- 1. Calculate the following pH-values:
 - a) Sodiumhydroxide; c(NaOH) = 0,034 mol/L
 - b) Acetic acid, $c(CH_3COOH) = 1,75 \text{ mol/L}$, $pK_a(acetic acid) = 4,7$
 - c) Ammoniumchloride-Solution $c_0 = 0.1 \text{ mol/L}$; pK_b (Ammonium-Ion) = 9,25
- 2. Calculate the solubility of oxygen in Water at a temperature of 10°C ! O_2 -content of air: 20,9 Vol.-%; ambient pressure: 1,03 bar; $H(O_2) = 1,674 \text{ mol} \cdot \text{m}^{-3} \cdot \text{bar}^{-1} (10^{\circ}\text{C}); M(O) = 16 \text{ g/mol}$
- 3. Calculate the concentrations of Hg^+ and $CO_3^{2^-}$ in a saturated mercurycarbonate solution in mol/L! pK_{SP} (Hg_2CO_3)=16,04 , pK_{SP} = IgK_{SP}
- 4. The solubility of Cd^{2+} in a water is determined by the solubility of $Cd(OH)_2$. At what pH is the cadmium concentration equal to 0,04 mmol/L? How does the cadmium concentration change at pH-values that are lower than the calculated one? $pK_{SP}(Cd(OH)_2)=13,8$
- 5. Pure water should be produced from a 0,5 molar NaCl-solution at 25°C by reverse osmosis. What pressure has to be applied?

 Gas constant R = 0,083145 bar·L·mol⁻¹·K⁻¹
- 6. The redox intensity of a water is $p\varepsilon = 9$ at pH = 5. In equilibrium, what is the ratio of $c(NO_3^-)/c(NH_4^+)$ in this water? The redox system NO_3^-/NH_4^+ is defined as:

$$NO_3^- + 10 H^+ + 8 e^- \Rightarrow NH_4^+ + 3 H_2O$$
 | Ig K = 121,12

- 7. a) Regarding the chemical deacidification process what is the difference between the two different kinds of filter materials used in the practical?
 - b) Explain the pH-value of the untreated raw water with the help of reaction equation(s)!
 - c) Explain how the total hardness of the samples was measured!

- 1. Calculate the following pH values
- a) Nitric acid; w(HNO₃)= 0,2; M(HNO₃)=63 g/mol; $\rho(H_2O)=1$ g/cm³
- b) Acetic acid, $c_0 = 0.5 \text{ mol/L}$, $pK_A(Acetic acid) = 4.7 [1.5P]$
- c) Sodium carbonate (Na₂CO₃) solution, $c_0 = 0.5 \text{ mol/L}$, $pK_B(CO_3^{2-}) = 3.7$, only the reaction of carbonate to hydrogen carbonate is relevant
- 2. Calculate the equilibrium concentration of CO_2 in mg/L for percolating water that is in contact with soil-air at 10 °C. The partial pressure of CO_2 in soil air is 50 times higher than in the atmosphere.

 CO_2 in the atmosphere: 0,035 Vol.-%, total pressure: 1 bar $H(CO_2) = 52,47 \text{ mol m}^{-3} \text{ bar}^{-1}$ (10 °C), $M(CO_2) = 44 \text{ g/mol}$

- 3. A surface water has a total hardness of 4.5 mmol/L. The total equivalent concentration of anions is 11.8 mmol/L. Calculate the sum of the molar concentrations of sodium and potassium.
- 4. A lake has a sediment containing PbCO₃ which is in dissolution equilibrium at pH 10. How does the lead concentration change when the pH changes to 9? Discuss with the help of a reaction equation!
- 5. The dissolution exponent pK_L ($pK_L = -lgK_L$) of $Fe(OH)_3$ is 37,4. Calculate the molar solubility of $Fe(OH)_3$ and the molar concentrations of Fe^{3+} and OH^- in the saturated solution.
- 6. The redox intensity of a waster is $p\epsilon = -3$ at pH = 8. What is the ratio of $c(SO_4^{2-})/c(HS^-)$ (in equilibrium) in this water? For the redox system $c(SO_4^{2-})/c(HS^-)$ is: $SO_4^{2-} + 9 H^+ + 8 e^- \rightleftharpoons HS^- + 4 H_2O$; lgK = 34
- 7. A groundwater has an Saturation index of -1.7. After the filtration over marble the index increases to 0.1. Give a short explanation of these values and formulate the overall equation of calco-carbonic equilibrium. What is the general name of this process step in drinking water treatment?
- 8. Draw a diagram with the relative concentration (fraction of 100%, y-axis) of Ammonium (NH_4^+) und Ammoniac (NH_3) relative to pH (x-Axis).

$$NH_4^+ \rightleftharpoons NH_3 + H^+; pK_S = 9,25$$