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CHAPTER 3. INTERPOLATION METHODS

Problem:

Some measured values (dependent variable) are dependent on independent variables

in one -, two -, three- or four-dimensional space measurement, and generally they are

represented by the three space coordinates (depending upon coordinate system e.g.

xn� yn� zn or rn� αn� zn or rn� αn� ϑn (see 2 vector analysis)) and the time tn. We have a

discontinuous value tables in this case. For the one dimensional case e.g.:

independent dependend

variable variable

x0 y0 = f(x0)

x1 y1 = f(x1)

...
...

xn yn = f(xn)

The points x0� x1� ...� xn are called supporting points, and the points y0� y1� ...� yn are

the basic or supporting values.

If we are looking for function values, whose arguments lie within the range (x0� xn), we

name it interpolation In contrast if the function values we are looking for lie outside

the range (x0� xn) we call this extrapolation. By interpolation or extrapolation we try

to find a continuous function w = p(x), which reflects the original function yn = f(xn)

as exactly as possible (see figure 3.1). It is always assumed that the interpolation

function only matches the original function on the supporting points. The accuracy for

the interval in between, e.g. the matching of both functions, depends on the number

and the distribution of the supporting points. According to the sampling theorem

the quantisation error increases proportionally to the rise of the function.

Note:

No interpolation algorithm can be used as replacement for an enlargement ot the

measured value density. By means of an interpolation algorithm one receives in each

case approximated values.
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Figure 3.1: representation of the discontinuous measured data acquisition
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CHAPTER 3. INTERPOLATION METHODS

Example for application of interpolation: The pollutant concentration C(x),

which runs from a refuse dump, is measured at the points x0� x1� x2 (see figure 3.2).

The pollutant concentration at the point xFl, which cause the danger by flowing in

the river, is to be estimated by interpolation. A conclusion is to be given whether this

value exceeds the limiting value.

Figure 3.2: representation of an interpolation problem

x0 C0 = f(x0)

x1 C1 = f(x1)

xFl ?

x2 C2 = f(x2)

For the solution of this problem an interpolation function w = p(x) is to seek for as

”replacement” for the function Cn = f(xn). This function should fulfil the following

conditions:

wi = p(xi) = Ci∀i = 1� . . . � n (3.1)
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i.e.

w0 = p(x0) = C0

w1 = p(x1) = C1

...

wn = p(xn) = Cn

(3.2)

Then it is supposed that the intermediate values of the function w = p(x) are a good

approximation of the intermediate values of the function Cn = f(xn).

For the determination of the function w = p(x) different interpolation methods can

be used. We differentiate thereby one- and multi-dimensional procedures. The mul-

tidimensional methods play an important role in connection with the geographical

information systems �GIS) and are also often applied in connection with geostatis-

tics.

In the following some methods will be introduced in connection with water economical

questions.

• Polynomial interpolation

• Spline interpolation (peace wise polynomial interpolation)

• Kriging method
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3.1 Polynomial interpolation

In this method p(x) has the form of an algebraic polynomial of order n:

w = p(x) = a0 + a1x+ a2x
2 + ...+ anx

n (3.3)

The advantage of this method is that the intermediate values can be computed as easily

as possible.

Based on a value table with n+1 pairs of variates maximally an n-th order polynomial

can be exactly determined:

y := p(x) =
n�

k=0

ak · x
k (3.4)

with the property:

y(xi) ≈ p(xi) =
n�

k=0

ak · x
k
i = wi (3.5)

This polynomial is the interpolation polynomial to the given system of interpolation

supporting points.

Normally we look for polynomials of lower order (n ≤ 3), which fit together the pairs

of values at least by pairs:

p(x) = a0 + a1x linear interpolation

p(x) = a0 + a1x+ a2x
2 quadratic interpolation

p(x) = a0 + a1x+ a2x
2 + a3x

3 cubic interpolation

The application of polynomials with higher order makes the calculations more difficult

and leads to very large fluctuations.

From the different display formats for the polynomials follow different interpolation

methods for the determination of the coefficients ai of an n-th order polynomial. All

this different methods lead to the same polynomial.
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3.1. Polynomial interpolation

This interpolation methods are:

• analytical power function

• Lagrange

• Aiken

• Newton

3.1.1 Analytical power function

This method assumes that for each supporting point the polynomial w = p(x) fulfils

the condition y(xi) = p(xi). In this case we get for the n+1 supporting points a system

of n+ 1 equations with n+ 1 unknown coefficients a0� . . . � an.

a0 + a1x0 + a2x
2
0 + ...+ anx

n
0 = y0 (3.6)

a0 + a1x1 + a2x
2
1 + ...+ anx

n
1 = y1

...

a0 + a1xn + a2x
2
n + ...+ anx

n
n = yn

This equation system can be written as a matrix equation:

X ·A = Y

with the matrices:

X =

�













1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

...
...

...
. . .

...

1 xn x2
n · · · xn

n















A =

�













a0

a1

...

an















Y =

�













y0

y1

...

yn
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CHAPTER 3. INTERPOLATION METHODS

The matrix X and the vector Y on the right side represent the known coefficients,

whereby A is the solution vector. The linear equation system can be solved by all the

known methods (see section 1.3, solution of equations systems, page 22)

The determinant of this linear equation system is:

D =

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1 x0 · · · xn
0

1 x1 · · · xn
1

...
...

. . .
...

1 xn · · · xn
n

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

=

�





















(x1 − x0) · (x2 − x0) · (x3 − x0) · . . . · (xn − x0)·

·(x2 − x1) · (x3 − x1) · . . . · (xn − x1)·

·(x3 − x2) · . . . · (xn − x2)·

...

·(xn−1 − xn−2) · (xn − xn−2)·

·(xn − xn−1)























(3.7)

and is named the Vandermond determinant.

Since all supporting points are (must be) pairwise different, is D �= 0 and the linear

equation system is explicit solvable.

There is only one polynomial of the order n which fulfils the property yi = f(xi) = p(xi)

with the coefficients (see section 1.2.3 determinants, page 19):

a0 =
Da0

D
� a1 =

Da1

D
� · · · � an =

Dan

D
(3.8)

With this coefficients the interpolation polynomial is:

y(x) ≈ p(x) = a0 + a1 · x+ a2 · x
2 + · · ·+ an · x

n

The interpolation value at the place xP is:

y(xP ) ≈ p(xP ) = a0 + a1 · xP + a2 · x
2
P + · · ·+ an · x

n
P

Although the beginning of this method is very simple, the final determination of the

interpolation polynomial requires a relative large computation, particularly if a great

number of supporting points are to be taken in account.
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3.1. Polynomial interpolation

Example for the interpolation with the analytical power function method:

Find a quadratic polynomial by using the values of the following table and calculate

the value y = f(1
2
) at the place x = 1

2
.

x 0 1 2

y 0 1 0

Since only three supporting points are given, the polynomial can only be a second order

polynomial. A quadratic polynomial has the form

p(x) = a0 + a1x+ a2x
2

It must be:

yi = p(xi)

yi = a0 + a1xi + a2x
2
i

p(0) = 0 ⇒ a0 + a1 · 0 + a2 · 0 = 0 ⇒ a0 = 0

p(1) = 1 ⇒ a0 + a1 · 1 + a2 · 1
2 = 1 ⇒ a1 + a2 = 1

p(2) = 0 ⇒ a0 + a1 · 2 + a2 · 2
2 = 0 ⇒ 2a1 + 4a2 = 0

From this three equations follows:

a0 = 0

a1 = 2

a2 = −1

Thus the interpolation polynomial is:

p(x) = 2x− x2

With this function the value at the place x = 1
2
can be computed:

f

�
1

2

�

≈ p

�
1

2

�

= 2 ·
1

2
−

�
1

2

�2

=
3

4
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3.1.2 Lagrange interpolation formula

Lagrange wrote the interpolation in the following form:

y(xP ) ≈ p(xP ) = L0(xP ) · y0 + L1(xP ) · y1 + . . .+ Ln(xP ) · yn (3.9)

With the Lagrange interpolation no closed analytical functions are computed, but

only single values p(xP ) for each interpolation point xP . Thereby the coefficients Li(x)

of the interpolation values yi (for i = 0� 1� . . . � n) are n-th order polynomials of xP .

These are computed from the supporting points xi and are called the Lagrange

polynomials. The Lagrange polynomials of n-th order are:

L0(x) =
(xP − x1)(xP − x2) · · · (xP − xn)

(x0 − x1)(x0 − x2) · · · (x0 − xn)

L1(x) =
(xP − x0)(xP − x2) · · · (xP − xn)

(x1 − x0)(x1 − x2) · · · (x1 − xn)

...

Li(x) =
(xP − x0)(xP − x1) · · · (xP − xi−1)(xP − xi+1) · · · (xP − xn)

(xi − x0)(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

...

Ln(x) =
(xP − x0)(xP − x1)(xP − x2) · · · (xP − xn−1)

(xn − x0)(xn − x1) · · · (xn − xn−1)

(3.10)

Thus the Lagrange interpolation polynomial is:

y = f(xP ) ≈ p(xP ) = L0(xP )y0 + L1(xP )y1 + . . .+ Ln(xP )yn

y =
(xP − x1)(xP − x2) · · · (xP − xn)

(x0 − x1)(x0 − x2) · · · (x0 − xn)
y0

+
(xP − x0)(xP − x2) · · · (xP − xn)

(x1 − x0)(x1 − x2) · · · (x1 − xn)
y1

...

+
(xP − x0)(xP − x1)(xP − x2) · · · (xP − xn−1)

(xn − x0)(xn − x1) · · · (xn − xn−1)
yn

(3.11)

If we insert for xP one of the points x0� x1� ...� xn−1� xn, there is always a factor in the

numerator which is equal to zero. For the i-th Lagrange polynomial the denominator

is also equal to zero, so the limes of the i-th Lagrange polynomial is equal to 1. Since

all other Lagrange polynomials are zero, the Lagrange interpolation polynomial

is:

yi = y(xi) = f(xi) ≈ p(xi) = 1 · yi

78



3.1. Polynomial interpolation

A disadvantage of the Lagrange method is that the computation of the Lagrange

interpolation polynomials must be accomplished again when an increase of the support-

ing point number should be taken into account, which is identical with the increase of

the order of the interpolation polynomial. This is clearly to be seen in the following

example.

Note:

• The weights (coefficients) Li(xi) in the Langrange interpolation formula always

have to be computed again, if the supporting points number changes.

• The sum of the weights is always equal to one (important for checking the results)

�
Li(xi) = 1

Example for Lagrange interpolation:

For the function yn = f(xn) the values at the equidistant points xn = x0 + 2nh for

n = −1� 0� 1� 2 (see table) are given:

n −1 0 1 2

xn x0 − 2h x0 x0 + 2h x0 + 4h

f(xn) y−1 y0 y1 y2

Find an approximate value w = f(x) = f(x0 + h) for x = 1
2
. According to the rules

of the polynomial interpolation in the case with four supporting points maximally a

3rd order polynomial can be developed. It is also possible to accomplish a piecewise

interpolation. This has the advantage that we can reduce computation work. The

accuracy is however declined. In this case we try to find an optimum between the

required accuracy and the cost of computation. The supporting points used in the

piecewise interpolation are this next to the interpolation point.

1. Linear interpolation

The interpolation function at the point x = 1
2
is written with the help of the

Lagrange interpolation formula as (see equation 3.1.2):

w 1
2
= L0(x 1

2
)y0 + L1(x 1

2
)y1

Here the supporting points x = 0 and x = 1 are used, where the point x = 1
2
is
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CHAPTER 3. INTERPOLATION METHODS

in between. The weights L0 and L1 are (see equation 3.10):

L0(x 1
2
) =

x 1
2
− x1

x0 − x1

=
x0 + h− x0 − 2h

x0 − x0 − 2h
=
1

2

L1(x 1
2
) =

x 1
2
− x0

x1 − x0

=
x0 + h− x0

x0 + 2h− x0

=
1

2

Then the searched value is:

w 1
2
=
1

2
(y0 + y1)

The result of the linear interpolation is thereby equal to the arithmetic middle.

2. Quadratic interpolation

In this case the interpolation function is (see equation 3.1.2):

w 1
2
= L0(x 1

2
)y0 + L1(x 1

2
)y1 + L2(x 1

2
)y2

The corresponding coefficients are (see equation 3.10):

L0(x 1
2
) =

(x 1
2
− x1)(x 1

2
− x2)

(x0 − x1)(x0 − x2)
=
3

8

L1(x 1
2
) =

(x 1
2
− x0)(x 1

2
− x2)

(x1 − x0)(x1 − x2)
=
3

4

L2(x 1
2
) =

(x 1
2
− x0)(x 1

2
− x1)

(x2 − x0)(x2 − x1)
= −

1

8

and the result is:

w 1
2
=
3

8
y0 +

3

4
y1 −

1

8
y2

3. cubic interpolation

In the same way follows (see equation 3.1.2):

w 1
2
= L−1(x 1

2
)y−1 + L0(x 1

2
)y0 + L1(x 1

2
)y1 + L2(x 1

2
)y2

We get the following Lagrange factors (see equation 3.10):

L−1(x 1
2
) =

(x 1
2
− x0)(x 1

2
− x1)(x 1

2
− x2)

(x−1 − x0)(x−1 − x1)(x−1 − x2)
= −

1

16

L0(x 1
2
) =

(x 1
2
− x−1)(x 1

2
− x1)(x 1

2
− x2)

(x0 − x−1)(x0 − x1)(x0 − x2)
=
9

16

L1(x 1
2
) =

(x 1
2
− x−1)(x 1

2
− x0)(x 1

2
− x2)

(x1 − x−1)(x1 − x0)(x1 − x2)
=
9

16

L2(x 1
2
) =

(x 1
2
− x−1)(x 1

2
− x0)(x 1

2
− x1)

(x2 − x−1)(x2 − x0)(x2 − x1)
= −

1

16

Thus the result is:

w 1
2
= −

1

16
y−1 +

9

16
y0 +

9

16
y1 −

1

16
y2
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3.1. Polynomial interpolation

3.1.3 Newton interpolation formula

3.1.3.1 Arbitrary supporting points

The disadvantage of the Lagrange method is that the Lagrange polynomials must

be computed again and again, which can be avoided in the Newton method. With

the Newton method only one auxiliary item should be added when further supporting

points are taken into account.

The method begins with the following formula:

p(x) = b0 + b1(x− x0)

+ b2(x− x0)(x− x1)

+ b3(x− x0)(x− x1)(x− x2)

...

+ bn(x− x0)(x− x1) · · · (x− xn−1)

(3.12)

If we want to find a certain interpolation value p(xP ), x will be replaced by xP in the

polynomial.

The coefficients are determined again in such a way that the interpolation polynomial

at the supporting point matches exactly with the interpolation values (xn� yn). If we

respectively replace xP by x0� . . . � xn in the Newton formula, we get an equation

system with n equations and n variables. Since in each case the corresponding factors

(xP − xi = 0) are equal to zero, the polynomial items will be omitted. Then we know

the basic value yi from the polynomial value p(xi).

y0 = b0 + b1(x0 − x0)� �� �
=0

+ · · ·

y1 = b0 + b1(x1 − x0) + b2(x1 − x0)(x1 − x1)� �� �
=0

+ · · ·

y2 = b0 + b1(x2 − x0) + b2(x2 − x0)(x2 − x1)

...

yn = b0 + b1(xn − x0) + b2(xn − x0)(xn − x1) + · · ·

+bn(xn − x0)(xn − x1) · · · (xn − xn−1)

(3.13)
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The equation system can be solved step by step with b0� b1� b2 . . . � bn. By inserting

the first equation into the second we get b1. Once again inserting this into the third

equation it yields b2. After n+1 steps we insert b0� . . . � bn−1 in to the n+1-th equation

and this yield bn.

b0 = y0

b1 =
(y1 − y0)

(x1 − x0)
= [x1x0]

b2 =
(y2 − y0)−

(y1−y0)
(x1−x0)

(x2 − x0)

(x2 − x0)(x2 − x1)

=
(y2 − y1) + (y1 − y0)− [x1x0](x2 − x0)

(x2 − x0)(x2 − x1)

=
(y2 − y1)

(x2 − x0)(x2 − x1)
+

(y1 − y0)

(x2 − x0)(x2 − x1)
−

[x1x0](x2 − x0)

(x2 − x0)(x2 − x1)

=
[x2x1]

(x2 − x0)
+

[x1x0](x1 − x0)

(x2 − x0)(x2 − x1)
−

[x1x0](x2 − x0)

(x2 − x0)(x2 − x1)

=
[x2x1]

(x2 − x0)
+
[x1x0](x1 − x0)− [x1x0](x2 − x0)

(x2 − x0)(x2 − x1)

=
[x2x1]

(x2 − x0)
+ −[x1x0](x2−x1)

(x2−x0)(x2−x1)

b2 =
[x2x1]− [x1x0]

(x2 − x0)
= [x2x1x0]

(3.14)

Hereby we use the abbreviated notation, which is called divided differences of first

and higher order:

[xkxi] :=
yk − yi

xk − xi

[xlxkxi] :=
[xlxk]− [xkxi]

(xl − xi)

[xmxlxkxi] :=
[xmxlxk]− [xlxkxi]

(xm − xi)

...

[xnxn−1 · · · x1x0] :=
[xnxn−1 · · · x1]− [xn−1 · · · x1x0]

(xn − x0)

(3.15)
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3.1. Polynomial interpolation

Thus the coefficients results to:

b0 = y0

b1 =
(y1 − y0)

(x1 − x0)
= [x1x0]

b2 =
[x2x1]− [x1x0]

(x2 − x0)
= [x2x1x0]

b3 =
[x3x2x1]− [x2x1x0]

(x3 − x0)
= [x3x2x1x0]

...

bn =
[xnxn−1 · · · x1]− [xn−1 · · · x1x0]

(xn − x0)
= [xnxn−1 · · · x1x0]

(3.16)

Particularly the coefficients can be determined conveniently according to the following

computation scheme (example for 5 supporting points):

x0

y0

= b0

x1 y1

x2 y2

x3 y3

x4 y4

(y1−y0)
(x1−x0)

= [x1x0]

= b1

(y2−y1)
(x2−x1)

= [x2x1]

(y3−y2)
(x3−x2)

= [x3x2]

(y4−y3)
(x4−x3)

= [x4x3]

[x2x1x0]

= b2

[x3x2x1]

[x4x3x2]

[x3x2x1x0]

= b3

[x4x3x2x1]

[x4x3x2x1x0]

= b4

(3.17)

According to equation 3.12 the value y at the place x be interpolated:

y(x) ≈ p(x) = b0 + b1(x− x0)

+ b2(x− x0)(x− x1)

+ b3(x− x0)(x− x1)(x− x2)

+ b4(x− x0)(x− x1)(x− x2)(x− x3)

(3.18)

This equation also can be used, in order to compute the interpolation function w = p(x)

distribution and possibly to plot the function.
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CHAPTER 3. INTERPOLATION METHODS

3.1.3.2 Equidistant supporting point distribution

The equidistant supporting point distribution x0� x1 = x0 + h� . . . � xn = x0 + nh

(h is the increment) is given, then the interpolation by the Newton method is:

p(x) = y0+
Δy0

h
(x−x0)+

Δ2y0

2� · h2
(x−x0)(x−x1)+. . .+

Δny0

n� · hn
(x−x0) . . . (x−xn−1) (3.19)

The elements Δy0�Δ
2y0� . . . �Δ

ny0 are called finite differences. The exponent does

not represent exponentiation, but step by step differences. By comparing the equations

3.19 and 3.12 on page 81 we get:

b0 � y0

b1 =
y1 − y0

x1 − x0

�

Δy0

h

b2 =
[x2x1]− [x1x0]

(x2 − x0)
�

Δ2y0

2� · h2

(3.20)
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3.1. Polynomial interpolation

These differences are computed according to the following scheme:

x
0

y
0

x
1

y
1

x
2

y
2

. . .
. . .

x
n
−

1
y

n
−

1

x
n

y
n

Δ
y

0
=

y
1
−
y

0

Δ
y

1
=

y
2
−
y

1

. . .

Δ
y

n
−

2
=

y
n
−

1
−
y

n
−

2

Δ
y

n
−

1
=

y
n
−
y

n
−

1

Δ
2
y

0
=
Δ
y

1
−
Δ
y

0

Δ
2
y

1
=
Δ
y

2
−
Δ
y

1

. . .

Δ
2
y

n
−

2
=
Δ
y

n
−

1
−
Δ
y

n
−

2

··
·
Δ

n
y

0
=
Δ

n
−

1
y

1
−
Δ

n
−

1
y

0
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The scheme for an example with n = 4:

x
0

y
0

x
1

y
1

x
2

y
2

x
3

y
3

x
4

y
4

Δ
y

0
=

y
1
−
y

0

Δ
y

1
=

y
2
−
y

1

Δ
y

2
=

y
3
−
y

2

Δ
y

3
=

y
4
−
y

3

Δ
2
y

0
=
Δ
y

1
−
Δ
y

0

Δ
2
y

1
=
Δ
y

2
−
Δ
y

1

Δ
2
y

2
=
Δ
y

3
−
Δ
y

2

Δ
3
y

0
=
Δ

2
y

1
−
Δ

2
y

0

Δ
3
y

1
=
Δ

2
y

2
−
Δ

2
y

1

Δ
4
y

0
=
Δ

3
y

1
−
Δ

3
y

0

By back substitution we see, that each finite difference is a combination of the y-values

of the first column, e.g.:

Δ3y0 = y3 − 3y2 + 3y1 − y0 (3.21)
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3.1. Polynomial interpolation

3.1.3.3 Examples for the Newton method

1. For the function yn = f(xn) the values at equidistant points xn = x0 + 2nh for

n = −1� 0� 1� 2 are given (see table):

n −1 0 1 2

xn x0 − 2h x0 x0 + 2h x0 + 4h

f(xn) y−1 y0 y1 y2

Find an approximate value x = 1
2
for y 1

2
= f(x0 + h).

Solve this example with the Newton method and compare the results with those

from the Lagrange interpolation formula.

a) linear interpolation:

p(x 1
2
) = y0 +

Δy0

Δx
(x 1

2
− x0)

In this example is Δx = 2h

p(x 1
2
) = y0 +

y1 − y0

2h
(x0 + h− x0)

=
1

2
(y0 + y1)

b) Quadratic interpolation:

p(x 1
2
) = y0 +

Δy0

Δx
(x 1

2
− x0) +

Δ2y0

2�Δx2
(x 1

2
− x0)(x 1

2
− x1)

In this example is Δx = 2h

p(x 1
2
) =

1

2
(y0 + y1) +

y2 − 2y1 + y0

(2h)22
(x0 + h− x0)(x0 + h− x0 − 2h)

=
3

8
y0 +

3

4
y1 −

1

8
y2

It applies:

Δ2y0 = Δy1 −Δy0 = y2 − y1 − (y1 − y0) = y2 − 2y1 + y0

Note:

The advantage of the Newton method is that the polynomial Li(x) does

not change if the number of supporting points is changed, i.e. each time we

only need to calculate the additional part of the interpolation function.
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2. Given the following value table:

x 0 1 2 3 4 5

y 1 2 4 8 15 26

Determine the value y = f(2� 5). Choose a polynomial with a suitable order. How

large is the deviation if the order of the polynomial is changed? Since the given

supporting points are equidistant (h = 1), the Newton method is applicable to

calculate the polynomials with different orders.

First the finite differences are computed:

x0 = 0 y0 = 1

x1 = 1 y1 = 2

x2 = 2 y2 = 4

x3 = 3 y3 = 8

x4 = 4 y4 = 15

x5 = 5 y5 = 26

Δy0 = 1

Δy1 = 2

Δy2 = 4

Δy3 = 7

Δy4 = 11

Δ2y0 = 1

Δ2y1 = 2

Δ2y2 = 3

Δ2y3 = 4

Δ3y0 = 1

Δ3y1 = 1

Δ3y2 = 1

Δ4y0 = 0

Δ4y1 = 0
Δ5y0 = 0

It is evident that the maximal interpolation polynomial order is third.

a) Linear interpolation

The searched value x = 2� 5 lies between x2 = 2 and x3 = 3. Therefore the

linear interpolation is accomplished only between this tow values

p(x) = y2 +
Δy2

h
(x− x2)

= 4 +
4

1
(2� 5− 2)

p(2� 5) = 6
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3.1. Polynomial interpolation

b) Quadratic interpolation

Since the searched value is x = 2� 5 the quadratic interpolation can be

stretched among x1, x2 and x3.

p(x) = y2 +
Δy2

h
(x− x2) +

Δ2y2

2�h2
(x− x2)(x− x3)

= 4 +
4

1
(2� 5− 2) +

3

2 · 1
(2� 5− 2)(2� 5− 3)

= 4 + 2−
0� 75

2

p(2� 5) = 5� 625

c) cubic interpolation

The cubic interpolation formula requires three supporting places. In this

case both of the triple x1, x2 and x3 or the triple x2, x3 and x4 can be used.

For the first case:

p(x) = y1 +
Δy1

h
(x− x1) +

Δ2y1

2�h2
(x− x1)(x− x2)

+
Δ3y1

3�h3
(x− x1)(x− x2)(x− x3)

= 2 +
2

1
(2� 5− 1) +

2

2 · 1
(2� 5− 1)(2� 5− 2)

+
1

6 · 1
(2� 5− 1)(2� 5− 2)(2� 5− 3)

= 2 +3 + 0� 75− 0� 0625

p(2� 5) = 5� 6875

For the second triple:

p(x) = y2 +
Δy2

h
(x− x2) +

Δ2y2

2�h2
(x− x2)(x− x3)

+
Δ3y2

3�h3
(x− x2)(x− x3)(x− x4)

= 4 +
4

1
(2� 5− 2) +

3

2 · 1
(2� 5− 2)(2� 5− 3)

+
1

6 · 1
(2� 5− 2)(2� 5− 3)(2� 5− 4)

= 4 +2−
0� 75

2
+ 0� 0625

p(2� 5) = 5� 6875

89



CHAPTER 3. INTERPOLATION METHODS

The deviation between the linear and the quadratic result is:

�
�
�
�
5� 625− 6

5� 625

�
�
�
� = 6� 7%�

While the deviation between the square and the cubic result is only:

�
�
�
�
5� 6875− 5� 625

5� 6875

�
�
�
� = 1� 1%

In order to estimate the results, the given points can be plotted (see figure

3.3). The diagram shows that: Actually the value should lie between 5

Figure 3.3: Representation of the measured interpolated values

and 6. Obviously the linear interpolation can not yield good results in this

case. For this reason it is meaningful to plot given points and estimate the

searched value. In a practical work it is important to have enough points in

order to get a good approximation of the function. This can be ascertained

that, the form of the function substantially does not change when additional

points are taken into account.
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3.2 Spline interpolation

To describe a given function in a certain interval we can link sections that consist of

several lower degree polynomials instead of only one polynomial with high degree. The

classical examples are line segments in subintervals (see figure 3.4). It is assumed that

the function between two supporting points is nearly linear. This can be applied, if

the supporting points are close enough to each other.

Figure 3.4: Representation of linear spline curves

Such approximations are continuous, however the first derivative is discontinuous, and

i.e. vertices appear at the transition part from one interval to another. In the following

the spline interpolation method will be described, in which cubic polynomials are

built up such that the vertices are smooth, so that the first and second derivatives of

the approximation are continuous. Polynomials with higher degree are not used since

they oscillate strongly.

A given interval I = (a� b) is divided in n subintervals by the x-values x0 = a < x1 <

x2 < . . . < xn = b. The cubic polynomial pieces will be fitted in the subintervals such

that the y-values yi at the points xi match exactly. The first and second derivatives of

the functions for the left and for the right subinterval at the data points must be equal

(see figure 3.5). The data points (xi� yi) are called the nodes of the spline (originally

the term spline comes from an flexible spline devices).

PeterWolfgang Gräber Systems Analysis in Water Management
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A cubic polynomial has four coefficients. Generally it can be written:

pi(x) = c0i + c1ix+ c2ix
2 + c3ix

3 (3.22)

Figure 3.5: Representation of a spline curve with cubic polynomials

The Spline function is defined as follows:

1. The function S(x) is two times continuous differentiable on the interval [a� b].

2. S(x) is given by a cubic polynomial for each interval [xi� xi+1]. I.e.:

S(x) :=
�

pi(x)

pi(x) := ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3

(3.23)

3. S(x) fulfils the interpolation constraints S(xi) = yi for all i = 1� . . . � n in the

interval [a� b].

4. Depending upon the form of connection constraints we get different kinds of spline

functions. The following table shows special cubic spline functions:
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3.2. Spline interpolation

Connecting conditions Description Comments

S(x0) = S ��(x0) = 0

S(xn) = S ��(xn) = 0
natural

S(x0) and S(xn) is the tangent

function at the graph of S(x)

S ��(x0) = αS ��(xn) = generally

S �(x0) = αS �(xn) = β given first derivative at the boundary

S ���(x0) = αS ���(xn) = β given third derivative at the boundary

S(x0) = S(xn)

S �(x0) = S �(xn)

S ��(x0) = S ��(xn)

periodic

p0(x) = pl(x)

pn−2(x) = pn−1(x)
not-a-knot S ���(xl) and S ���(xn) are continuous

In the case of n intervals it yields to 4n coefficients and then 4n constraints are expected

to compute the spline. At each node (xi� yi) (i = 1� . . . � n) we have 4 constraints (the

y value and the correlation of the derivatives). This yields 4n− 4 constraints. At the

boundary points a and b the y values are given and so we have 4n− 2 constraints. The

spline is not completely defined. Two degrees of freedom remain.

pi(xi) = yi i = 0� . . . � n interpolation constraint

pi(xi) = pi−1(xi)

p�i(xi) = p�i−1(xi)

p��i (xi) = p��i−1(xi)






i = 1� . . . � n− 1
connecting constraints of

the polynomials pi and pi−1

(3.24)

We can set the second derivative at the boundary points equal to zero and get a natural

spline.

pn(xn) = an

p��n(xn) = 2cn

S(x0) and S(xn) are tangents

on the graph S(x)

(3.25)
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CHAPTER 3. INTERPOLATION METHODS

Alternatively the first derivative at the boundary points can be given, in order to

approximate a function.

Thus it yields an equation system with 4n equations for 4n + 2 unknown quantities.

The two missing equations are covered by the boundary conditions.

p��0(x0) = 0

p��n(xn) = 0

boundary conditions (3.26)

This equation system can be solved according to known methods. Usually the solution

of this equation system is complex, so not only one-step but also iterative methods (see

section 1.3 solution methods of equation system) must be used. As is shown below, a

tridiagonal equation system can be generated by a certain algorithm, so then it can be

solved with a little operating expense.
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3.2. Spline interpolation

Algorithm

Given n + 1 data points xi (i = 0� . . . � n) with an increment hi = xi+1 − xi and n + 1

data values yi (e.g. as a list of measurement), so the following algorithm (see equations

3.24 to 3.26)can be used to compute the cubic spline function.

S(x) :=
n−1�

i=0

pi(x)

pi(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3

(3.27)

The cubic spline consist of n functions for the intervals xi ≤ x ≤ xi+1.

Step Calculation Validity Comment

� ai = yi i = 0� . . . � n

from equation 3.24
interpolation constraint
pi�xi) = yi

for all data points

2 c0 = cn = 0

for natural splines:
S���x0) = S���xn) = 0
p���x) = 2ci + 6di�x− xi)
p���x0) = 2c0 = 0
p���xn) = 2cn = 0

3
hi−1ci−1 + 2ci

�
hi−1 + hi

´
+ hici�1

= 3
hi

�
ai�1 � ai

´
�

3
hi−1

�ai � ai−1) i = 1; · · ·n− 1
from equation 3.24
connection constraints
pi+1�xi+1) = pi�xi+1)

4 bi = 1
hi

�ai�1 � ai)�
hi

3
�ci�1 � 2ci) i = 0� . . . � n− 1 p�i+1�xi+1) = p�i�xi+1)

5 di =
1

3hi
�ci+1 − ci) i = 0� . . . � n− 1 p��i+1�xi+1) = p��i �xi+1)

The equation in the third step of the algorithm represents a linear equation system of

n− 1 equations for the variables c1� . . . � cn−1. It can be written in the matrix form:
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CHAPTER 3. INTERPOLATION METHODS

A ·C = R (3.28)

A =

�

















2(h0 + h1) h1

h1 2(h1 + h2) h2

. . . . . . . . .

hn−3 2(hn−3 + hn−2) hn−2

hn−2 2(hn−2 + hn−1)



















(3.29)

R =

�

















3

h1

(a2 − a1)−
3

h0

(a1 − a0)

3

h2

(a3 − a2)−
3

h1

(a2 − a1)

...

3
hn�2

(an−1 − an−2)−
3

hn�3
(an−2 − an−3)

3
hn�1

(an − an−1)−
3

hn�2
(an−1 − an−2)



















(3.30)

C =

�

















c1

c2

...

cn−2

cn−1



















(3.31)

The matrix A is tridiagonally, symmetrically, diagonally dominant, positively definite

and all entries are positive. Thus this matrix is always invertible and definitely solvable.

As solution method the Gauss algorithm for tridiagonal matrices can be used (see

section 1.3.1 solutions of equation system, Gauss algorithm).
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3.2. Spline interpolation

Example spline interpolation:

Given the following measured data points and values:

i 0 1 2 3 4

xi −1 −0� 5 0 0� 5 1

yi 0� 5 0� 8 1 0� 8 0� 5

For these 5 pairs find a natural cubic spline.

According to the definition of the spline function, 4 functions

pi(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3

(i = 1� . . . � 4) defined respectively on the intervals xi ≤ x ≤ xi+1 are searched.

Using the algorithm the following steps are implemented:

Step Computation Result

1 ai = yi

a0 = 0� 5

a1 = 0� 8

a2 = 1� 0

a3 = 0� 8

a4 = 0� 5

2 c0 = c4 = 0
c0 = 0

c4 = 0
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Step Computation Result

3











2 (h0 + h1) h1 0

h1 2 (h1 + h2) h2

0 h2 2 (h2 + h3)











·











c1

c2

c3











=











3

h1

(a2 − a1)−
3

h0

(a1 − a0)

3

h2

(a3 − a2)−
3

h1

(a2 − a1)

3

h3

(a4 − a3)−
3

h2

(a3 − a2)





















2 (0� 5 + 0� 5) 0� 5 0

0� 5 2 (0� 5 + 0� 5) 0� 5

0 0� 5 2 (0� 5 + 0� 5)











·











c1

c2

c3











=












3

0� 5
(1� 0− 0� 8)−

3

0� 5
(0� 8− 0� 5)

3

0� 5
(0� 8− 1� 0)−

3

0� 5
(1� 0− 0� 8)

3

0� 5
(0� 5− 0� 8)−

3

0� 5
(0� 8− 1� 0)












c1 = 0

c2 = −1� 2

c3 = 0

4 bi =
1

hi

(ai+1 − ai)−
hi

3
(ci+1 − 2ci)

b0 = 0� 6

b1 = 0� 6

b2 = 0

b3 = −0� 6

5 di =
1

3hi

(ci+1 − ci)

d0 = 0

d1 = −0� 8

d2 = 0� 8

d3 = 0
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3.2. Spline interpolation

This yields to the following functions according to equation 3.23:

pi(x) := ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3

Function Interval

p0(x) = 0� 5 + 0� 6(x+ 1) −1 ≤ x ≤ −0� 5

p1(x) = 0� 8 + 0� 6(x+ 0� 5)− 0� 8(x+ 0� 5)
3 −0� 5 ≤ x ≤ 0

p2(x) = 1� 0− 1� 2x
2 + 0� 8x3 0 ≤ x ≤ 0� 5

p3(x) = 0� 8− 0� 6(x− 0� 5) 0� 5 ≤ x ≤ 1

The diagram of the spline is shown in figure 3.6:

Figure 3.6: Spline interpolation function

We recognize that the spline simulates the original analytic function

y =
1

x2 + 1

very well. The maximum deviation of analytic solution amounts to 0.010244; which

corresponds to 1.68%.
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3.3 Kriging method

A family of special interpolation methods is called Kriging, which tries to handle with

the following problem:

The sampling at a place gives informations for certain spatial points. However it is

unknown which values are available for the data points and values between these points.

Kriging is a method, which makes possible, to compute the value of an intermediate

point or the average over an entire block. The different special methods are all based

on the creation of weighted mean values of the spatial variables. Block estimations are

predominantly necessary in the mining industry, while point estimations are used for

map representations, which is described know.

The individual Kriging methods differ either in the kind of the goal sizes which can be

estimated or in their methodical extension for the inclusion of additional information.

Additional information about the spatial behaviour of a location dependent variable ex-

ists in the cognition of other measurements, which relates to the observed variables. In

hydrogeological practice for instance correlated dissolved matter or temporal repetition

measurements of ground- water pressure head are common.

In a word Kriging methods have the following advantages compared to other interpo-

lation procedures:

• Kriging yields the ”best” estimated value.

• Kriging involves the information of the spatial structure of the variable and the

variogram into the estimation.

• The individual spatial arrangement of the measuring point net is considered with

reference to the interpolation grid.

• The reliability of the results is indicated in form of Kriging error for each esti-

mated point.

Note:

Also in the Kriging method it must be paid attention that no information gain can

be achieved by the mathematical procedures. Only the information content of the

measured values (basic values) is processed. Interpolation results might contradict

physical laws (e.g. ground water contour line in receiving streams). If we want to

get physically correct interpolations, a fine quantized simulation by means of physical

models (e.g. ground-water flow models) is necessary and meaningful. Therefore such

simulation programs offer internal diagram routines for creation of isoline.

Systems Analysis in Water Management PeterWolfgang Gräber



3.3. Kriging method

In order to understand the Kriging procedures, the following terms from the geostatis-

tics must be known:

Mean value m =
1

n

n�

a=1

Za

Expected value E[Z] =

�
z · p(z)dz = m

with p(z) the density function

Variance var(Z) = σ2 = E [(Z − E[Z])2] = E [(Z −m)2]

Covariance of two

random variables Zi�Zj

cov(Zi� Zj) = E [(Zi −mi)(Zj −mj)] = σij

correlations

coefficient

Variogramm

ρij =

γ(�h) =

σij�
σ2

i σ
2
j

1

2
E

��
Z(�x+ �h)− Z(�x)

�2
�

Z is a place dependent random variable with n measured values Za. The density

function p(z) the probability that Z becomes the value zi. By computation of the

inequality of two values, the variogram shows the variability of a random function,

which correspond to points with distance to the vector �h.

Then the Kriging problem can be represented according to figure 3.7:

Figure 3.7: Illustration of a Kriging problem
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We have a number of measured values Z(�xa), whereby Z is a random variable and �xa

is a measuring point of the range D.

We assume then that Z(�xa) is a subset of the random function Z(�x), which has the

following characteristics:

It is a second order stationary function, i.e.:

1. The expected value is constant over the range D: E[Z(�x+ �h)] = E[Z(�x)]

2. The covariance between two points depends only on the vector �h:

cov[Z(�x+ �h)� Z(�x)] = C(�h)

Due to these assumptions we want to compute a weighted mean, in order to get an

estimated value for the place �x0.

The Kriging estimator Z∗(�x0) represents a linear combination of weighted sample values

Zi and n of neighbouring points:

Z∗(�x0) =
n�

i=1

λiZ(�xi) (3.32)

The weights λi are determined in such a way that the estimated value Z
∗(�x0) of the

unknown true value fulfils the following conditions:

1. Z∗[�x0) is unbiased, i.e.: E
∗[Z∗(�x0)− Z(�x0)] = 0

2. The mean square value E[Z∗(�x0)− Z(�x0)]
2 is minimal.

Assume the stationarity is the expected value E[Z(�xi)] = m and Z( �x0) = m. Then the

condition 1. yields:

E

�
n�

i=1

λiZ(�xi)− Z( �x0)

�

=
n�

i=1

λim−m = m(
n�

i=1

λi − 1) = 0 (3.33)

From this follows that the sum of the weights must be one.

With the help of the variogram the expected value of the square error can be expressed:

E [Z∗(�x0)− Z(�x0)]
2 = var (Z∗(�x0)− Z(�x0))

= 2
n�

i=1

λiγ(�xi − �x0)−
n�

i=1

n�

j=1

λiλj(�xi − �xj)− γ( �x0 − �x0)

(3.34)

102



3.3. Kriging method

In order to minimize the error variance of the side condition 1 (
n�

i=1

λi = 1), the La-

grange multiplier µ will be introduced. Then the following function is minimized:

ϕ = var(Z∗(�x0)− Z(�x0))− 2µ

�
n�

i=1

λi − 1

�

We get the minimum by setting of the partial derivative
∂φ

∂λi

, (i = 1� . . . � n) and
∂φ

∂µ
zero.

These yield a linear Kriging equation system (KES) with n+ 1 equations:

n�

j=1

λjγ(�xi − �xj) + µ = γ(�xi − �x0) for i = 1� . . . � n

n�

j=1

λj = 1

In matrix form the KES is written as follows:
�

















γ( �x1 − �x1) γ( �x1 − �x2) . . . γ( �x1 − �xn) 1

γ( �x2 − �x1) γ( �x2 − �x2) . . . γ( �x2 − �xn) 1

...
...

. . .
...

γ( �xn− �x1) γ( �xn − �x2) . . . γ( �xn − �xn) 1

1 1 . . . 1 0



















·

�

















λ1

λ2

...

λn

µ



















=

�

















γ( �x1 − �x0)

γ( �x2 − �x0)

...

γ( �xn − �x0)

1



















In the case of point estimation γ(�xi− �xi) = γ(0) = 0, i.e. the diagonal entries are zero.

Since in the steady case the relationship of γ(�h) = C(0)− C(�h), γ(�h) in the KES can

be substituted by the covariance C(�h). Thus the diagonal of the matrix emerges large

elements. For numerical aspects this is preferable and therefore implemented in most

programs.

The Kriging estimate variance σ2
K for point estimation results from above equations is:

σ2
K = var(Z

∗( �x0)− Z( �x0)) = µ+
n�

i=1

λiγ(�xi − �x0) (3.35)

In a special case, in which no spatial dependence of the data exists, we get the weights

λi =
1

n
. Then the Kriging estimator is the simple arithmetic means of the neighbouring

samples. The following characteristics distinguish the Kriging estimator:
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CHAPTER 3. INTERPOLATION METHODS

• The KES is only solvable if the determinant of the matrix (γij) �= 0. Practically

this means that a sample can not appear twice (i.e. with identical coordinates).

• Kriging yields an accurate interpolator.

• The KES depends only on γ(�h) or C(�h), however not on the values of the variable

Z in the points of sample xi. With identical data configuration the KES only

need to be solved once.

• Confidential limits of the estimation can be indicated under the help of the esti-

mation error σK

In practice a series of Kriging procedures were developed and applied, which regard

more complex situations, e.g. intermittent variable, space time dependence etc.
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3.4 Exercises

Exercises to 3:

Interpolate by means of

• analytical power function

• Lagrange interpolation formula

• Newton interpolation formula

• spline interpolation

1. Given some values of the normal distribution function y(x) = e�x2/2
√

2π
:

x 1� 00 1� 20 1� 40 1� 60 1� 80 2� 00

y(x) = e�x2/2
√

2π
0� 2420 0� 1942 0� 1497 0� 1109 0� 0790 0� 0540

Find the value of y(x) for x = 1� 5.

2. Interpolate the function y=
√
x for the values x = 1� 03 and x = 1� 26 with help

of the following basic values:

x 1� 00 1� 05 1� 10 1� 15 1� 20 1� 25 1� 30

y =
√

x 1� 00000 1� 02470 1� 04881 1� 07238 1� 09544 1� 11803 1� 14017

3. Find a rational function with the degree as low as possible through the supporting

points (1�−2), (2� 3) and (3� 1).

How does this interpolation function change, if another supporting point (4� 4) is

taken into account?

PeterWolfgang Gräber Systems Analysis in Water Management
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