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I. INTRODUCTION

II. DIRECT AND INVERSE TRANSFORMATIONS BETWEEN A

PREFERRED AND NON-PREFERRED FRAME

The preferred frame where the light velocity is isotropic and equal to c has coordi-
nates (T, Xa). An arbitrary inertial non-preferred frame (where the light velocity is not
necessarily equal to c and not necessarily isotropic) is denoted as (t, xi).

It is assumed here that the transformation between preferred coordinates (T, Xa) and
non-preferred ones (t, xi) read

c t= Λ0
0 c T + Λ0

a Xa, (1)

xi = Λi
0 c T + Λi

a Xa, (2)

where

Λ0
0 = A, (3)

Λ0
a = Ea, (4)

Λi
0 = F Ki, (5)

Λi
a = D δai + B

Ka Ki

K2
. (6)

Here Ka = V a/c where V a are the spatial components of the velocity of the origin of
the non-preferred reference system as seen from the preferred one. Therefore, events with
coordinates (t, xa = 0) should have preferred coordinates as (T, Xa = V a T ), t and T
being related by the transformations given above. From this condition one infers

F = −(B + D). (7)

On the other hand considering the events with preferred coordinates (T, Xa = 0) one
finds the velocity of the origin of the preferred coordinates as seen in the non-preferred
one

Ṽ i =
F

A
V i = −B + D

A
V i. (8)

Here c is the light velocity (in the preferred frame), and A, B, D, E, and F are arbitrary
functions of V = |V |. It is straightforward to demonstrate that the inverse transforma-
tions read

c T =Λ̃0
0 c t + Λ̃0

i xi, (9)

Xa =Λ̃a
0 c t + Λ̃a

i xi, (10)

where

Λ̃0
0 =

1

A + E · K , (11)

Λ̃0
i =

1

A + E · K
1

D

(
B

B + D

E · K̃
K̃2

K̃i − Ei

)
, (12)

Λ̃a
0 =− 1

A + E · K
A

B + D
K̃a , (13)

Λ̃a
i =

1

D
δai − 1

D

B

B + D

(
1 − 1

A + E · K E · K
)

K̃a K̃i

K̃2
+

1

A + E · K
A

D

1

B + D
Ei K̃a .

(14)
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Here, K̃i = Ṽ i/c. Note that both V a and Ṽ i appear in these formulas. In order to

complete the inversion one should re-parametrize A, B, D, and E by Ṽ = |Ṽ |. Using (8)

one can easily transform V into Ṽ . Below, following usual practice (see, e.g., Mansouri
& Sexl (1977)) we will use only V in both direct and inverse transformations. Special
relativistic Lorentz transformations can be restored here with the following values

A = γ , (15)

B = γ − 1 , (16)

D = 1 , (17)

Ei =−Kiγ , (18)

where

γ =
1√

1 − K2
. (19)

One can easily see that with these values, both the direct transformation (1)–(7) and the
inverse one (9)–(14) coincide with the usual Lorentz transformation.

III. COMPARISON WITH THE MANSOURI-SEXL FORMULATION

It will be useful to compare the coordinate transformation matrices (3)–(6) with the
transformation matrices used by Mansouri & Sexl (1977) (note the misprint in the second
term of the right-hand side of the second of the equations (6.14) in Mansouri & Sexl
(1977): X should appear instead of x) and given by

Λ0
0 = a − b (ε · K) , (20)

Λ0
a = d εa + (b − d)

ε · K
K2

Ka , (21)

Λi
0 =−b K i , (22)

Λi
a = dδia + (b − d)

Ka Ki

K2
. (23)

A direct comparision of (20)–(23) with the transformation (3)–(6) yields the following
relation between the functions used in this report and those functions used by Mansouri
and Sexl:

A= a − b (ε · K) , (24)

B = b − d , (25)

D = d , (26)

E = d ε + (b − d)
(ε · K) K

K2
. (27)

We also note the inverse transformation matrices of Mansouri and Sexl,

Λ̃0
0 =

1

a
, (28)

Λ̃0
i =−1

a
εi , (29)

Λ̃a
0 =

1

a
Ka , (30)
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Λ̃a
i =

1

d
δai −

(
1

d
− 1

b

)
Ka Ki

K2
− 1

a
εi Ka .

(31)

The matrices of inverse transformation (28)–(31) can also be obtained just by inserting the
relations (24)–(27) into the inverse transformation (11)–(14). We note by passing, that
inverse transformation (28)–(31) coincides with Eqs. (56)–(57) of Lämmerzahl (1992).

The inverse relation of Eqs. (24)–(27), that is, the relation between the functions of
Mansouri-Sexl and the functions used in this report read

a =A + (E · K) , (32)

b =B + D , (33)

d=D , (34)

ε =
E

D
− B

D

1

B + D

(E · K) K

K2
. (35)

We also note the case of Lorentz transformation,

a = γ−1 , (36)

b = γ , (37)

d=1 , (38)

ε =−K . (39)

IV. ADDITION OF VELOCITIES

In order to obtain the relation of addition of velocities we consider three systems Σ, S
and S ′ with corresponding relative velocities as shown in Fig. 1.

FIG. 1: Three systems Σ, S and S ′ with corresponding velocities V ,V ′ and v.

The coordinate transformation from S to Σ is given by (9) - (10) with coefficents Λ̃0
0,

Λ̃0
i , Λ̃a

0 and Λ̃a
i given by Eqs. (28) – (31). The functions a, b, d, ε are functions of V , being

the absolute value of velocity of the non-preferred system S as seen from the prefereed
system Σ. Similarly, for the coordinate transformation S ′ to Σ we have

c T =Λ̃0 ′
0 c t′ + Λ̃0 ′

i xi ′ , (40)

Xa =Λ̃a ′

0 c t′ + Λ̃a ′

i xi ′ . (41)



6

The transformation matrices are again given by Eqs. (28) – (31), where the velocity is
denoted by V ′. The corresponding free functions are denoted as a′, b′, d′, ε′ and are now
now functions of V ′, the absolute value of velocity of non-preferred system S ′ as seen from
the preferred system Σ.

Let us denote the velocity of S ′ as measured from S as v. To relate V , V ′ and v we
consider the worldline of the origin of S ′ with coordinates , xi ′ ≡ 0 in S ′ and xi = vi t
in S. Equating the right-hand sides of the transformations (9)–(10) and (40)–(41) for an
arbitrary event on the worldline of the origin of S ′ one gets

Λ̃0 ′
0 c t′ =Λ̃0

0 c t + Λ̃0
i vi t , (42)

Λ̃a ′

0 c t′ =Λ̃a
0 c t + Λ̃a

i vi t , (43)

from which we deduce

Λ̃a ′

0

Λ̃0 ′
0

=
Λ̃a

0 + Λ̃a
i ki

Λ̃0
0 + Λ̃0

i ki
, (44)

where ki = vi/c. Eqs. (30) and (28) show that Λ̃a ′

0 /Λ̃0 ′
0 = Ka ′ = V a ′/c. Therefore, Eq.

(44) above gives the following relation between the three velocities

K ′ =K +
a

d
(1 − ε · k)−1

(
k − (1 − f)

k · K
K2

K

)
(45)

where f = d/b. It is straightforward to check that in case of Lorentz transformation
when the Mansouri-Sexl functions take the values (36)–(39), the known special-relativistic
addition of velocities (Jackson 1975) is reproduced

V ′ =
γ V + v + (γ − 1)

v · V
V 2

V

γ

(
1 +

v · V
c2

) . (46)

V. ABERRATIONAL FORMULA BETWEEN PREFERRED AND

NON-PREFERRED REFERENCE FRAMES

Using this transformation one can get the relation between the unit directions of light
propagation in the preferred frame Sa and that in the non-preferred one si. Here we
consider the same light ray as seen by an observer at rest relative to (T, X i) and another
observer (co-located with the first one) at rest relative to (t, xi). Taking the differentials
along the light ray we have

Sa =
1

c

dXa

dT
, (47)

for the preferred frame (S · S = 1) and

pi =
1

c

dxi

dt
, (48)

si = pi/|p| (49)
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for the non-preferred frame. The last normalization is needed since the light velocity is
not equal to c in the non-preferred frames and therefore vector pi is not unit. Substituting
here the transformations (1)–(7) one gets

pi =
Λi

0 + Λi
a Sa

Λ0
0 + Λ0

a Sa

=
d Si + (b − d)

Ki (K · S)

K2
− b Ki

Λ0
0 + Λ0

a Sa . (50)

where Ka = V a/c. The absolute value of the light velocity in the non-preferred frame can
computed as c |p|

p = |p|= 1

Λ0
0 + Λ0

a Sa

(
d2 + b2 (K2 − 2 K · S) +

(b2 − d2) (K · S)2

K2

)1/2

(51)

Note that because of the normalization the value of Λ0
0 +Λ0

a Sa plays no role here. Finally,
one gets

s=
f S + (1 − f)

K (K · S)

K2
− K

(
f 2 + K2 − 2 K · S + (1 − f 2)

(K · S)2

K2

)1/2
, (52)

where f = d/b. We see that the transformation is a function of only one parameter f . The
transformation is independent of a and ε. Substituting (36)–(39) into (52) one gets the
usual special relativistic aberrational formula following from the Lorentz transformation.
Equation (51) with (36)–(39) demonstrates that in special relativity p = 1.

VI. INVERSION OF THE ABERRATIONAL FORMULA

Performing the same calculations taking the inverse transformation matrices (28)–(31)
one get the inverse relation

Sa =
Λ̃a

0 + Λ̃a
i pi

Λ̃0
0 + Λ̃0

i pi

=
Ka +

a

d
pa − a(b − d)

b d

Ka (K · p)

K2
− Ka (ε · p)

1 − ε · p

=Ka + h

(
sa − (1 − f)

Ka (K · s)

K2

)
, (53)

where

h =
a

d (p−1 − ε · s)
. (54)
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The value of h can be derived from the condition that S is a unit vector. Taking the last
formula in (53) one gets

1 = S · S = K2 + 2 f (K · s) h +


1 −

(
1 − f 2

) (K · s
K

)2

 h2 . (55)

From this formula we see immediately that h does not depend on ε and, therefore, as
expected the aberrational formula does not depend on the synchronization convention.
Moreover, h does not depend also on a. Equation (55) is quadratic and has two solutions.
From the definition (54) of h it is clear that for V = 0 one should have h = 1. Therefore,

h =
K

K2 − (1 − f 2) (K · s)2

×
[(

f 2 (K · s)2 + (1 − K2)
(
K2 − (K · s)2

))1/2 − f K (K · s)
]

. (56)

This equation should considered as an equation for p appearing in (54). One can check
by direct computations that (54) and (56) give the same expression for p as (51) provided
that S and s are related by (52). Inserting Eq. (56) into (53) one finally obtains the
inversion of aberrational formula,

S =K +
((

f 2 (K · s)2 + (1 − K2)
(
K2 − (K · s)2

))1/2 − f K (K · s)
)

× K

K2 − (1 − f 2) (K · s)2

(
s − (1 − f)

K (K · s)

K2

)
. (57)

This transformation, like in aberrational formula Eq. (52), is also a function of f only.
No other Mansouri-Sexl parameters appear here. A direct substitution of (52) und (57)
into each other demostrates that these two transformations are indeed inversions of each
other.

VII. ABERRATIONAL FORMULA BETWEEN TWO NON-PREFERED

REFERENCE FRAMES

Now let us consider a satellite moving in the space of solar system and performing
positional observations of stars. The standard general-relativistic data reduction of this
satellite assumes that the stars have known positions in the Barycentric Celestial Reference
System, BCRS (Soffel et al. 2003). The observed direction towards a star is defined
in the locally inertial reference system momentarily co-moving with the satellite at the
moment of observation (Klioner 2003, 2004). In BCRS one introduces a fictitious observer
momentarily co-located with the satellite. The direction of the light propagation from
the star as seen by that fictitious observer and the direction as seen by the observer
co-moving with the satellite are related by the aberrational formula. That aberrational
formula is given, e.g., by Eq. (10)-(11) of Klioner (2003) and follows directly from the
Lorentz transformation relating the two reference frames in question.

From the point of view of the kinematical test theories for Local Lorentz Invariance
the BCRS can be interpreted as the non-preferred coordinate system (t, x) as introduced
above. That reference frame has velocity V relative to the preferred frame (T, X). The
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unit direction of the propagation of a light ray coming from the star is s. The reference
frame moving together with the satellite can be associated with (t′, x′) in Section IV. That
latter frame has velocity V ′ relative to the preferred frame, and velocity v relative to (t, x).
The relation between s and s′ as function of velocities V and v and the parameters of
Mansouri-Sexl transformations can be derived by combining (57), (52) and (45). Namely,
Eq. (57) gives a formula for S as function of s and k = v/c. Changing s and K in (52) to
s′ and K ′ = V ′/c one gets a formula for s′ as function of S and K ′. Note that performing
the above-mentioned substitution one should remember that f is also a function of K

and should be changed to f ′. Substituting that latter formula and (45) into (57) results
into the final formula for s′ as functions of s, v, V and Mansouri-Sexl parameters.

Although it is straightforward to complete these calculation in closed form, it leads to
a complicated and rather useless formula. We prefer to expand the functions a, b, d and
ε in powers of K and b′, d′ in powers of K ′. Note that functions a′ and ε′ do not appear
in our calculations. The expansions read

a= 1 +
∞∑

k=1

(
αi −

(2i − 3)!!

(2i)!!

)
K2i = 1 +

(
α1 −

1

2

)
K2 +

(
α2 −

1

8

)
K4 + O(K6) , (58)

b = 1 +
∞∑

k=1

(
βi +

(2i − 1)!!

(2i)!!

)
K2i = 1 +

(
β1 +

1

2

)
K2 +

(
β2 +

3

8

)
K4 + O(K6) , (59)

d= 1 +
∞∑

k=1

δi K
2i , (60)

ε= (ε − 1) K

(
1 +

∞∑

k=1

εi K
2i

)
. (61)

Here we assumed that (−1)!! = 1. The parameters αi, βi, δi, ε, εi are assumed to be
numerical. The Standard Mansouri-Sexl parameters read α = α1 − 1

2
, β = β1 + 1

2
and

δ = δ1. Parameters αi, βi, δi, ε and εi are all zero in case of special relativity with Einstein
synchronization. The expansions for b′ and d′ coincide with (59) and (60), respectively,
with K ′ instead of K, and with the same coefficients βi and δi. Using these expansions
we get

s′ =P s′′, (62)

where P is the matrix of Thomas-like precession

P ij = δij + K [i kj] − 1

8
K2 ki kj +

1

4
(k · K) K(i kj) − 1

8
k2 Ki Kj

−1

4
K [i kj]

(
k2 (6η − 1) + (1 − 4ε + 4η (1 − η)) k · K − (1 + 4θ + 4η2) K2

)

+O
(
c−5

)
, (63)

where η = 1
2
− β + δ1 = −β1 + δ1 is the parameter that is measured in Michelson-Morley-

type experiments, and θ = α1 − δ1. This formula for the Thomas-like precession coincides
with the special relativistic Thomas precession in the limit of special relativity. Direction
s′′ is related to s by the following formula that does not involve any rotational matrix
(we define ζ = β2 − δ2 − 1/2 δ1):
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s′′ = s

+(s · k) s − k

−1

2
(s · k) k − 1

2
k2 s + (s · k)2 s

−η (s · K) k − η (s · k) (k + K) + η (s · k)2
s + 2η (s · k) (s · K) s

−1

2
(s · k)2 k − 1

2
k2 (s · k) s + (s · k)3

s

+η k2 (k + K) − 3 η (s · k)(s · K) k − η (s · K)2
k + (η − ε) (k · K) k

−η (s · k)2 (2k + K) + (ε − 2 η) (s · k)(k · K) s − 2η k2 (s · K) s

+6η (s · k)2 (s · K) s + η (s · k) (s · K)2
s + 3η (s · k)3

s − θ K2 k

+
(
θ K2 − 2 η k2

)
(s · k) s

+
1

8
k2 (s · k) k − 1

8
k4 s − 1

2
(s · k)3 k − 1

2
k2 (s · k)2 s + (s · k)4 s

+
[
ζ − θ + η

(
1

2
− 2 θ + δ1

)]
K2 (s · k) k

+
[
ζ + η

(
7

2
+ δ1

)]
k2 (s · k) k − 1

2
η(7 + 2η) (s · k)3 k

−3 η (2 + η) (s · k)2 (s · K) k − 2 η (1 + η) (s · k) (s · K)2 k

+
[
2ζ − η

(
3

2
η − 3 + ε − 2δ1

)]
(K · k) (s · K) k

+
[
2ζ − ε(1 + 2 η) +

1

2
η (9 + 4 δ1)

]
(K · k) (s · k) k

+
[
ζ + η

(
11

4
+ δ1

)]
(s · K) k2 k

+
[
ζ − η

(
1

2
η + θ − 1

2
− δ1

)]
(s · K) K2 k

−η (1 + η) (s · k)3 K − 2 η2 (s · k)2 (s · K) K

+
[
ζ + η

(
3

2
+ δ1

)]
k2(s · K) K

+
[
ζ + η

(
11

4
+ δ1

)]
k2(s · k) K

+
[
ζ − 1

2
η (η + 2θ − 1 − 2δ1)

]
K2(s · k) K

+ [2ζ − η (−3 + 3η − 2δ1)] (s · K) (K · k) K

+
[
2ζ − η

(
−3 +

3

2
η + ε − 2δ1

)]
(s · k) (K · k) K

−θ K2 k2s + ηk4 s + k2(2η − ε) (K · k) s

+
3

2
η (4 + η)(s · k)4 s + 6 η (2 + η) (s · k)3 (s · K) s + 3 η (1 + 2η) (s · k)2 (s · K)2 s
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−
[
ζ − 2θ +

1

2
η (1 + η − 4 θ + 2 δ1)

]
K2 (s · k)2 s

−
[
ζ +

1

2
η (14 + η + 2δ1)

]
k2 (s · k)2 s

−
[
ζ +

1

2
η (5 + η + 2δ1)

]
k2 (s · K)2 s

− [4ζ − 2η (−3 + ε + η − 2δ1)] (s · K) (s · k) (K · k) s

− [2ζ − η (−3 + 3η − 2δ1)] (s · K)2 (K · k) s

− [2ζ − 2ε(1 + η) + η (7 + η + 2δ1)] (s · k)2 (K · k) s

− [2ζ − η (η + 2θ − 1 − 2 δ1)] K2 (s · K) (s · k) s

− [2ζ + η (η + 10 + 2δ1)] k2 (s · K) (s · k) s

+O
(
c−5

)
. (64)

The terms in this formula are grouped by the orders of 1/c. The groups are separated by
additional empty line. Within each group the first line represents terms that survive in
the limit of special relativity and the rest (if any) represents the additional Mansouri-Sexl
terms.

In the limit of special relativity Eq. (64) coincides with the expansion of the special-
relativistic aberrational formula. The dependence of this formula on ε and α1 comes solely
from the relation (45) between the velocities.

Several points are unclear here:
(1) How does the Thomas-like precession given by P ij above relate to the

Thomas precession derived from the coordinate transformations (see below)?
(2) These calculations were performed with arbitrary ε. Should we put ε to

some particular value to make the whole calculation ”physically meaningful”?
This question may be related to the first one and to the questions (in boldface)
given in the following sections.

(3) Another more ”practical questions”. Velocity v is taken from processing
of orbital data (Doppler, ranging and positional observations of the satellite).
That orbital data are processed using general-relativistic models assuming
the LLI to be correct. The resulting orbit is the only orbit, i.e. the only
v available for our analysis. Should we put all Mansouri-Sexl parameters to
their special-relativistic values in (45) because of this circumstances?

VIII. THOMAS PRECESSION

In special relativity, two successive Lorentz transformations are equivalent to one
Lorentz transformation plus a three-dimensional rotation, the so-called Thomas preces-
sion. Two successive coordinate transformations from preferred system Σ(T, X) to the
non-preferred system S(t, x) and afterwards to the non-preferred system S ′(t′, x′) can be
represented by

ct′ =A0
0(K

′, K) ct + A0
i (K

′, K) xi , (65)

xi ′ =Ai
0(K

′, K) ct + Ai
j(K

′, K) xj . (66)

The vectors K and K ′ are related by the addition of velocities in Eq. (45). According to
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Eqs. (1), (2) and Eqs. (9), (10), the spatial components Aij of the matrix Aµν follow as

Ai
j = Λi

0(K
′) Λ̃0

j(K) + Λi
a(K

′) Λ̃a
j (K) . (67)

The explicit form of Λi
0 and Λi

a are given in Eqs. (22) and (23), respectively, and the
explicit form of Λ̃0

j and Λ̃a
j are given in Eqs. (29) and (31), respectively. Inserting the

expansions of Mansouri-Sexl-functions given in Eqs. (58) – (61) and the relation between
three velocities in Eq. (45), we obtain (for notation see Appendix)

a
(ij)
1 =(2 δ1 K · k + δ1 k2) δij +

(
1

2
+ β1 − δ1

)
kikj + (2β1 − 2δ1 + ε)K(i kj) , (68)

a
[ij]
1 =(1 − ε) K [i kj] (69)

a
[ij]
2 =

[
(1 − ε)ε1 +

(
1

2
+ β1 − δ1

)2
]

K2 K [ikj] + (1 − ε)
(

1

2
+ β1

)
k2 K [ikj]

+

[
(1 − ε)

(
ε − 1

2
+ β1 + δ1

)
+
(

1

2
+ β1 − δ1

)2
]
k · K K [ikj] . (70)

The matrix of Thomas precession follows as (for details see Appendix),

P ij = δij + (1 − ε)K [i kj]

+(1 − ε)2
[
−1

8
K2 ki kj +

1

4
(k · K) K(i kj) − 1

8
k2 Ki Kj

]

−K [i kj]

([
(ε − 1)ε1 −

(
1

2
− η

)2
]

K2 +

[
1

2
(ε − 1)2 −

(
1

2
− η

)2
]

k · K

+
1

2
(ε − 1)

(
1

2
− η

)
k2

)
+ O(c−6) . (71)

In Einstein synchronization (78) we have

ε =0 ,

ε1 =α1 − β1 , (72)

and obtain for Eq. (71) the Thomas precession

P ij = δij + K [i kj]

−1

8
K2 ki kj +

1

4
(k · K) K(i kj) − 1

8
k2 Ki Kj

−1

4
K [i kj]

(
k2 (2η − 1) + (1 + 4η (1 − η)) k · K − (1 + 4θ + 4η2) K2

)

+O(c−5) . (73)

Up to O(c−4) the antisymmetric part A[ij] should represent the “Thomas pre-
cession”. However, A[ij] does not coincide with Eq. (63) for ε 6= 0.

IX. METRIC TENSOR

The covariant components of metric tensor in the non-preferred system S can be de-
termined by the tensor relation

gµν =

(
∂Xα

∂xµ

) (
∂Xβ

∂xν

)
Gαβ , (74)



13

where Gαβ = ηαβ = diag(−1, +1, +1, +1) is the Minkowski metric tensor in the preferred
system Σ. Implementation of coordinate transformations (9) – (10) in Mansouri-Sexl
parametrization (28) – (31) yields

g00 =− 1

a2
(1 − K2) , (75)

g0i =
1

a2
(1 − K2) εi +

1

a b
Ki , (76)

gij =− 1

a2
(1 − K2) εi εj +

1

d2
δij +

(
1

b2
− 1

d2

)
Ki Kj

K2
− 1

a b

(
εi Kj + εj Ki

)
. (77)

The nondiagonal components g0i vanish with the following synchronization condition:

εi =−a

b

Ki

1 − K2
,

= −Ki + (β1 − α1) K2 Ki +

(
α1 β1 + β2 − α2 −

α1

2
− β1

2
− β2

1

)
K4 Ki + O(K7) , (78)

which is just the condition for the Einstein synchronization as given by Eq. (6.12) in
Mansouri & Sexl (1977) and Eq. (74) of Lämmerzahl (1992). In case of Einstein synchro-
nization, the metric components read:

g00 =− 1

a2
(1 − K2) , (79)

g0i =0 , (80)

gij =
1

d2
δij +

(
1

b2

1

1 − K2
− 1

d2

)
Ki Kj

K2
. (81)

This metric goes to Minkowski one for (and only for) the values of a, b and d given by
(36)–(38) and (19).

Are (t, xi) observables? For any ε or for particular one? Probably only for the
Einstein synchronization (78)?

X. APPLICATION FOR GAIA: NUMERICAL SIMULATIONS AND

COVARIANCE ANALYSIS

The expected accuracy for η is 10−8 (it could be better). Although it is 100 times lower
than what can be done now in a laboratory it is a different type of experiment and is still
interesting.

XI. CONCLUSION

APPENDIX A: REPRESENTING ANY MATRIX AS PRODUCT OF

OTHOGONAL AND SYMMETRIC ONES

Let us consider an arbitrary matrix of the form

Ai
j = δij + ε aij

1 + ε2 aij
2 + O(ε3) , (A1)
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where ε is some small parameter. Our goal is to represent this matrix as a product of an
orthogonal matrix P ij and a symmetric matrix Sij:

Ai
j =P ik Sk

j . (A2)

Now let us assume that both matrices are represented as expansions:

Si
j = δij + ε sij

1 + ε2 sij
2 + O(ε3) , (A3)

where sij
1 and sij

2 are symmetric matrices,

s
[ij]
1 = 0 , (A4)

s
[ij]
2 = 0 , (A5)

and

P ij = δij + ε pij
1 + ε2 pij

2 + O(ε3) , (A6)

where the condition that P ij is orthogonal (P ikP jk = δij) imposes the following properties
on pij

1 and pij
2 :

p
(ij)
1 = 0 , (A7)

p
(ij)
2 =−1

2
pik

1 pjk
1 . (A8)

Computing P ikSkj from these expansions and considering the properties of sij
1 , sij

2 , pij
1

and pij
2 one gets:

pij
1 = a

[ij]
1 , (A9)

sij
1 = a

(ij)
1 , (A10)

p
(ij)
2 =−1

2
pik

1 pjk
1 , (A11)

p
[ij]
2 = b[ij] , (A12)

sij
2 = b(ij) , (A13)

bij = aij
2 +

1

2
pia

1 pja
1 − pia

1 sja
1

= aij
2 +

1

2
a

[ia]
1 a

[ja]
1 − a

[ia]
1 a

(ja)
1 . (A14)

Clearly,

pij
2 = p

(ij)
2 + p

[ij]
2 = b[ij] − 1

2
pik

1 pjk
1 . (A15)

These formulas allow us to compute explicitly the orthogonal and symmetric matrices P ij

and Sij.
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