṙ2
AB +

L2

2 M r2
AB

+ U (rAB) . (A6)

From Eq. (A6) we deduce

ṙAB =

(

2

M
[E − U (rAB)] − L2

M
2
r2
AB

)

, (A7)

and from Eq. (A7) we obtain

t =
∫

drAB

(

2

M
[E − U (rAB)] − L2

M
2
r2
AB

)−1/2

+ const , (A8)

φ =
∫

drAB
M

r2
AB

(

2M [E − U (rAB)] − L2

r2
AB

)−1/2

+ const , (A9)

where in the second relation we have used (A5); note that (A9) is the relation between rAB

and φ and is called orbital equation. The Eqs. (A8) and (A9) are the general solutions. In
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order to integrate Eqs. (A8) and (A9) we have to specify the potential U . In case of Kepler
problem we have

U(r) = − α

rAB
with α = GMAMB , (A10)

where G being Newtonian gravitational constant. The Eq. (A9) can be integrated and yields

φ = arccos

(

L

rAB

− γ M MAMB

L

)



2M E +
γ2M

2
M2

AM
2
B

L2





−1/2

, (A11)

where the axis are chosen such that the integration constant vanishes. Furthermore, by
introducing the eccentricity e (we are interested in closed orbits, i.e. possible values of
eccentricity are between 0 ≤ e < 1; e = 0 corresponds to a circular orbit),

e =

(

1 +
2 E L2 (MA +MB)

γ2 M3
A M3

B

)1/2

, (A12)

the solution (A11) can be written as

1

rAB

L2

γ M MAMB

= 1 + e cos φ . (A13)

We note the expressions of semi-major axis A and semi-minor axis B,

A =
L2

(1 − e2) γM MAMB

, (A14)

B =
L2

√
1 − e2 γ M MAMB

. (A15)

To solve the integral (A8), we substitute

rAB − A = −A e cosE , (A16)

where E is called eccentric anomaly. Then, we obtain for the integral in Eq. (A8) the
expression

t =

(

A3

γ (MA +MB)

)1/2
∫

dE (1 − e cosE) , (A17)

and the solution is given by

t =

(

A3

γ (MA +MB)

)1/2

(E − e sinE) , (A18)

where the integration constant vanishes, i.e. the particle at t = 0 is in periastron. The
Eqs. (A13) and (A18) are the general solutions of two-body problem. They can be rewritten
as

rAB = A (1 − e cosE) , (A19)

t =

(

A3

γ (MA +MB)

)1/2

(E − e sinE) . (A20)



20

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5
 y

A
, y

B
  [

A
U

]
 xA, xB  [AU]

o
mB

rB

o
mA

rA

FIG. 7: Geometrical representation of the coordinates of a binary star. In the example considered,

the masses are MA = 1.5 M� and MB = 1.0 M�, respectively. The semi-major axis of the binary

system is chosen A = 2 a.u. and eccentricity is taken e = 0.5. The coordinates of mass center are

rCMS = 0. The massive bodies A and B are always in opposition to each other.

In case of ellipse, E = 0 in periastron, E = π in apastron, and for a complete orbit E runs
from E = 0 to E = 2 π. Thus, we obtain for the orbital period the expression

T = 2 π

(

A3

γ (MA +MB)

)1/2

. (A21)

We also note the solution r in cartesian coordinates, x = rAB cosφ and y = rAB sinφ:

rAB =

(

x
y

)

, (A22)

x = A (cosE − e) , (A23)

y = A
(

1 − e2
)1/2

sinE . (A24)

The coordinates of the bodies A and B, i.e. their orbits, are given by

rA = rCMS +
rAB

1 + MA
MB

, (A25)

rB = rCMS −
rAB

1 + MB
MA

. (A26)

Accordingly, the form of orbit is determined by two orbital parameters: semi-major axis a
and eccentricity e. In order to konw the position of one celestial body, either component
A or component B, two additional orbital parameters are needed, namely orbital period T
and true anomaly ν. A geometrical representation of the coordinates of the components of a
binary star is given in FIG. 7 for the case of MA = 1.5M�,MB = 1.0M� , e = 0.5,A = 2 a.u..
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APPENDIX B: DERIVATION OF EQ. (6)

In the inclination formula the impact of eccentricity on light-deflection is neglected, thus
e = 0, implying that ω = 0 is taken. Then, for the vectors from massive body to observer
x1 and from massive body to source x0, we have

x1 = r















sin i− ε1 cosE

−ε1 sinE

cos i















, (B1)

x0 = −A















cosE

sinE

0















, (B2)

where we have introduced the small parameter

ε1 =
A

r

mB

mA +mB
� 1 . (B3)

From Eqs. (B1) and (B2) we obtain for vector k = R/R, where R = x1−x0, the expression

k =
1

√

1 + 2 ε2 sin i cosE + ε22















sin i+ ε2 cosE

ε2 sinE

cos i















, (B4)

where we have introduced the small parameter

ε2 =
A

r

mA

mA +mB
� 1 . (B5)

Here, we notice that (B2) and (B4) yields

d = |k × x0| = A |cos i| (1 + O (ε2)) . (B6)

Using (B1) - (B5), the generalized lens equation (5) reads

ϕ1,2 =
1

2

1

T1 T2





√

A2

r2
(1 − T 2

0 ) + 4 (1 + γ)
m

r

A

r
(T0 + T1 − ε1) T2 ∓

A

r

√

1 − T 2
0



 , (B7)

where

T0 = sin i cosE , (B8)

T1 =
√

1 − 2 ε1 sin i cosE + ε21 , (B9)

T2 =
√

1 + 2 ε2 sin i cosE + ε22 . (B10)
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In this investigation the light-deflection in binbary systems is considered, but not the lens
effect. Therefore, in what follows the solution ϕ ≡ ϕ1 is taken. By series expansion we
obtain

ϕ =
1

2





√

A2

r2
(1 − w2) + 4 (1 + γ)

m

r

A

r
(1 + w) − A

r

√
1 − w2



+ O




A

r

√

m

r

A

r



 ,

(B11)

where we have introduced the abbreviation w = sin i cosE. The minmal and maximal
light-deflection angle are

ϕmin = ϕ
(

i =
π

2
, E = π

)

= 0 , (B12)

ϕmax = ϕ
(

i =
π

2
, E = 0

)

= 2

√
mA

r
. (B13)

In our stydy we are interested in the maximal possible light-deflection effext. Accordingly,
two situtations are relevant: namely

ϕ (E = 0) =
1

2





√

A2

r2
cos2 i+ 4 (1 + γ)

m

r

A

r
(1 + sin i) − A

r
|cos i|



+ O




A

r

√

m

r

A

r



 ,

(B14)

which is just Eq. (6), and

ϕ
(

i =
π

2

)

=
1

2





√

A2

r2
sin2E + 4 (1 + γ)

m

r

A

r
(1 + cosE) − A

r
|sinE|



+ O




A

r

√

m

r

A

r



 ,

(B15)

Furthermore, it is useful to take into account only astrometric positions with 0 ≤ E ≤ π

2
,

because otherwise the light-deflection is for sure negligible.

APPENDIX C: DERIVATION OF EQ. (9)

In this Section we will use γ = 1. From (B14) we obtain

(

2ϕ+
A

r
|cos i|

)2

=
A2

r2
cos2 i+ 8

m

r

A

r
(1 + sin i) . (C1)

From (C1) we obtain
(

ϕ2 + 4
m2

r2

)

A2

r2
sin2 i+ 4

m

r

A

r

(

2
m

r

A

r
− ϕ2

)

sin i =

(

A2

r2
+ 4

m

r

A

r

)

ϕ2 − 4
m2

r2

A2

r2
− ϕ4.

(C2)

Eq. (C2) represents an quadratic equation for the expression | sin i |, which has the following
both solutions for the inclination i:

sin i =



−p
2
±
√

p2

4
− q



 , (C3)
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where

p =
8m2A− 4mr2 ϕ2

A (r2 ϕ2 + 4m2)
, (C4)

q = − A2 r2 ϕ2 + 4mAr2 ϕ2 − 4m2A2 − r4 ϕ4

A2 (r2 ϕ2 + 4m2)
. (C5)

Eq. (C3) represents two solutions, however only the one with the plus-sign is valid. This can

be shown as follows. For the value i = π
2 the light-deflection has to be ϕ = ϕmax = 2

√
mA/r,

according to (8). Inserting ϕmax in Eqs. (C4) and (C5) we obtain p = −2m/(A + m) and
q = −(A−m)/(A+m). If we insert i = π

2 for p and q into Eq. (C3) we obtain the relation

1 =
m

A+m
±
√

√

√

√

m2

(A+m)2 +
A−m

A+m
=

m

A+m
± A

A +m
. (C6)

Obviously, relation (C6) is only correct for the upper sign. We note, that a very similar
proof can also be done using ϕmin which also yields that the upper sign is the correct and
only solution. Therefore, the inclination formula is given by (note, that in the region under
consideration sin i = sin (π − i))

i =

arcsin



−p
2

+

√

p2

4
− q



 for 0 ≤ i ≤ π

2
,

π − arcsin



−p
2

+

√

p2

4
− q



 for
π

2
< i ≤ π .

(C7)

For the complete region 0 ≤ i ≤ π we obtain for the inclination formula the following
expression:

∣

∣

∣

∣

π

2
− i

∣

∣

∣

∣

= arccos



−p
2

+

√

p2

4
− q



 , (C8)

where p and q are given by Eqs. (C4) and (C5).

APPENDIX D: DERIVATION OF EQ. (14)

In this Appendix we briefly summarize the relevant steps which lead us to the inclination
formula given in Ref. [13], because that investigation has not been published. According to
[7], the transformation of k to the unit tangent vector n of light-trajectory at observer is in
post-Newtonian order given by

n = k − (1 + γ)m
k × (x0 × x1)

x (x0 x1 + x0 · x1)
+ O

(

m2
)

. (D1)

This expression is valid as long as d � m, but diverges for d → 0. By means of (D1) we
obtain for the light-deflection angle ϕ, i.e. for the angle between n and k, the expression

ϕ = (1 + γ)
m

r
tan

ψ

2
, (D2)
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where we have used sinα
1 + cosα = tan α2 , x = r + O (A), amd ψ is the angle δ (x0,x1). The

expression (D2) diverges for ψ → π, which coresponds with the mentioned divergence of
(D1) for d→ 0. Obviously, ψ ≤ i+ π

2 (from Eq. (32) it is obvious that eccentric anomaly E
of binary system should be very close to zero for the light-deflection effect to be observable
at the level of microarcsecond, i.e. we actually could even assume ψ ' i+ π

2 ) and we obtain

ϕ ≤ (1 + γ)
m

r
tan

(

i

2
+
π

4

)

= (1 + γ)
m

r
cot

(

π

4
− i

2

)

, (D3)

where we have used that tan
(

α + π
2

)

= − cotα, cotα = tan−1 α, and the antisymmetry of

function cotα. From (D3) we obtain

∣

∣

∣

∣

π

2
− i

∣

∣

∣

∣

KMS
≤ 2 arctan

(

(1 + γ)
m

r ϕ

)

, (D4)

which, for γ = 1, is just the inclination formula (14). However, we have to underline that
due to the divergence for d → 0, which corresponds to ψ → π, the applicability of (D4) is
restricted by the condition d � m. Using d = A |cos i| we obtain the validity condition for
the applicability of (D4):

∣

∣

∣

∣

π

2
− i

∣

∣

∣

∣

KMS
� arcsin

m

A
. (D5)

APPENDIX E: PROBABILITY DISTRIBUTION

Let us assume we have a probability distribution of any quantity x, given by f(x). The
probability P , to find a system in the intervall xi ≤ x ≤ xi + ∆x is given by

P (xi ≤ x ≤ xi + ∆x) =

xi+∆x
∫

xi

dz f(z)

xmax
∫

xmin

dz f(z)

, (E1)

where the region of validity of probability distribution f(x) is given by xmin and xmax. In
the infinitesimal limit ∆x → dx, we obtain by series expansion the following explicit form
for the here used probability distributions: for a power law f(x) ∼ x−α with α 6= 1 we find

f(x) =
(1 − α) x−α

x(1−α)
max − x

(1−α)
min

, (E2)

and for a logarithmic law f(x) ∼ x−1 we have

f(x) =
1

x

(

ln
xmax

xmin

)−1

. (E3)

The normalization is
xmax
∫

xmin

f(x) = 1 and we also note the averaged value x =
xmax
∫

xmin

f(x) x dx.


