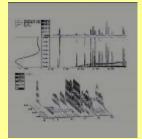
Vorlesung Wasseranalytik 2016 - 2017

Dr. Hilmar Börnick

Neubau Chemie/Hydrowissenschaften, Zimmer 260 (Südflügel)

Tel.: 463-35616


E-mail: hilmar.boernick@tu-dresden.de

Wichtige Zeitschriften (Auswahl)

Journal of Chromatography A and B Water Research

Chromatographia Chemosphere

Analytical Chemistry Water Science & Technology

The Analyst Environmental Science & Technology

Analytica chimica acta Applied and Environmental Microbiology

Analytical Letters gwf Wasser Abwasser

Analysis Vom Wasser

Analytical Abstracts International J. of Environ. and Analyt. Chemistry

Electroanalysis Environmental Toxicology and Chemistry

Journal of Mass Spectrometry Journal of Contaminant Hydrology

Journal of High Resolution Chrom. (Acta hydrochimica et hydrobiologica)

Trends in Analytical Chemistry

Laborpraxis

Journal of Liquid Chromatography and Rel. Technology

Journal of Chromatography Science

Fresenius Journal of Analytical Chemistry (jetzt: Analytical and Bioanalytical Chemistry)

. . .

Allgemeine Literatur

Hütter, L. A.: Wasser und Wasseruntersuchungen: Methodik, Theorie und Praxis chemischer, chemisch-

physikalischer, biologischer und bakterieller Untersuchungsverfahren.

(Weinheim: VCH)

Rump, H. H.: Laborhandbuch für die Untersuchung von Wasser, Abwasser und Boden.

(Weinheim:VCH)

Hellmann, H.: Analytik von Oberflächenwässern.(Stuttgart: Thieme)

Quentin, K.-E.: Trinkwasseruntersuchung und die Beurteilung von Trink- und Schwimmbadewasser.

(Berlin: Springer)

Klee, O.: Wasser untersuchen: einfache Analysenmethoden und Beurteilungskriterien.

(Heidelberg: Quelle und Meyer)

Kölle, W. Wasseranalysen – richtig beurteilen (Weinheim: Wiley-VCH)

Otto, M.: Analytische Chemie. (Weinheim, VCH)

Schwedt, G.: Analytische Chemie. Grundlagen, Methoden und Praxis. (Stuttgart: Thieme)

D.A. Skoog,

J.J. Leary: Instrumentelle Analytik. (Springer)

G. W. Ewing: Instrumental Methods of Chemical Analysis. (McGraw-Hill)

K.-D. Selent,

A. Grupe: Die Probenahme von Wasser. (Oldenbourg Verlag)

. . .

Chemisch-analytische Erfassung von Wasserinhaltsstoffen

Präanalytische Schritte

Hinweisuntersuchungen:

Geruch

Färbung

Durchsichtigkeit

Trübung

Sichttiefe

Besonderheiten (Umgebung)

Ortsbesichtigung, Probenahme, Transport, **Probenvorbereitung:**

Konservierung

Trennverfahren, clean-up

Aufschluss

Anreicherung

Überführung in die Bestimmungsform

Physikalisch-chemische Analysenverfahren

Anorganische Wasserinhaltsstoffe

Klassische Meth.:

- Gravimetrie
- Volumetrie
- Kolometrie

Instrumentelle Meth.:

- Photometrie
- Spektrometrie
- Elektroanalytische Verfahren

Organische Wasserinhaltsstoffe

Summen- und Gruppenparameter

- AOX, TN, AOS, IOS, CSB, BSB, DOC, SAK
- spezielle Verfahren

Einzelstoffanalytik

(Trennung und Detektion)

- HPLC. DC
- SFC
- Gaschromatographie
- Elektrophorese

Spezielle / weitere analytische Verfahren

- chemische/biochemische Sensoren
- Schnelltests; Immunoassays; mikrobiologische Methoden
- radiometrische Untersuchungsmethoden

Grundlagen der Qualitätssicherung

Chemisch-analytische Erfassung von Wasserinhaltsstoffen

Präanalytische Schritte

Hinweisuntersuchungen:

Geruch

Färbung

Durchsichtigkeit

Trübung

Sichttiefe

Besonderheiten (Umgebung)

Ortsbesichtigung, Probenahme, Transport, Probenvorbereitung:

Konservierung

Trennverfahren, clean-up

Aufschluss

Anreicherung

Überführung in die Bestimmungsform

Physikalisch-chemische Analysenverfahren

Anorganische Wasserinhaltsstoffe

Klassische Meth.:

- Gravimetrie
- Volumetrie
- Kolometrie

Instrumentelle Meth.:

- Photometrie
- Spektrometrie
- Elektroanalytische Verfahren

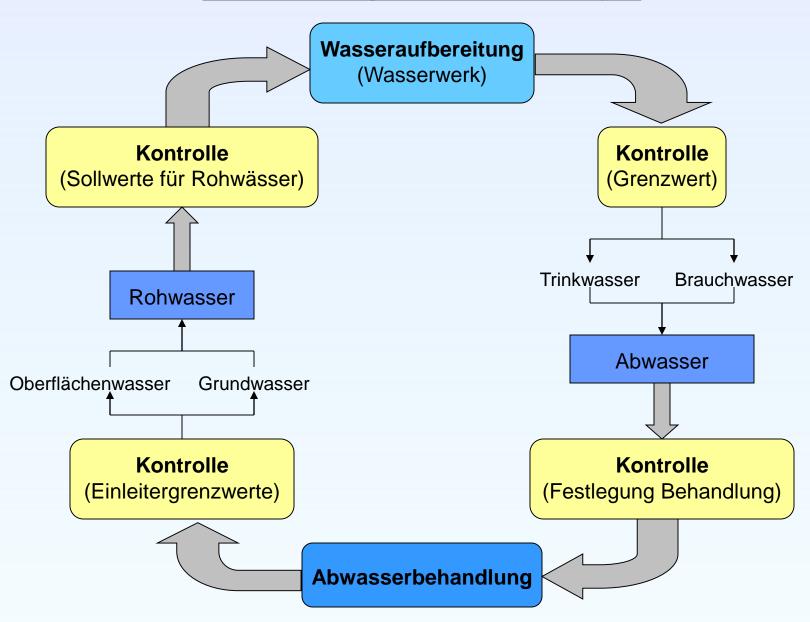
Organische Wasserinhaltsstoffe

Summen- und Gruppen- parameter

- AOX, TN, AOS, IOS, CSB, BSB, DOC, SAK
- spezielle Verfahren

Einzelstoffanalytik

(Trennung und Detektion)


- HPLC. DC
- SFC
- Gaschromatographie
- Elektrophorese

Spezielle / weitere analytische Verfahren

- chemische/biochemische Sensoren
- Schnelltests; Immunoassays; mikrobiologische Methoden
- radiometrische Untersuchungsmethoden

Grundlagen der Qualitätssicherung

Wassernutzungskreislauf und Analytik

Besonderheiten der Wasseranalytik

Vielzahl von Wasserinhaltsstoffen

belasteter Fluss: bis 10⁶ Stoffe in relevanten Konzentrationen

keine "vollständige Wasseranalyse" möglich!!

Wichtigkeit von Vorinformationen, problemorientierten Analysen

"Zuckerwürfelbeispiel" zur Veranschaulichung unterschiedlicher Konzentrationsbereiche

	0,27 Liter	1 Prozent ist 1 Teil von hundert Teilen	10 Gramm pro Kilogramm	10 g/kg
	2,7 Liter	1 Promille ist 1 Teil von tausend Teilen	1 Gramm pro Kilogramm	1 g/kg
ein	2.700 Liter	1 ppm (part per million) ist 1 Teil von 1 Million Teile	1 Milligramm pro Kilogramm	10 ⁻³ g/kg
Zucker- würfel aufge- löst in	2,7 Mio. Liter	1 ppb (part per billion) ist 1 Teil von 1 Milliarde Teile (billion = amerik. für Milliarde)	1 Mikrogramm pro Kilogramm	10 ⁻⁶ g/kg
	2,7 Mrd. Liter	1 ppt (part per trillion) ist 1 Teil von 1 Billion Teile (trillion = amerik. für Billion)	1 Nanogramm pro Kilogramm	10 ⁻⁹ g/kg
	2,7 Bio. Liter	1 ppq (part per quadrillion) ist 1 Teil von 1 Billiarde Teile (quadrillion = amerik. für Billiarde)	1 Picogramm pro Kilogramm	10 ⁻¹² g/kg

Besonderheiten der Wasseranalytik

Vielzahl von Wasserinhaltsstoffen

belasteter Fluss: bis 10⁶ Stoffe in relevanten Konzentrationen keine "vollständige Wasseranalyse" möglich!!
Wichtigkeit von Vorinformationen, problemorientierten Analysen

Auftreten dieser Stoffe in stark unterschiedlichen Konzentrationsbereichen

Störungen, oft keine direkte Bestimmung möglich

Die Auswahl der Methode richtet sich auch nach dem zu erwartenden Konzentrationsbereich

Methode	Mess-(Arbeits-)bereich in g/L									
	10-1	10-2	10 ⁻³	10-4	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷	10 ⁻⁸	10 ⁻⁹	10 ⁻¹⁰
Gravimetrie										
Titrimetrie										
Elektrogravimetrie										
Potentiometrie										
Voltametrie										
Photometrie										
Chromatographie + Detektor										
Atomspektrometrie										
Fluorimetrie										

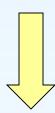
Besonderheiten der Wasseranalytik

Vielzahl von Wasserinhaltsstoffen

belasteter Fluss: bis 10⁶ Stoffe in relevanten Konzentrationen keine "vollständige Wasseranalyse" möglich!!
Wichtigkeit von Vorinformationen, problemorientierten Analysen

Auftreten dieser Stoffe in stark unterschiedlichen Konzentrationsbereichen

Störungen, oft keine direkte Bestimmung möglich


Qualitative und quantitative Veränderlichkeit der Wasserinhaltsstoffe

Fehler bei Analytik durch Mehr- oder Minderbefund

$$\frac{d[WIS]}{dt} = f(n \text{ Einflussgößen})$$

n: hoch, unbekannt

Einflussgrößen: z. B. Temperatur, Lichtverhältnisse, Redoxpotential, Anzahl und Art vorherrschender Mikroorganismen, Schwebstoffgehalt, andere Wasserinhaltsstoffe, Art Phasengrenzflächen

- **Schlussfolgerung:** Zeit zwischen Probenahme und Analyse möglichst kurz halten;
 - Einflussgrößen so wählen, dass Stoffe bei Transport/Aufbewahrung nicht verändert werden

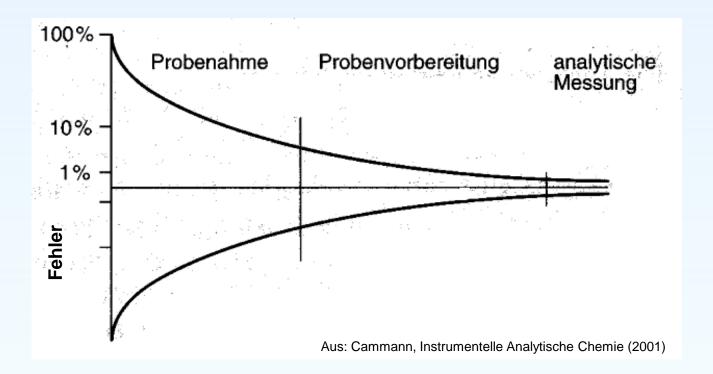
Untersuchungsmatrices in der Wasseranalytik

Wassermatrix	Besonderheiten
Oberflächenwasser fließende Gewässer	 Zusammensetzung stark schwankend hoher Huminstoffanteil, Schwebstoffe
stehende Gewässer Meerwasser	 TOC (Total Organic Carbon): 2 – 20 mg/L (Meerwasser: 0,3 – 2 mg/L) ca. 35 g/L NaCl im Meerwasser
Grundwasser	 tiefere Grundwasser sind sauerstoffarm, reduzierend und Fe²⁺ und Mn²⁺ -haltig TOC: 0,4 – 10 mg/L
Niederschlagswasser	 5 – 15 mg/L organische Stoffe geringer Mineralstoffgehalt, i. a. schwach gepuffert und niedriger pH-Wert
Abwasser	- TOC: 100 >1000 mg/L
industriell häuslich	 starke Schwankungen, hohe Stoffvielfalt in verschiedensten Konzentrationen hoher Feststoff-, Stickstoff- (als NH₄+ und organisch gebunden) und Phosphatgehalt
Brauchwasser/Betriebswasser	- Qualität abhängig von Art der Nutzung
Trinkwasser	- TOC: 0,5 – 3 mg/L
Reinstwasser	- TOC: 10 – 200 μg/L
Schwimmbeckenwasser	- 0,3 – 0,6 mg/L freies Chlor
Mineral- und Heilwasser	- relativ hoher Salz- und Gasgehalt
Bodenmaterial	- Extraktion/Aufschluss notwendig
Schwebstoff	- Extraktion/Aufschluss notwendig
Sediment	- repräsentative Probenahme erforderlich

Beispiel für ein genormtes Ablaufprogramm einer analytischen Untersuchung

Gliederung und Inhalt der DIN 38407, Teil 8

"Bestimmung von 6 polycyclischen aromatischen Kohlenwasserstoffen (PAK) in Wasser mittels Hochleistungs-Flüssigkeitschromatographie (HPLC) mit Fluoreszenzdetektor"


Ab	schnitt	Inhalt				
1.	Allgemeine Angaben	Verbreitung der PAK in der Umwelt				
2.	Anwendungsbereich	Bestimmungsgrenzen und Struktur der nach diesem Verfahren zu bestimmenden PAK				
3.	Normative Verweisungen	Hinweis auf Normen, die bei der Bestimmung berücksichtigt werden müssen				
4.	Grundlage des Verfahrens	Kurze (!) Erläuterung des Verfahrensablaufs				
5.	Störungen	Verweis auf Störungen bei Probenahme, Extraktion und HPLC-Bestimmung				
6.	Bezeichnungen	Verfahren DIN 38407-F8				
7.	Geräte	Bezeichnung und Arbeitsbedingungen für Geräte				
8.	Chemikalien	Arbeitsanweisung für Extraktion, Anreicherung und HPLC-Bestimmung				
9.	Probenahme	Ablauf der Probenahme und Hinweis auf einzuhaltende Normen				
10.	Durchführung	Arbeitsanweisung für Extraktion, Anreicherung und HPLC-Bestimmung				
11.	Kalibrierung	Aufstellung von Bezugsfunktion und laborinterner Wiederfindungsrate				
12.	Blindwertmessung	Kontrolle des einwandfreien Zustands der Geräte und Chemikalien				
13.	Auswertung	Gleichungen zur Bestimmung der Massenkonzentration in der Wasserprobe				
14.	Angaben der Ergebnisse	Messergebnisunschärfe, Umrechnungsfaktoren, zu verwendende Einheiten				
15.	Analysenbericht	Enthält Ablaufprotokoll sowie sämtliche Abweichungen von Standardverfahren				
16.	Verfahrenskenndaten	Wiederfindungsrate, Standardabweichung etc. ermittelt durch einen Ringversuch				

Genauigkeitsanforderungen an Analysenverfahren in Abhängigkeit von der analytischen Fragestellung

Fragestellung	Erforderliche Qualität des Analysenverfahrens	
Ist der Stoff vorhanden oder nicht?	Ja/Nein-Entscheidung (Orientierungstest)	
In welchem Konzentrationsbereich ist die betreffende Substanz vorhanden?	Orientierungstest mit entsprechender Abstufung der angezeigten Konzentrationsbereiche	
Liegt die Konzentration weit unterhalb eines zu überprüfenden Grenzwertes?	Keine hohe Präzision des Analysenergebnisses erforderlich (Orientierungstest, Feldmethoden)	
Ist ein Grenzwert überschritten?	Hohe Genauigkeit (Präzision und Richtigkeit) des Analysenergebnisses (Referenzverfahren, Laborvergleichsverfahren)	
In welcher Konzentration ± Vertrauensbereich liegt der interessierende Inhaltsstoff in der Probe vor?	Hohe Genauigkeit (Präzision und Richtigkeit) des Analysenergebnisses; ist Rechtsmittelfestigkeit erforderlich, nur Referenzverfahren; oder Laborvergleichsverfahren, andernfalls auch sonstige Analysenverfahren mit sichergestellter Zuverlässigkeit	

Fehlereinfluss bei der Probenahme

$$\sigma_{Gesamt}^2 = \sigma_{Probenahme}^2 + \sigma_{Probenvorbe eitung}^2 + \sigma_{Messung}^2$$

Probenahme

Allgemein:

- Fehler der Probenahme durch exakte Analyse nicht kompensierbar
- Art der Probenahme richtet sich nach Problemstellung
- Probenehmer: qualifiziertes bzw. eingewiesenes Personal
- Entnahmetiefe: abhängig von Homogenität des Gewässers
- > Art: Einzel-/Stichprobe oder Misch-Sammel-/Durchschnittsprobe, tiefen-/flächenintegriert
- Wichtig Probenahmeort: Fließgewässer (Fahnenbildung), Seen (Schichtung, Zuflüsse)
- > Abstand zwischen einzelnen Probenahmestellen
- spezielle Probenahmegeräte
- > Gefäßmaterialien zur Probenahme und Transport/Aufbewahrung
- Randbedingungen aufzeichnen (Temperatur, Durchfluss, Tages- und Jahreszeit, Wasserstand)
- > exaktes **Probenahmeprotokoll**, Beschriftung der Gefäße
- Besonderheiten bei **Probenahme aus Zapfhähnen/Brunnen** (Behälter, Grundwasserpumpen, Leitungen, Anlagen); Grundwasser reduzierende Bedingungen!
- Emission Leitungsrohre: Stagnation? 8 24 h stehen lassen, erste Anteil als Probe nehmen
- > Schwebstoffprobenahme: große Volumina (bis 100 L), Nutzung z. B. von Durchflusszentrifugen
- Sediment, Boden: Problem repräsentativer Entnahme

Neu!

Besonderheiten

Stehende Gewässer (DIN 38402-12)

- zumeist starke vertikale Inhomogenitäten (Wasseroberfläche Lichteinfluss, Photosynthese, Gasaustausch …; Sedimentnähe – Verfrachtung, Ausfällung, Sedimentation …; Temperatursprungschicht …)
- tiefengestaffelte Probenahme, Einsatz von Messsonden (Temperatur, O₂, LF, Trübung, Chlorophyll/Fluoreszenz ...)
- die z.T. erhebliche jahres-/tageszeitlichen Schwankungen berücksichtigen
- > horizontale Inhomogenitäten bei aus mehreren Teilbassins bestehenden Gewässern wahrscheinlich

Fließgewässer (DIN 38402-15)

- > mind. 2 Proben bei Einleitung/Zufluss: 1 x oberhalb, 1 x unterhalb nach vollständiger Durchmischung
- Fließstrecke in m, nach der eine 99%ige Durchmischung bei Einleitung/Zufluss erfolgt:

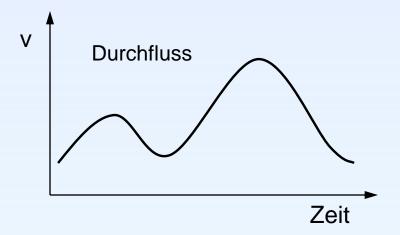
$$L = \frac{0,13b^2 \times c(0,7c + 2\sqrt{g})}{g \times d}$$

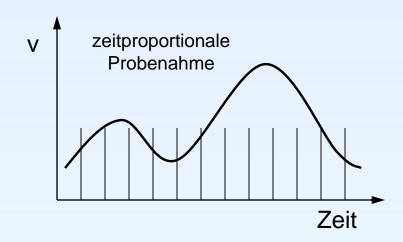
- b: mittlere Breite des Abschnitts [m]
- c: Chezy-Koeffizient des Abschnitts, von 15 (rauer Untergrund, schnell/turbulent) bis 50 (langsam fließend, glatter Untergrund) [m^{1/2}/s]
- g: Erdbeschleunigung [m/s²]
- d: mittlere Tiefe des Abschnitts [m]

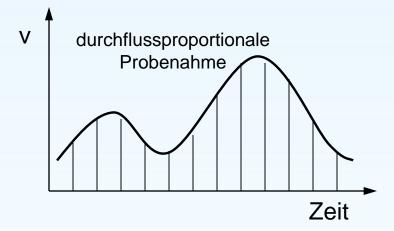
Neu!

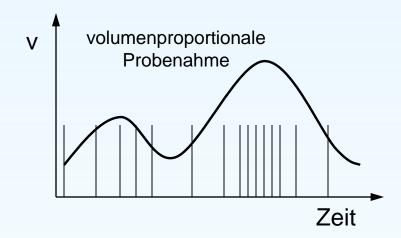
Fließgewässer (DIN 38402-15)

- Kontamination der Probe durch Aufwirbelung von Sediment vermeiden
- > i.d. Regel Probenahme von Oberflächenschichten / -filmen vermeiden
- Probeflasche mehrfach mit Probewasserspülen
- Entnahme möglichst im Strömungsbereich (Fragestellung wichtig)
- **>** ..


38402, weitere Normen:

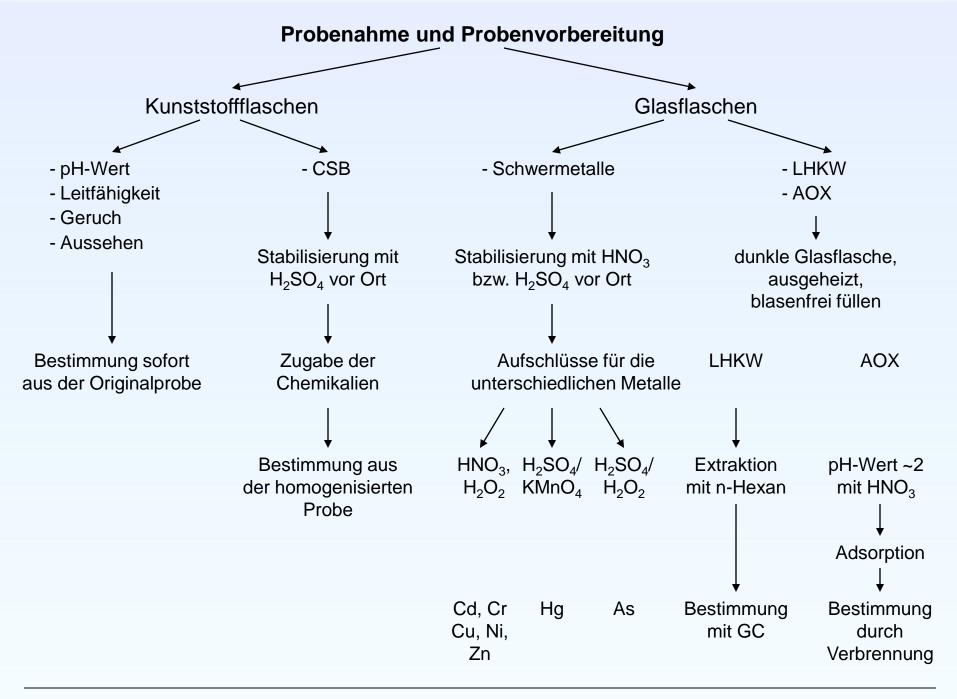

- -11: Probenahme von Abwässern
- -13: Probenahme aus Grundwasserleitern
- -16: Probenahme aus dem Meer
- -17: Probenahme von fallendem, nassen Niederschlag ...
- -18: Probenahme von Wasser aus Mineral- und Heilquellen
- -19: Probenahme von Schwimm- und Badebeckenwasser
- -24: Anleitung zur Probenahme von Schwebstoffen


. . .



Bildquelle: http://www.vsr-gewaesserschutz.de

Beispiele für Probenahmesysteme


van Veen Bodengreifer

Ruttner-Schöpfer

Sedimentstecher

Demo: www.uwitec.at/html/corer.html

Konservierung

- notwendig, um Veränderungen der Analyten zwischen Probenahme und Analyse zu vermeiden bzw. zu vermindern (entfällt bei Feldmessungen)
- Ursache für Veränderungen: chemische Reaktionen/Einwirkung von Mikroorganismen/Adsorption/physikalischer Austrag
- Probenkonservierung muss in Anpassung an die vorgesehene Bestimmung erfolgen
- sollen bei der Wasserprobe verschiedenen Parameter bestimmt werden, müssen diverse Konservierungsmaßnahmen in getrennten Behältern durchgeführt werden
- Hinweise zur Konservierung von 75 chemischen und mikrobiologischen Parametern gibt
 DIN 38402-A21
- Konservierungsmaßnahmen sind exakt zu dokumentieren

Art der Konservierung/Konservierungsmittel	zu konservierender Parameter
Zugabe von Chloroform (!), Silber-, Quecksilberionen, Natriumazid und anderen Bioziden; Autoklavieren	Verhinderung Abbau, allgemein bei Untersuchungen von abbaubaren organischen Wasserinhaltsstoffen (besonders im Spurenbereich) bzw. DOC-Messungen, nicht bei BSB- und Toxizitätsmessungen
Zugabe von Mn²+ und NaOH	Fixieren von gelöstem Sauerstoff als höherwertige Manganoxidhydrate
Abgedunkelte Aufbewahrung bei 4 °C	Freies Chlor, organische Wasserinhaltsstoffe (kurzzeitiger Transport/Lagerung)
Einfrieren (-18 °C)	Organische Wasserinhaltsstoffe, instabile Anionen
Zugabe HNO ₃ und Stabilisierungsmittel (Dichromat)	Quecksilber
Zugabe von Säuren (z. B. HCl, HNO ₃) pH <= 2	Schwermetallionen, NH ₄ +, Gesamtstickstoff
HNO ₃	AOX, POX
2,2'-Bipyridin	Eisen(II)
Alkalisieren auf pH 11	Cyanide
NaOH	Phenole
Cadmium- oder Zinkacetat	Schwefelwasserstoff, Sulfid
Membranfiltration (Porendurchmesser 0,45 oder 0,2 μm)	Verminderung Abbauprozesse

<u>Hinweisuntersuchung</u>

Bedeutung:

 Vorinformation über ein mögliches Vorhandensein bestimmter Stoffe und grobe Abschätzung ihrer Konzentration (z. B. Phenolgeruch ab ca. 0,1 mg/L bzw. Chlorphenole ab ca. 1 µg/L wahrnehmbar)

1. Geruch/(Geschmack)

Prüfung auf Geruch und Geschmack: B1/2; Bestimmung des Geruchs- und Geschmacksschwellenwerts (TON bzw. TFN): DIN EN 1622, B3

- besondere Bedeutung bezüglich Trinkwasseruntersuchung
- empfindlich! (s. o.), ca. 10 x höher als Geschmack
- Einfluss Umgebungsluft beachten!
- quantitative Beurteilung über Geruchsschwellenwert (Verdünnung des Probewassers a mit geruchsfreiem Wasser b)

$$GSW = \frac{a+b}{a}$$

 Flasche vor Geruchsprobe spülen, halbvoll füllen, kräftig schütteln, wiederholen

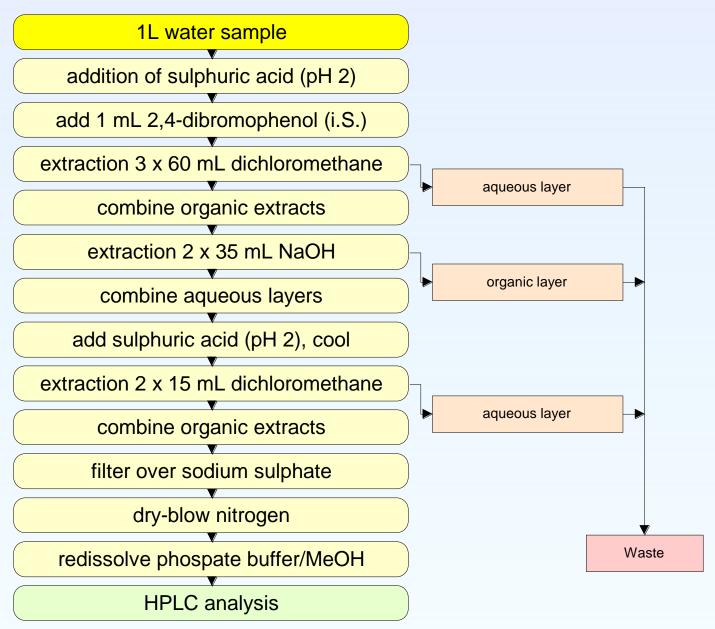
Art des Geruchs	Hinweis auf		
metallisch	z. B. eisenhaltiges Grundwasser		
erdig	z. B. Blaualgen		
fischig	z. B. Kieselalgen, aliphatische Amine		
aromatisch	wasserblütenbildende Mikroorganismen		
grasartig	wasserblütenbildende Mikroorganismen		
modrig	stark verschmutztes Wasser		
faulig	H ₂ S (Sulfatreduktion)		
jauchig	sehr stark verschmutztes Wasser		
nach bestimmten chemischen Stoffen	Chlor, Ammoniak, Teer, Phenole u. a.		

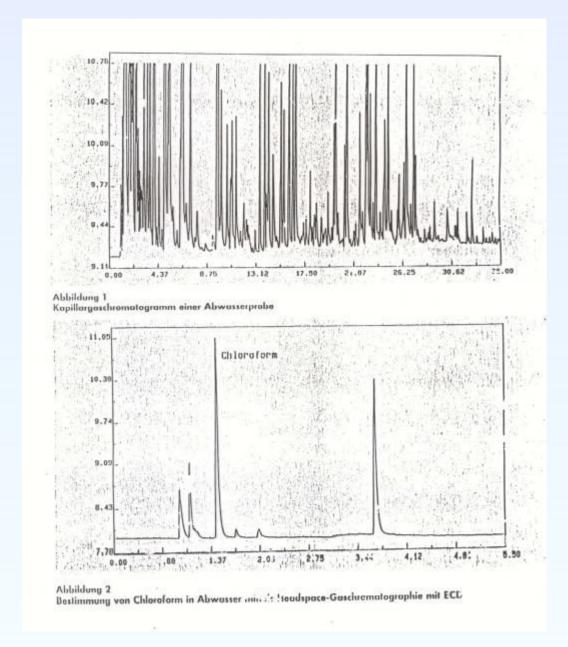
2. Färbung (DIN 28404-C1)

Definition: Als Färbung eines Wassers bezeichnet man dessen optische Eigenschaft, die spektrale Zusammensetzung des sichtbaren Lichtes durch Absorption zu verändern (bewirkt durch Wasserinhaltsstoffe).

- Unterteilung in wahre/visuelle F\u00e4rbung, Einfluss Schwebstoffe auf Farbe
- Oberflächenwässer häufig gelbbraun Ursache Huminstoffe, Eisen
- quantitative Erfassung der "Färbung": photometrische Bestimmung bei
 436 nm (Vergleichbarkeit, TVO: 0,5 m⁻¹) auch 525, 620 nm (sichtbarer Bereich)
- vorab Membranfiltration (0,45 μm); Einheit: m⁻¹

3. Trübung/Sichttiefe (EN ISO 7027)


Definition: Als Trübung eines Wassers bezeichnet man dessen Eigenschaft, eingestrahltes Licht zu streuen bzw. die Verringerung der Durchsichtigkeit von Wasser, verursacht durch die Gegenwart von feindispersiven, suspendierten Teilchen.


- Erfassung von Sand-, Lehm- und Tonpartikeln sowie von Bakterien und anderen Mikroorganismen (ca. 10⁻⁷ bis 10⁻¹⁰ m⁻¹ Teilchendurchmesser)
- Formen: Messung der Schwächung der durchgehenden Strahlung (hohe Trübung);
 Streulichtmessung, (Streuwinkel 90°); Messung der vorwärts gestreuten Strahlung (Streuwinkel 0°), jeweils 860 nm
- Bezugssystem: Formazin-Standardsuspension (wasserunlösliches Polymer)

"Vor-Ort"-Untersuchungen

Temperatur	- Wasser- und Lufttemperatur messen
	- besonders wichtig bei der Analytik mikrobiell abbaubarer Stoffe
pH-Wert	- die elektrometrische Bestimmung ist vorzuziehen
	- je Messtag mit 2 Puffern neu kalibrieren und kontrollieren
Sauerstoff und andere gelöste Gase	 elektrometrische (Feldgerät mit Akku) oder nach WINKLER (Konservierung und Messung im Labor)
	- Löslichkeit 9,1 mg/L O ₂ (18 °C)
Leitfähigkeit	- Summenmethode (Gesamtmineralstoffgehalt)
	- keine Aussage über Art und Menge einzelner Ionenspezies
Redoxpotential	- Summe aller Redoxsysteme in einem Wasser
	- Redoxwerte bestimmen chemische und biologische Prozesse
	- abhängig u. a. von der Temperatur und vom pH-Wert
Absetzbare Stoffe	- sofort zu messen, da sonst Fehler durch Ausflockung
	 IMHOFF-Trichter mit 1 L Wasserprobe füllen, nach 60 bzw. 120 Minuten abgesetztes Volumen bestimmen

Analysis Flow Chart (Determination of Phenols)

Analyse von Chloroform im Abwasser – Bedeutung der Wahl der Analysenmethode

Probenvorbereitung in der Wasseranalytik

- umfasst alle Schritte nach der Probenahme bis zum eigentlichen Bestimmungsverfahren
- innerhalb des analytischen Gesamtverfahrens am höchsten fehlerbehaftet
- die direkte Anwendung hochentwickelter Analysentechniken kaum möglich, da:
 - die Konzentration der Analyten unter den Nachweis- und Bestimmungsgrenzen des Analysenverfahrens liegt (Anreicherung)
 - Störverbindungen in der Probe eine Bestimmung der Analyten verhindern bzw. eine Schädigung des analytischen Systems verursachen (Matrixabtrennung)
 - der chemische oder physikalische Zustand der Probe nicht für die direkte Bestimmung geeignet ist (Derivatisierung)
 - die zu bestimmenden Stoffe nicht homogen in der Probe verteilt sind (Verkleinern, Mahlen, Ultraschallbehandlung)

> Beispiele für Probenvorbereitungsschritte:

Filtration/Zentrifugation Anreichern

pH-Einstellung Umkristallisieren

Chemikalienzusatz Lösen

Aufschluss Trennen, Clean-up

Derivatisierung ...

Vorlesungsschwerpunkte Probenvorbereitung

- > Filtration
- Aufschlussmethoden
- Anreicherung
- Probenaufbereitung/Clean-up
- > Flüssig-Flüssig-Extraktion
- > Festphasenextraktion
- Mikrofestphasenextraktion
- Headspace- / "Purge and Trap" Verfahren
- Derivatisierung

Probenvorbereitung Spurenanalytik

Aufkonzentrieren/Abtrennen von Störkomponenten

Headspace-Technik Flüssig-Flüssig-(Fest)-Extraktion

Festphasen-Extraktion

SPME

- statische HS
- dynamische HS (CLSA)
- Ausschütteln
- Perforieren
- Soxhletextraktion
- polare E.
- unpolare E.
- Ionenaustausch-E.
- Ionenpaar-E.
- Größenausschluss-E.

- in der Gasphase
- in der Lösung

- leichtflüchtigeStoffe (LHKW,Lösungsmittel)
- mittel- bis unpolare Stoffe (Nitroaromaten, PAK)
- polare bis unpolare
 Stoffe, Ionen (z. B.
 PSMBP, Phenole,
 Amine)
- flüchtige Stoffe (Geruchsstoffe, BTEX-Aromaten)

GC / HPLC / DC / CE

Filtration

- Frage nach Notwendigkeit (Verluste, Kontamination)
- nach Möglichkeit "Vor-Ort" (Adsorption an Schwebstoffe zeitabhängig)
- organische Spurenanalytik: Glasfaserfilter vorteilhaft (Rückhaltevermögen: 0,5 μm)
- Membranfilter (z. B. Zellulose-Acetat) stärkeres Rückhaltevermögen (Porendurchmesser: < 0,2 μm), aber Adsorption möglich, z. T. sehr zeitaufwendig</p>
- Alternative: Zentrifugation
- Analysenprotokoll: unbedingt Porendurchmesser und Material angeben
- zur Feststellung von Verlusten: Wiederfindungsversuche mit Standards
- > nach Filtration Filtrat **und** Filterrückstand untersuchen

<u>Aufschlussverfahren</u>

> Definition:

- Überführung schwerlöslicher Substanzen in säure- und wasserlösliche (ionogene) Substanzen
- ein Aufschluss ist mit einer chemischen Veränderung der Ausgangssubstanz verbunden
- Systematik nach Phasenzustand des Aufschlussmittels

Schmelzaufschluss	Nassaufschluss	Trockenaufschluss	Verbrennungsaufschluss
offen oder im Druckgefäß	z. B. Solubilisierung, Druckaufschluss, UV-Aufschluss	in offenen Gefäßen	z. B. spezielle Apparaturen mit Sauerstoffstrom, Kalt-Plasma- Veraschung

Auswahl Aufschlussverfahren nach:

- Probenmenge
- Art der Analyten
- Konzentration
- Art der Matrix
- Art der Bestimmungsmethode
- geforderte Genauigkeit
- Zeitaufwand
- für Spurenanalytik mit hohen Genauigkeitsanforderungen ist die Arbeit in geschlossenen Systemen vorzuziehen
- für möglichst vollständigen Aufschluss hohe Temperatur, Zeitdauer von mehreren Stunden
- > Absicherung durch Standardreferenzmaterialien (über Gesamtverfahren!)
- Aufschlüsse haben größere Fehlerquellen als reine Lösungsvorgänge:
 - Kontamination durch Reagentien
 - Kontamination durch Luftbestandteile
 - Kontamination durch Gefäßwandungen und Hilfsmittel
 - Verlust durch Adsorption
 - Verlust durch Verflüchtigung

Flüchtige Spurenelemente beim Aufschluss mit Säuremischungen

HCI: Hg, B, Si, Ge, Sn, As, Sb, Se, Re

HCI + HNO₃ : Ge, Se, Hg

HNO₃ : Se, Hg, Rn

HCIO₄ : Se, Hg, Cr, Re, Rn, Os

HF + HClO₄ : B, Si, Ge, As, Sb, Mn, Re, Se, Cr

 $HF + HNO_3$: Se, Cr

<u>Anreicherung (Vorkonzentrierung)</u>

- Erhöhung der Stoffmengenkonzentration in einer meist flüssigen Phase
- Erhöhung des Massenverhältnisses Spurenkomponente (Analyt) / Matrix
- Anreicherungsfaktor:

$$F = \frac{c_i(\text{Konzentrat})}{c_i(\text{Ausgangspibbe})}$$

- Wiederfindung (recovery):
$$R_S = \frac{Q_S}{Q_{S,0}} \cdot 100 \%$$

[= Maß für Verlust/Fehler bei der Probenvorbereitung]

Anreicherung

absolute Anreicherung

Spurenstoff wird aus dem großen Volumen in ein geringeres einer anderen Phase überführt [z. B. Flüssig-Flüssig-Extraktion]

relative Anreicherung

Erhöhung der Stoffmengenkonzentration ohne Phasentransfer der Spurenstoffe infolge partieller Entfernung der Matrix [z. B. Eindampfen]

Phasenübergang der Analyten		Phasenübergang der Matrix
1.	gasförmig-flüssig [Absorption von Gasen in Flüssigkeiten]	 flüssig-gasförmig [Eindampfen, Einengen]
2.	gasförmig-fest [Adsorption]	2. flüssig-flüssig [Elektroosmose]
3.	flüssig-gasförmig [Headspace]	3. flüssig-fest [Gefriertrocknung]
4.	flüssig-flüssig [Flüssig-Flüssig-Extraktion]	
5.	flüssig-fest [Festphasenextraktion]	

Beispiel für die Anreicherung anorganischer Spurenkomponenten

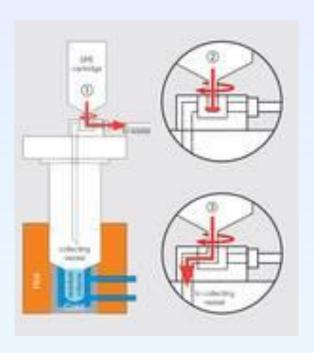
- Schwermetalle: Reaktion mit Chelatbildnern
- gebildete Metall-Chelat-Komplexe wie organische Spuren anreichern
- z. B. Flüssig-Flüssig-Extraktion
- nach Anreicherung Extraktionsmittel durch Verflüchtigung entfernbar
- Vorteile der Chelate: sehr selektiv
- > Schwermetalle: Mitfällung an organischem/anorganischem Spurenfänger
- > z. B. Einsatz von Eisen- und Aluminiumhydroxid, Metallchelate
- nach Abtrennen/Lösen mit geringem Flüssigkeitsvolumen weitere quantitative Analyse
- lonen: Anwendung von Ionenaustauschverfahren
- ➢ lonen: Elektroosmose, Teil der Flüssigkeit wandert unter Einfluss des elektrischen Feldes durch eine Membran (=Entwässerung)

Verdampfen/Verflüchtigen

Nachteile:

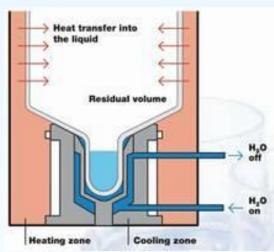
- Verlust flüchtiger/thermoinstabiler Substanzen
- Mengenverhältnis Analyt/andere Wasserinhaltsstoffe bleibt gleich
- häufig im Anschluss an Extraktionsverfahren: weitere Reduzierung der Volumina von Lösungsmittelextrakten *Einengung*

A: Vakuumrotationsverdampfer


- niedrige Temperatur
- dünner Lösungsmittelfilm an Wandungen

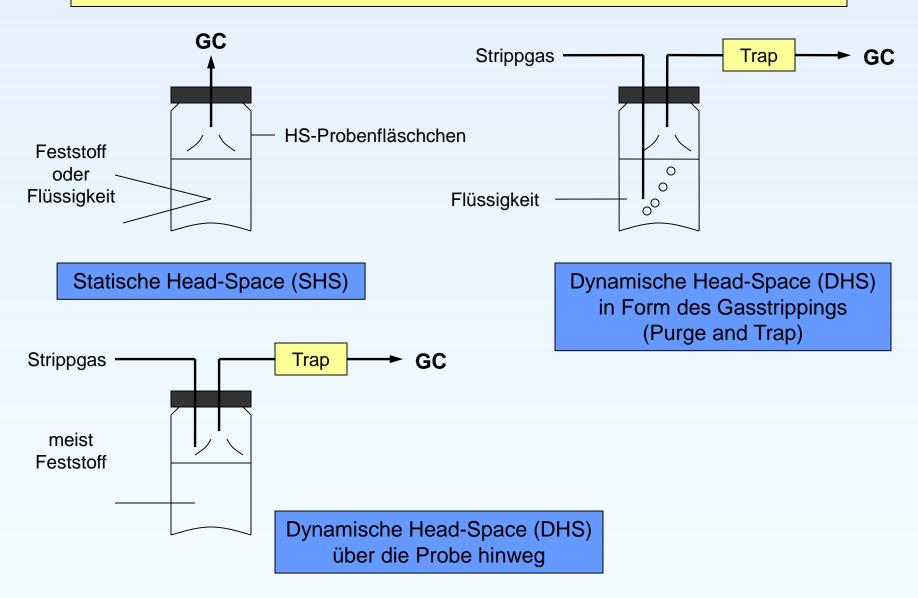
B: Einengen im Stickstoffstrom

- Inertgas
- Arbeiten im Abzug
- zur Trockne? Je nach Analyt
- Gefriertrocknung: Entwässerung durch ständiges Absaugen des Wasserdampfes bei tiefen Temperaturen im Hochvakuum


Syncore Parallelverdampfer

Vakuumrotationsverdampfer

<u>Probenaufbereitung – Clean-up – Trennverfahren</u>

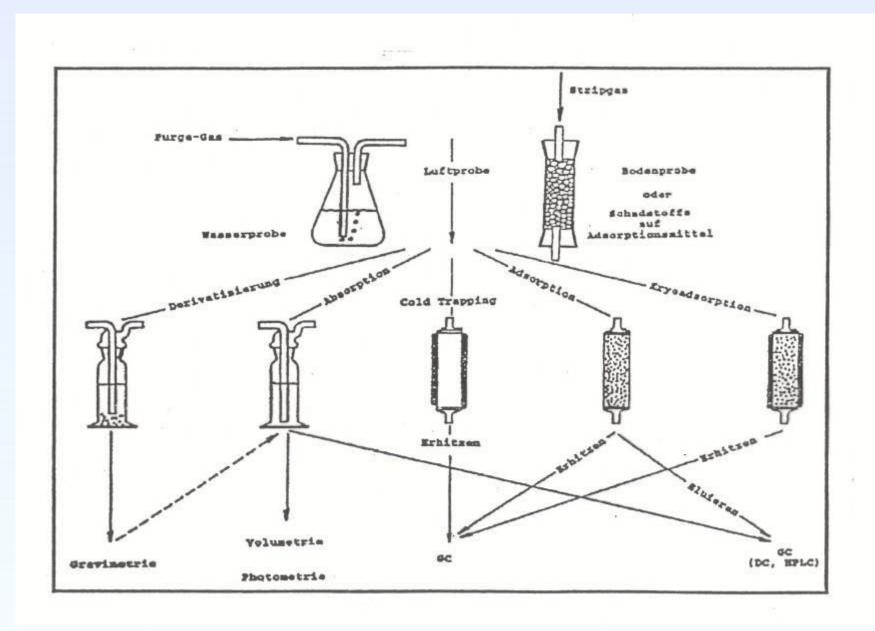

- alle Prozesse, die zu Phasentrennung führen (Filtration, Extraktion, Destillation) gehören in den Bereich der Clean-up-/Probenaufreinigungsverfahren
- umfasst alle Verfahrensschritte, bei denen eine Abtrennung der Analyten von anderen (oft störenden) Matrixbestandteilen erfolgt
- häufig dadurch überhaupt erst störungsfreie quantitative Analyse mit einer bestimmten Methode möglich
- eng verbunden/identisch mit Anreicherungsverfahren (z. B. Flüssig-Flüssig-Extraktion)
- Ziel: nur noch die zu analysierenden Substanzen befinden sich in der Probe
- dabei stets Kontrollen, inwiefern Analytverluste auftreten (Standardzusatz)
- je komplexer die Matrix, um so aufwendiger die Probenaufbereitung
 (z. B. Reinstwasser → Trinkwasser → Oberflächenwasser → Abwasser)

Head-Space-Technik

- Head-Space = Dampf-(Kopf-)raum-Technik
- grundsätzlich nur für flüchtige Komponenten geeignet
- Möglichkeit zur Abtrennung flüchtiger Analyten von der nicht- oder schwerflüchtigen Matrix
- fast ausschließlich in Kombination mit der Gaschromatographie
- geeignet für unterschiedlichste Matrices (z. B. Wasser, Blut, Urin, Lebensmittel, Kosmetika, Lacke, Textilien, Boden)
- einfaches und besonders wirksames Prinzip zur Matrixentfernung

Statische Head-Space (SHS)	Dynamische Head-Space (DHS)	
	Strippgas über die Probe hinweg	Strippgas durch die Probe hindurch
einmalige Gasextraktion	kontinuierliche Gasextraktion	

Schematischer Arbeitsablauf der Head-Space-Techniken


Head-Space-Technik

> SHS:

- Dampfdruck proportional dem Molenbruch; dem Aktivitätskoeffizienten und dem Dampfdruck der reinen Substanz
- bei der Erwärmung einer Probe in einer geschlossenen Probeflasche auf vorgegebene Temperatur stellt sich ein kontrollierbares Gleichgewicht zwischen flüssiger und gasförmiger Phase ein
- Dampfraum ist Abbild für die in der Probe enthaltenen flüchtigen Stoffe
- durch Septum wird mit Dosierkapillare definiertes Volumen f
 ür GC entnommen

> DHS:

- die Probe wird mit inertem Strippgas über- bzw. durchströmt bis Konzentration der extrahierten flüchtigen Komponente gegen 0 geht
- Dampfraumprobe wird in einem Zwischenspeicher (Trap) festgehalten (Ausfrieren oder Adsorption)
- Überführung in GC durch rasches Ausheizen oder Herauslösen (Lösungsmittel)

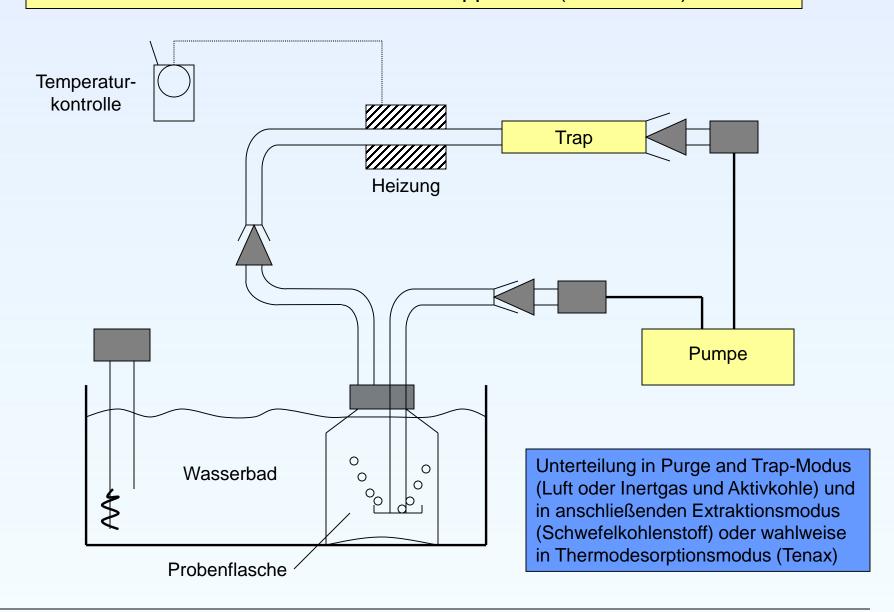
Dynamische Head-Space-Verfahren, Systematisierung

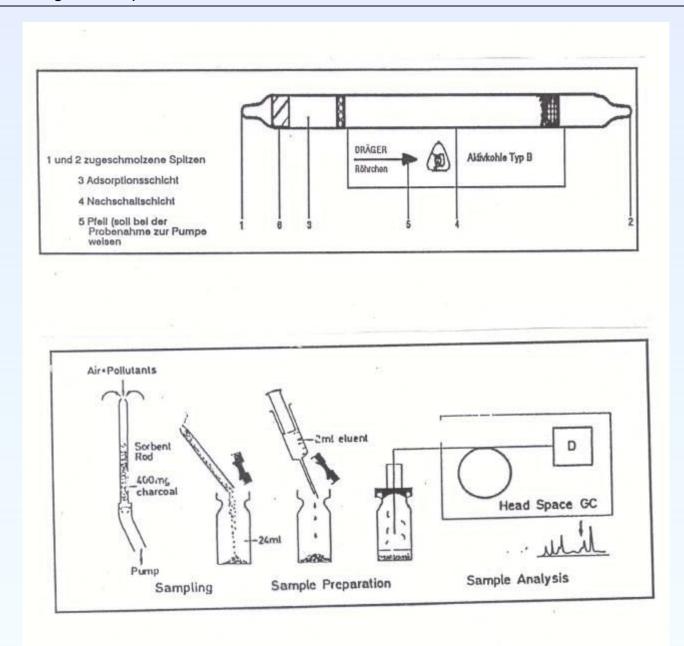
Anreicherung/Behandlungsart der gasförmigen Analyten		weitere Bestimmung
A:	Ausfällen in einer Reagenzlösung (Derivatisierung)	GravimetrieAuflösen und Bestimmung wie B
B:	Absorption in Reagenzlösung/Lösungsmittel	Volumetrie, PhotometrieGC (HPLC, DC)
C:	Ausfrierung durch Kühlung, Desorption: Ausheizen	- GC
D:	Adsorption (z. B. Aktivkohle), Desorption: Ausheizen, Elution	- GC
E:	Kryoadsorption (Kombination von C und D), Desorption: Ausheizen	- GC

Head-Space-Technik

DHS – Abstimmung der Einflussgrößen:

- Proben- und Adsorptionsmittelart
- Proben- und Adsorptionsmittelmenge
- Länge und Querschnitt von Kühl- und Adsorptionsmittel
- Arbeitstemperatur f
 ür Extraktion, Adsorption und Desorption
- Gasfluss und Gasmenge für Extraktion und Desorption

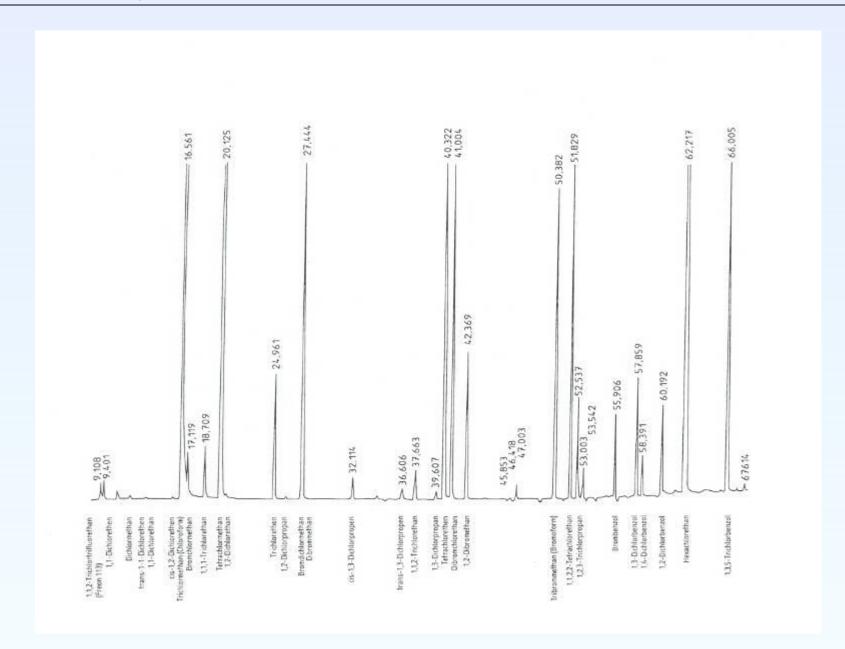

wichtig:


- Kontrolle Vollständigkeit
- Reinheit der Hilfsmaterialien
- Matrixeinfluss (Extraktionszeit)

Anwendungsbeispiel in der Wasseranalytik:

Closed Loop Stripping Analysis

Funktionsschema der CLSA-Apparatur (Carlo Erba)



Beispiel für Head-Space-Anwendung:

Analytik leichtflüchtiger Halogenkohlenwasserstoffe (LHKW) aus Böden

Hintergrund:	 unsachgemäßer Umgang (Transport, Lagerung, Einsatz, Entsorgung) oder Havarien: Kontamination Boden/Grundwasser
Probenahme:	 ca. 0,5 kg-Portionen (Minimierung Ausgasung) keine Mischproben, Entnahme aus dem Inneren (Labor) Gefäß mit breiter Öffnung, Schraubdeckelgläser (Metalldeckel) Transport kühl, dunkel; Analyse spätestens nach 24 h
Probenvorbereitung:	 20 – 100 g Probe mit Ethylenglycolmonomethylether (Gewichtsverhältnis 1:1) ca. 10 h verschlossen aufbewahren eventuell 10 min Ultraschallbad Aliquot des LM + 10 mL Wasser in Headspace-Gefäß 60 min bei 80 °C temperieren (SHS)
Bestimmung:	- GC mit paralleler Schaltung von FID und ECD
Ergebnisse:	 Trennung von 28 Substanzen, auch aromatische KW Empfindlichkeit < 1 – 50 μg/kg (ECD), < 50 – 500 μg/kg (FID)

Probenaufbereitung fester Proben (Boden, Sediment, Klärschlamm):

Soxhlet-Extraktion

- Einsatz bei der Analytik schwerflüchtiger organischer Verbindungen
 - z. B. Pflanzenschutzmittel polychlorierte Biphenyle polycyclische aromatische Kohlenwasserstoffe Dioxine, Furane
- Festprobe soll wasserfrei (z. B. gefriergetrocknet) und fein zermahlen sein
- definierte Menge wird in Extraktionshülse aus Zellulose oder Teflon gegeben
- Extraktionsmittel z. B. Pentan Hexan Toluol
- Extraktionszeiten häufig sehr lang, bis 30 h, dabei mehrere hundert Extraktionszyklen, dabei quantitative Überführung der Analyten in die Lösungsmittelphase

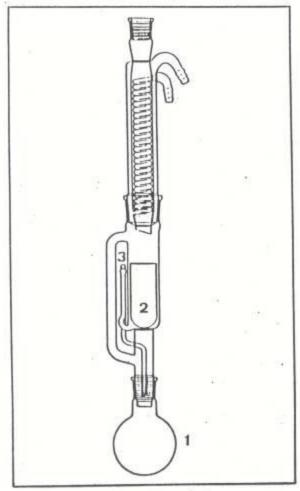
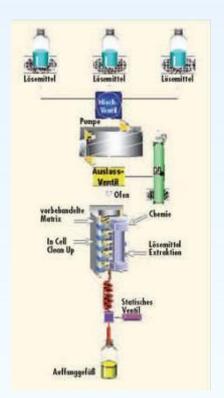


Abb. 15: Soxhlet-Extraktion


- Kolben für Extraktionsmittel
- Extraktionshülse aus Cellulose oder Teflon, darin die Analysenprobe
 3 = Überlauf

Anwendung im Routinelabor: <u>Beschleunigte Lösemittelextraktion</u> (Accelerated Solvent Extraction, ASE)

- LM-Extraktion bei erhöhten Druck- und Temperaturbedingungen (140 bar, 100 bis 140°C)
- vorteilhafte Lösungsmitteleigenschaften (veränderte Verteilungskoeffizienten)
- z. B. Extraktion relativ polarer Phenole aus Bodenproben mit n-Hexan (unpolar)
- bei thermolabilen Analyten: Kaltextraktionsverfahren (z. B. mit Ultraschall)

Quelle: www.ifg.uni-tuebingen.de/departments/zag/hydrogeochemistry/lab/index.html

Quelle: http://www.laborpraxis.vogel.de/

Flüssig-Flüssig-Extraktion

allgemeine Definition:

Herauslösen der/des Analyten aus einer flüssigen Mischphase durch ein selektiv wirkendes Lösungsmittel

NERNSTscher Verteilungssatz:

$$k = \frac{C_i^A}{C_i^B}$$

A, B nicht miteinander mischbare Flüssigkeiten

Gleichgewichtskonzentration des Stoffes i in A bzw. B

k Verteilungskoeffizient

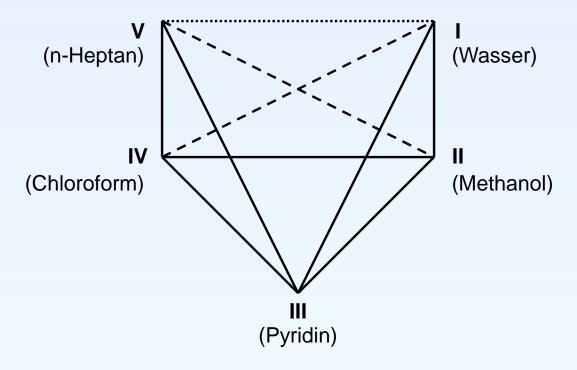
- praktisch Extraktion nur möglich, wenn k >> 1 (bzw. k << 1)</p>
- \succ Trennung zweier Stoffe im gleichen Zweiphasensystem, wenn $k_1 \neq k_2$

Trennfaktor:

$$\beta = \frac{k_1}{k_2}$$

k₁ Verteilungskoeffizient des Stoffes 1

Verteilungskoeffizient des Stoffes 2


Kriterien für die Auswahl eines Extraktionsmittels

- > Selektivität
- Verteilungskoeffizient
- Kapazität
- Wassermischbarkeit
- Dichteunterschied
- Aufarbeitungsmöglichkeit
- Toxizität, Gefährlichkeit

Einteilung von Lösungsmitteln

Klasse	Charakterisierung	Beispiel
l	Moleküle mit Fähigkeit, ein dreidimen- sionales Netz starker Wasserstoffbrücken zu bilden	Wasser, mehrwertige Alkohle, Hydroxycarbonsäuren, Poly- carbonsäuren
II	Moleküle mit aktiven H-Atomen und stark elektronegativen Atomen mit freien Elektronenpaaren	Alkohole, Säuren, Phenole, primäre und sekundäre Amine
III	Moleküle mit elektronegativen Atomen, ohne aktive H-Atome	Äther, Ketone, Ester, tertiäre Amine
IV	Moleküle mit aktiven H-Atomen, ohne elektronegative Atome	Chloroform
٧	Moleküle, die nicht fähig sind, Wasser- stoffbrückenbindungen einzugehen	Kohlenwasserstoffe, CS ₂ , CCl ₄

Mischungsverhalten der Lösungsmittel

völlig mischbar

---- nicht völlig mischbar

..... praktisch nicht mischbar

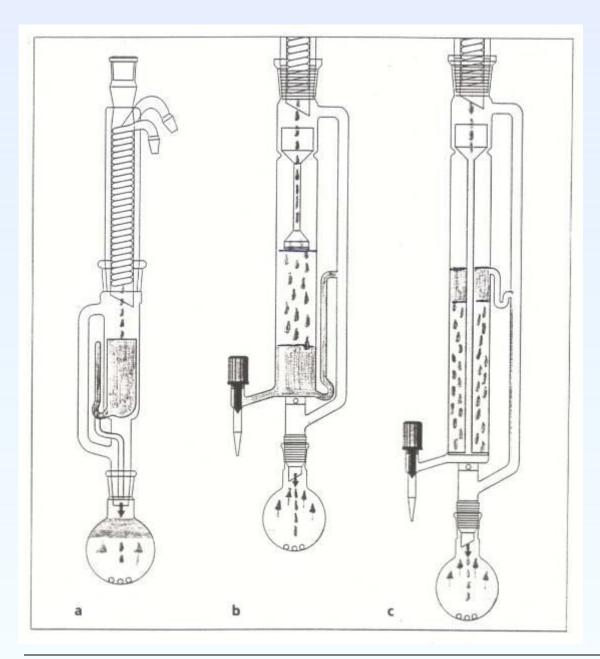
Flüssig-Flüssig-Extraktion

I. Ausschütteln (diskontinuierlich)

- Scheidetrichter (manuell oder Schüttelmaschine) oder Kolben, Flaschen (Magnetrührer) mit Mikroseperator
- Verhältnis Extraktionsmittel/Wasserprobe maximal 1:6 bis 1:4, Scheidetrichter maximal 2/3 füllen
- Faustregel: mehrfach eine kleine Menge Extraktionsmittel ist besser als einmal ein großes Volumen
- je nach Analyt und Polarität Lösungsmittel pH-Wert der Wasserprobe einstellen

Probleme/Nachteil:

- ungenügende Gleichgewichtsverteilung (mehrfache Extraktion)
- Möglichkeit der Emulsionsbildung (Matrix)/Phasentrennprobleme
- oft keine vollständige Nichtmischbarkeit mit Wasser (Nachbehandlung)
- begrenzte Auswahl an Extraktionsmittel
- Einsatz größerer Mengen umweltrelevanter Lösungsmittel (Entsorgung)
- Zeitaufwand, Schwierigkeit Automatisierung

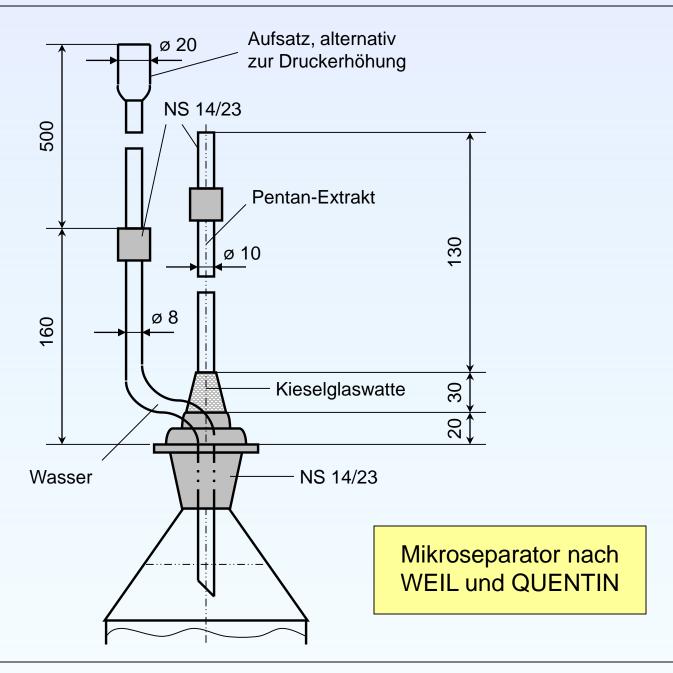

Flüssig-Flüssig-Extraktion

II. Perforieren

- Anwendung niedrige Verteilungskoeffizienten
- Regeneration Extraktionsmittel: Destillation
- reines, kondensiertes Extraktionsmittel wirkt auf Wasserprobe
- kontinuierlicher Prozess

Perforatoren für:

- a) Extraktionsmittel spezifisch schwerer als Wasser
- b) Extraktionsmittel spezifisch leichter als Wasser


Extraktoren und Perforatoren

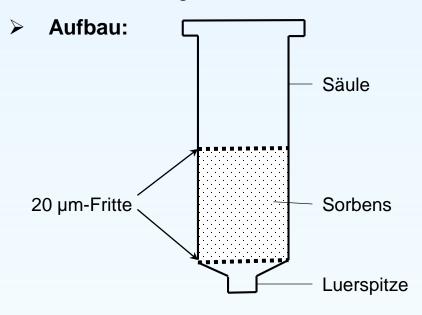
- (a) Soxhlet-Extraktor
- (b) Perforator für spezifisch schwerere LM
- (c) Perforator für spezifisch leichtere LM

(im Vergleich zur Wasserprobe)

Quelle: Schwedt (1995), Analytische Chemie.

Thieme: Stuttgat, New York

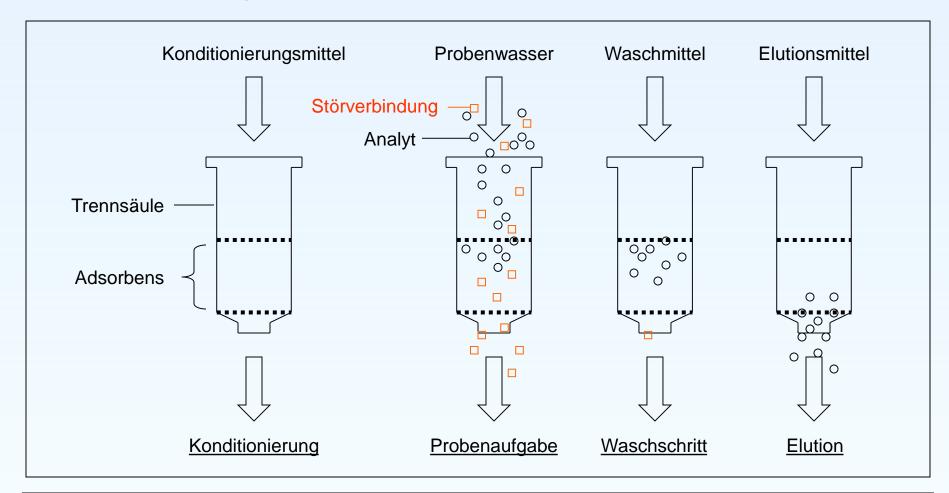
Anwendung der Flüssig-Flüssig-Extraktion (DIN)

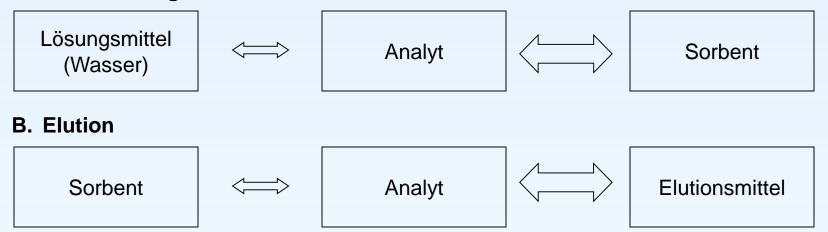

DIN 38407-F2: Gaschromatographische Bestimmung von schwerflüchtigen Halogenkohlenwasserstoffen

- Verbindungen mit Halogensubstituenten, mehr als 5 C-Atome und T_{Siede} > 180 °C (z. B. Hexachlorbenzol)
- Miterfassung von Organochlorpestiziden (z. B. DDT)
- > Extraktion mit 10 bis 20 mL Pentan, Hexan, Heptan, Toluol/Liter Probe
- Durchführung der a) Extraktion in Probenahmeflasche, mit Magnetrührer und Trennung mit Mikroseperator;
 - b) Ausschütteln im Scheidetrichter
- eventuell Salzzugabe (20 g NaCl/L)
- Einengen im Vakuumrotationsverdampfer
- Bestimmung mit GC-ECD

(Fest-Flüssig-Extraktion, Solid Phase Extraction, SPE)

Prinzip:


- selektive Anreicherung und Abtrennung gelöster Stoffe an spezielle Feststoffoberflächen
- anschließende Elution mit einer relativ kleinen Menge eines geeigneten Lösungsmittels


(Fest-Flüssig-Extraktion, Solid Phase Extraction SPE)

Durchführung:

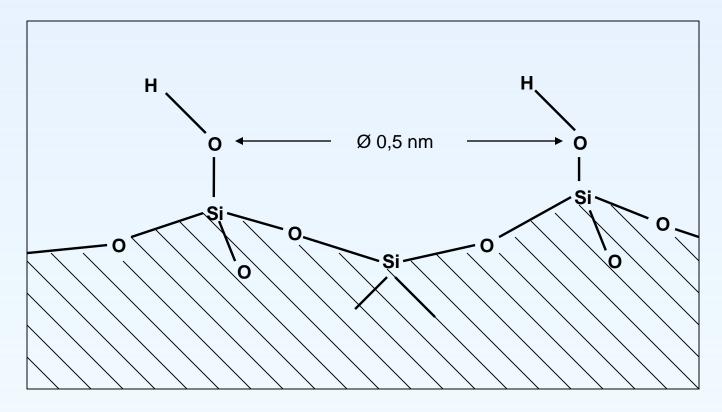
entscheidende Wechselwirkungen

A. Anreicherung

- Arten der möglichen Wechselwirkungen
 - ionische Wechselwirkungen
 - Wasserstoffbrückenbindungen
 - Dipol-Dipol-Wechselwirkungen
 - Dipol-induzierte Dipol-Wechselwirkung
 - π-Komplex-Bindung
 - Dispersionskräfte

- Arten der Festphasenextraktion/Sorbentien:
 - Vielfalt von Festphasenmaterialien selektive Gestaltung der Probenvorbereitung
 - Einteilung nach Art der primären Wechselwirkungen zwischen Sorbens und Analyt:

Polare Extraktion


Unpolare Extration

Ionenaustauschextraktion

Größenausschlussextraktion

- wichtig: Wirkung von funktionellen Gruppen der Sorbensoberfläche
- große Bedeutung: Silicagel + modifizierte Silicagelmaterialien

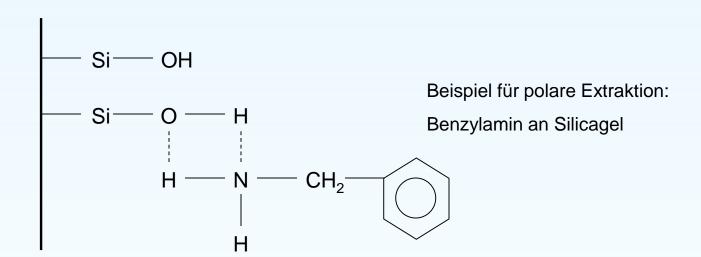
Polare Extraktion (Normalphasenchromatographie)

Silicageloberfläche

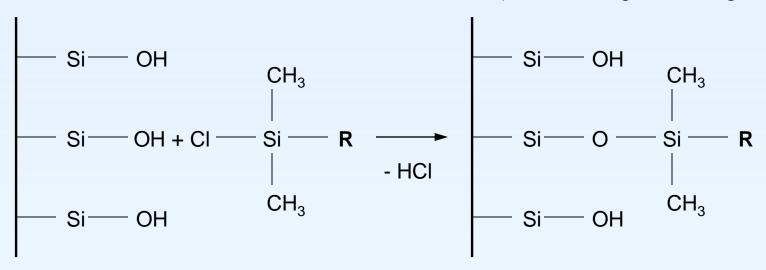
Analyt polar (z. B. organische Halogenide, Alkohole, Aldehyde)

Sorbens polar (Silicagel, Florisil, Aluminiumoxid)

Probelösungsmittel relativ unpolar (Hexan, Methylenchlorid, Chloroform)


primäre Wechselwirkungen Dipol – Dipol, Dipol – induzierter Dipol,

Wasserstoffbrückenbindung


Elutionsmittel polar (Wasser, Puffer, Acetonitril, organische Säuren

Bemerkungen z. T. sehr selektive Trennung

kein direkter Einsatz von Wasserproben möglich

Synthese von "gebundenen Phasen" (Modifizierung der Silicageloberfläche)

R=	
<u>polar</u>	<u>unpolar</u>
- Diolgruppe	- C-18-Gruppe
- Aminopropyl	- C-8-Gruppe
- Nitrogruppe	- Phenylgruppe
	- Cyclohexylgruppe
	- Cyanopropylgruppe

Unpolare Extraktion (Umkehrphasenchromatographie)

Analyt	unpolar bis mittelpolar (Aromaten, Alicyclen, Verbin-

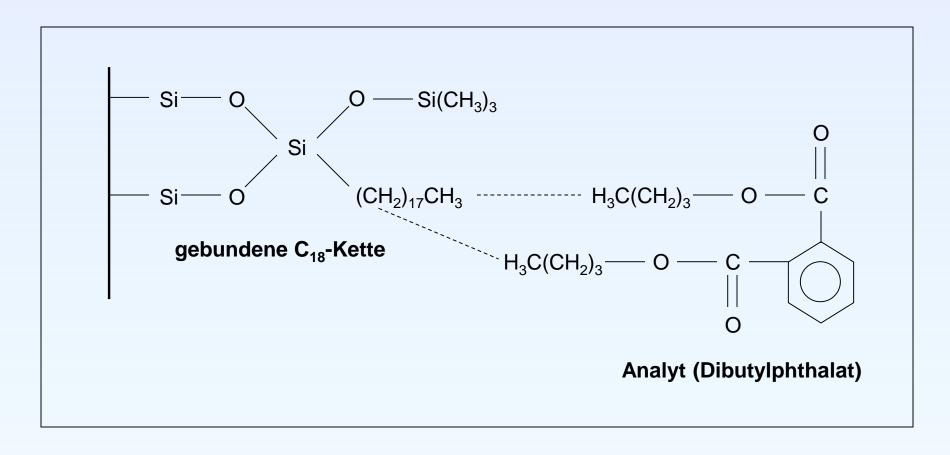
dungen mit Alkylgruppen)

Sorbens modifizierte Silicagelmaterialien (C-18, C-8, Phenyl,

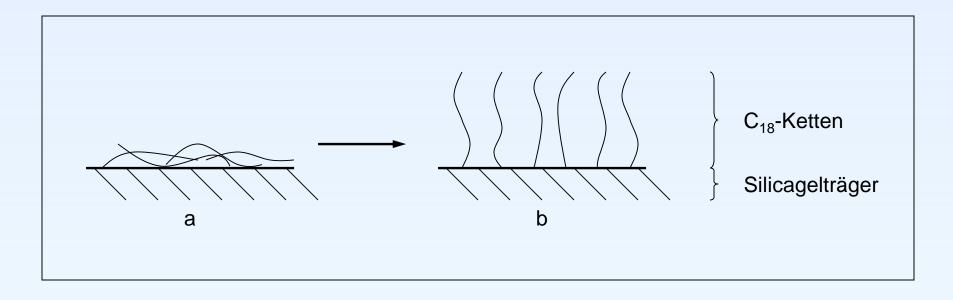
Cyanopropyl), Aktivkohle, Polymere, XAD-Harze

Probelösungsmittel polare Medien, vorrangig Wasser, Wasser-Lösungs-

mittelgemische

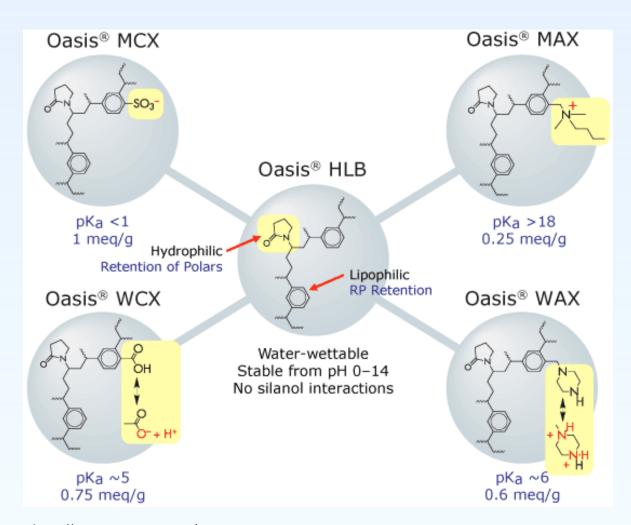

primäre Wechselwirkungen Disperionskräfte, sekundär auch polare Wechsel-

wirkungen


Elutionsmittel unpolar bis mittelpolar (Hexan, Methylenchlorid,

Acetonitril)

Bemerkungen -C-18-Phasen häufigste Verwendung, aber unselektiv


Beispiel für unpolare Extraktion: Dibutylphthalat an C-18-Material

Zustand der Octadecyloberfläche vor (a) und nach (b) der Konditionierung

Aktuelle Thematik: Anreicherung polarer Spurenstoffe

- Polymerphasen wie z. B. OASIS HLB-Phasen, pH 1-14,
- auch als "Disk": Vorteil: Schwebstofferfassung

http://www.waters.com/

Ionenaustausch-Extraktion

Analyt Moleküle mit funktionellen Gruppen, die negative/

positive Ladung zeigen können (Amine, Phenole,

Carbonsäuren), anorganische Anionen und Kationen

Sorbens Kationenaustauscher (Propylbenzolsulfonsäure)

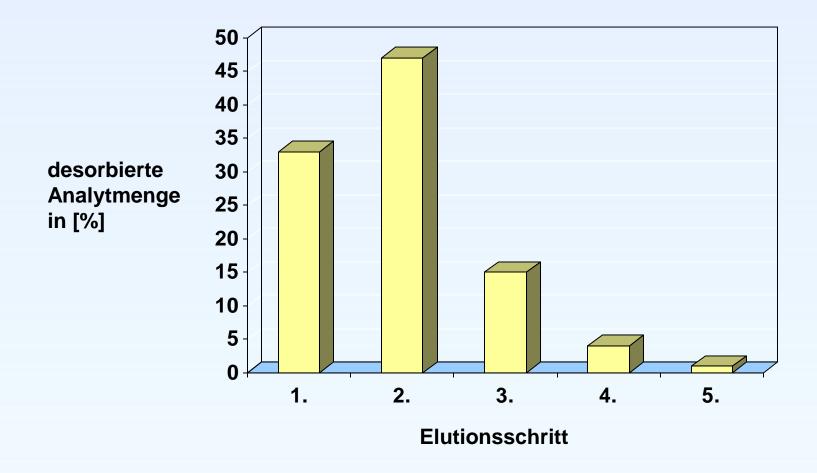
Anionenaustauscher (Trimethylaminopropyl)

Probelösungsmittel Wasser, Puffer (niedrige Ionenstärke)

primäre Wechselwirkungen ionische Wechselwirkungen

Elutionsmittel Puffer, pH-Einstellung, dass Analyt ungeladen vorliegt,

hohe lonenstärke


Bemerkungen pH-Wert nach pK_S-Werten der Analyten einstellen

(Kationen unter, Anionen über den pK_s-Wert des

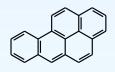
Isolates)

Allgemeine, wichtige Einflussgrößen bei der Festphasenextraktion

- Grad der Konditionierung
- Probenmatrix (Konkurrenzadsorption)
- pH-Wert Wasserprobe
- Neutralsalzgehalt (besonders Ionenaustauscher, auch Aussalzeffekt)
- Art, Korngröße und Menge Festphasenmaterial
- Probendurchlaufgeschwindigkeit
- Waschvorgang (Art Waschmittel)
- Trocknen der Phase (Trocknungsgrad)
- Aufbewahrung der beladenen Festphase
- Elutionsmittel
- Durchführung der Elution

Beispiel für die Abhängigkeit der quantitativen Analyterfassung von der Anzahl der Elutionsschritte

<u>Fehlerquellen</u>


- jeder Schritt kann zum Gesamtfehler beitragen
- ungenügende Konditionierung
- Gefahr des Durchbruchs von Analyt
- unvollständige Elution, teilweise irreversible Adsorption
- mögliche chemische Veränderung der adsorbierten Analyten
- Verlust, Kontamination bei der Trocknung
- irreversible Adsorption von Analyt z. B. am Kartuschenmaterial (besonders Kunststoff)

<u>Vergleich Festphasenextraktion – Flüssig-Flüssig-Extraktion</u>


	Festphasenextraktion	Flüssig-Flüssig-Extraktion		
Art der Verteilung	dynamische Verteilung	einmalige Gleichgewichtseinstellung		
Anreicherungsfaktor	hoch (begrenzt durch Verstopfung, Durchbruch)	mittel (begrenzt durch Lösungsmittelmenge)		
Lösungsmittelverbrauch	relativ gering (i. a. < 10 mL)	relativ hoch (häufig weit über 10 mL)		
Lösungsmittelauswahl	praktisch unbegrenzt	begrenzt (Wassermischbarkeit)		
Wassergehalt der Extrakte	je nach Trocknung (effizient: Gefriertrocknung)	relativ hoch (Trocknung z. B. mit Na ₂ SO ₄ notwendig)		
Extraktqualität	hoch	z. T. Emulsion		
Zeitaufwand	mittel, viele Proben parallel analysierbar	hoch, bei vielen Proben		
Anreichung "Vor-Ort"	gut möglich	schwierig		
Automatisierbarkeit	leicht möglich	schwierig		
Fraktionierte Trennung	leicht möglich	möglich		
Geräteaufwand	gering	z. T. hoch		
Reproduzierbarkeit bezüglich Chargen	schlecht	gut		
Verluste (irreversible Sorption)	z.B. Basen an Silanolgruppen	-		
Kontamination Zubehör z. T. hoch		gering		

Polycyclische Aromatische Kohlenwasserstoffe (PAK)

- Entstehung: aus organischem Material durch Pyrolyse oder unvollständiger Verbrennung, sehr unpolar
- > viele Emissionsquellen in der Umwelt weit verbreitet
- Vertreter dieser Stoffgruppe sind toxisch, teilweise cancerogen bzw. mutagen
- TVO Summengrenzwerte von 200 ng/L (auf Kohlenstoff bezogen) für 6 repräsentative Vertreter der PAK
- ➤ häufige Anwendung (neben SPE): Flüssig-Flüssig-Extraktion angewandt (auch DIN)

Benzo[a]pyren

Benzo[b]fluoranthen

Benzo[ghi]perylen

- Adsorbensmaterial: C-18- bzw. Nitro-Materialien
- Serienschaltung C-18- mit Aminopropylkartuschen führt zur Verbesserung der Wiederfindungsrate einiger PAK
- PAK an Schwebstoffen von Oberflächenwässern adsorbiert
- Isopropanol zur Wasserprobe geben (Unterdrückung Wandsorption und dynamische Solvatisierung der Phase)
- neue Entwicklung: Ersatz Isopropanol durch Tenside (Hyamin 1622)
- maximale Durchflussgeschwindigkeit 8 10 mL/min
- Analysenmethode in erster Linie HPLC, auch GC und DC möglich
- Retention der PAK stark von Säulentemperatur abhängig (HPLC)

Substituierte Aniline

- Eintrag in die Umwelt durch anthropogenen Einfluss (z. B. Abwässer der chemischen Industrie, Abbau von Pflanzenschutzmitteln)
- > z. T. toxisch: es gelten die niedrigen PSMBP-Grenzwerte
- Anwendung Octadecylphasen verwendet
- Erhöhung des pH-Wertes und eine Optimierung der eingesetzten Menge an Adsorbens kann die Wiederfindungsrate erheblich verbessern
- Bestimmungsverfahren: HPLC- und GC-Techniken

Weitere Wasserinhaltsstoffe

Wasserinhaltsstoffe	Hinweise
Phthalat-Ester im Trinkwasser	Anwendung einer C-18-Phase
Ölemulsion in Wasser	C-18-Phase
Dieselöl im Grundwasser	C-18-Phasenmaterial, Verringerung des herkömmlichen Korndurchmessers (40 – 60 µm) auf 15 – 25 µm brachte bessere Ergebnisse
DON (gelöster, organisch gebundener Stickstoff)	Testung verschiedener Phasen, C-18 am günstigsten, Probe pH= 2
Organische Schwefelverbindungen im Rhein	C-18-Phase verwendet
Phenoxyalkancarbonsäure	RP-18-Phase
Phenole	Verwendung von Phenylharzen, pH-Einstellung und Neutralsalz- zugabe wichtig
Metallchelate (am Beispiel Kupfer-diethyldithiocarbamat)	Testung verschiedener Phasen: Phenylphase beste Wiederfindungsrate; Methode auch für Pb-, Ni-, Co-dithiocarbamate geeignet
Halogenkohlenwasserstoffe im Oberflächen- wasser (Rhein)	Verwendung C-18-Phase, Elutionsmittel: Aceton/n-Hexan-Gemisch
Fluorhaltige Tenside	Auswahl einer C-18-Phase, verschiedene Probe-pH-Werte und Elutionsmittel eingesetzt (abhängig vom Tensid)
Sulfat im Abwasser (im ppm-Bereich)	Ionenaustauschermaterial (quaternäres Amin), Elutionsmittel: Ethanol/Wasser-Gemisch
Spurenmetalle	Amino- bzw. Aromatische Sulfonsäure-Phase, Elutionsmittel abhängig von zu analysierendem Metall
Thiocyanate	Festphasenmaterial: quaternäres Amin, Elutionsmittel: 6N HCl

<u>Mikrofestphasenextraktion</u>

- Solid-Phase-Microextraction SPME
- direkte Anreicherung organischer Spurenstoffe aus:
 - 1. flüssigen Proben (z. B. Wasserproben)
 - 2. gasförmigen Proben (z. B. in Verbindung mit Headspace, SHS)
- keine vollständige Extraktion, sonder immer Verteilungsgleichgewicht der Analyten zwischen Probematrix und stationärer Phase (Faser)

$$n_f = \frac{K_{fs} \cdot V_f \cdot c_0 \cdot V_s}{K_{fs} \cdot V_f + V_s}$$

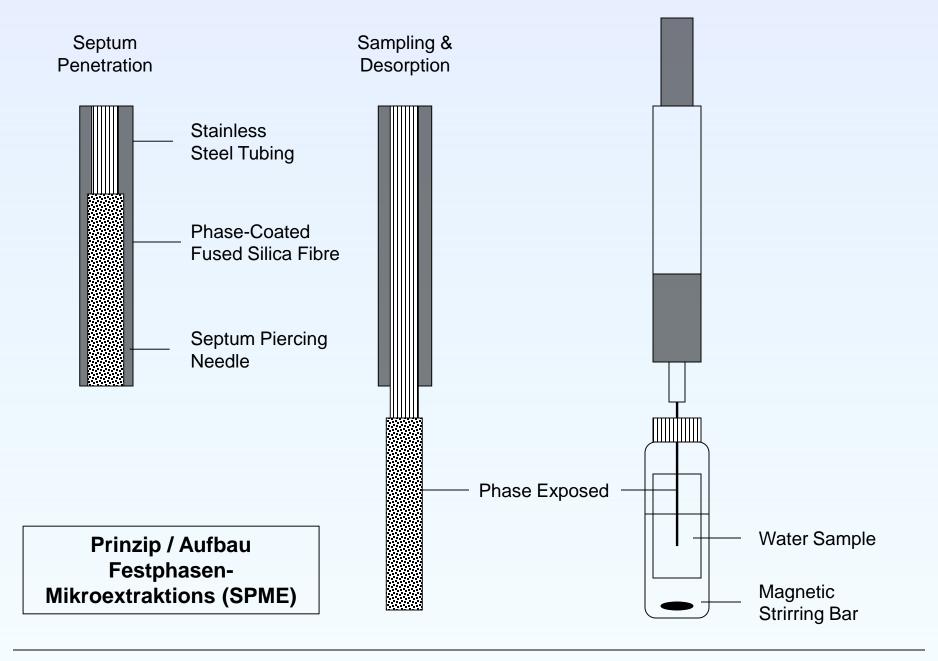
$$n_f = \frac{K_{sg} \cdot K_{gf} \cdot V_f \cdot V_s \cdot c_0}{K_{sg} \cdot K_{gf} \cdot V_f + K_{gs} \cdot V_g + V_s}$$

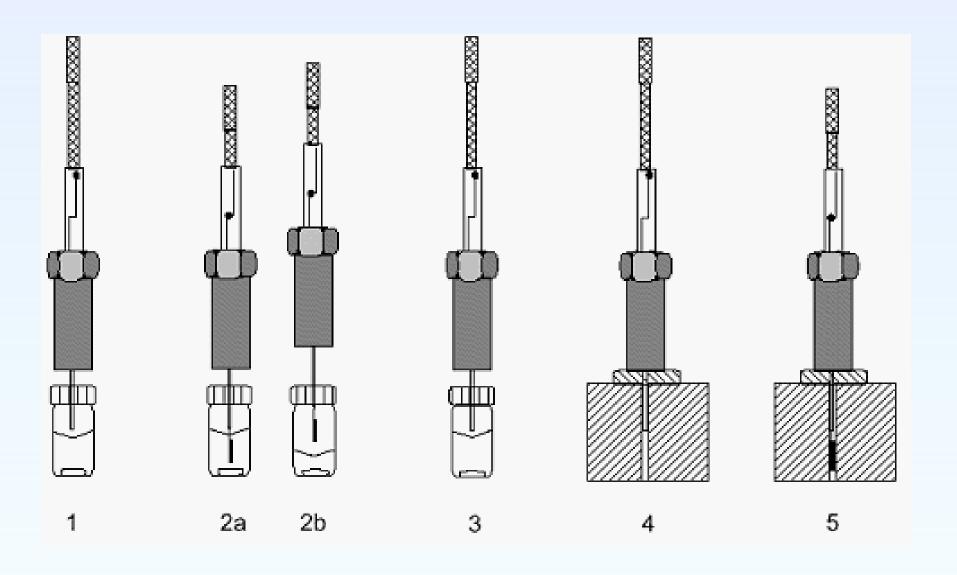
 n_f : extrahierte Stoffmenge

 K_{fs} : Verteilungskoeffizient Probe-Faser

V_s: Probevolumen

V_f: Volumen Faserbeschichtung


 c_0 : Ausgangskonzentration Analyt


K_{sq}: Verteilungskoeffizient Probe-Gasphase

K_{af}: Verteilungskoeffizient Gasphase-Faser

V_g: Volumen Gasphase (Dampfraum)

Gleichgewicht bei Anreicherung (Adsorption) und bei thermischer Desorption im GC-Injektor

Erhältliche SPME-Fasermaterialien

Faserbeschichtung	Abkürzung	Filmdicke in µm	Bemerkungen
Polydimethylsiloxan	PDMS	7/30/100	ungebunden, auch HPLC
Carboxen-Polydimethylsiloxan	CAR/PDMS	75/85	teilweise/hochgradig vernetzt
Divinylbenzen- Carboxen- Polydimethylsiloxan	DVB/CAR/ PDMS	50/30	hochgradig vernetzt
Polyacrylat	PA	85	teilweise vernetzt, auch HPLC
Polydimethylsiloxan- Divenylbenzen	PDMS/DVB	65	teilweise/hochgradig vernetzt, auch HPLC
Carbowax-Divenylbenzen	CW/DVB	65/70	teilweise/hochgradig vernetzt
Carbowax-Templated Resin	CW/TPR	50	teilweise vernetzt, nur HPLC

Erhältliche SPME-Fasermaterialien

Polydimethylsiloxan

- für kleine und/oder flüchtige Moleküle, mit

dünnem Film auch für halbflüchtige

Substanzen

Polydimethylsiloxan/Carboxen

- für die Spurenanalyse leichtflüchtiger Stoffe

Polydimethylsiloxan/Divenylbenzen

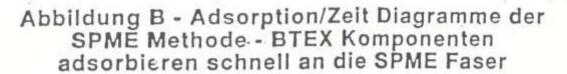
- für polare, flüchtige Subtanzen wie Alkohole

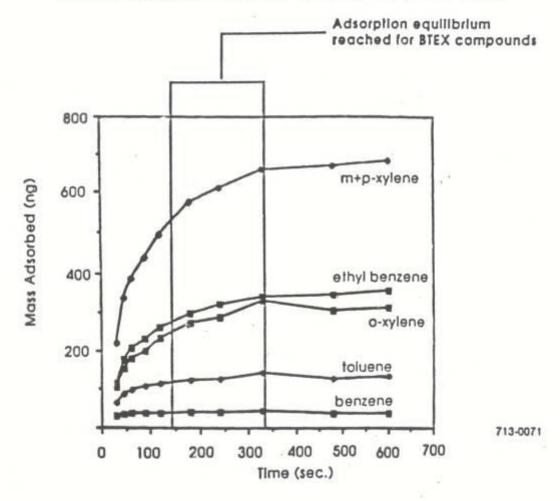
und Amine

Polyacrylat

- für stark polare Substanzen aus polaren

Proben


Carbowax/Divenylbenzen


- für Screening über größeren Molmassen-

bereich (C3 bis C20)

Einflussgrößen auf Lage und Geschwindigkeit der Gleichgewichtseinstellung sowie Präzision:

- Beschaffenheit der Faser (Art, Vernetzung, Volumen)
- Rührgeschwindigkeit
- Probenzusätze (Salz, Lösungsmittel)
- pH-Wert
- Derivatisierung
- Faserposition im Injektor
- Injektortemperatur
- Zeitspanne zwischen Adsorption und Desorption

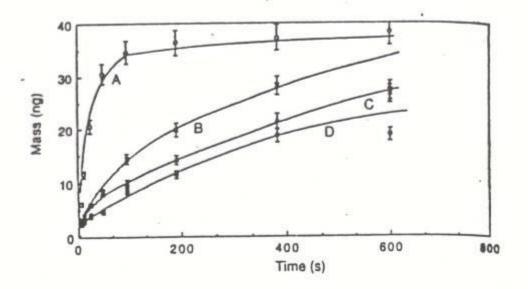
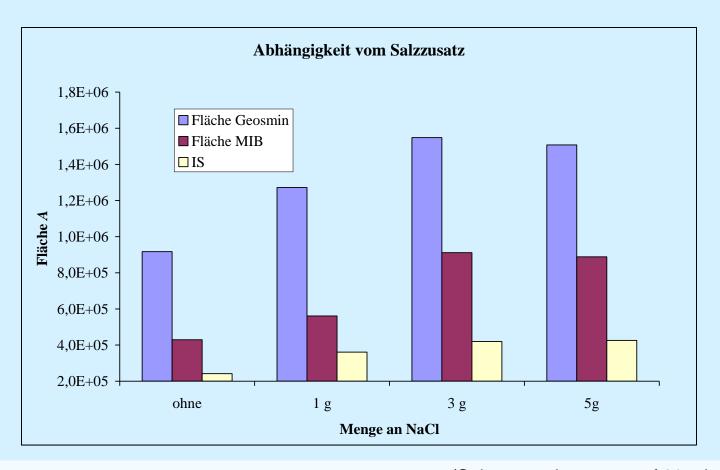


Abbildung 16: Einfluß der Rührmethoden auf das Adsorptionsprofil bei Verwendung einer 1cm langen 56µm PDMS Faser [3].

Die Modellösung enthält Ippm Benzen.

A=100% Rührgeschwindigkeit mit einem Magnetrührwerk


B=Einsatz von Ultraschall

C=Bewegen der Faser in der ansonsten nicht gerührten Lösung

D=nicht gerührte Lösung

Untersuchungen Einfluss Salzzusatz - Geosmin, MIB,

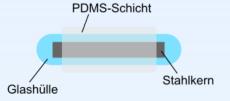
(Konzentration: 30 ng/L)

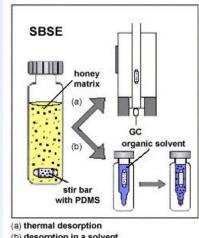
(Salzmenge bezogen auf 20 mL Probemenge)

Vorteile der SPME gegenüber anderen Probenvorbereitungstechniken

(Beispiel aliphatische/alicyclische Amine, IWC)

Technik	Nachweis- grenze (MS)	Präzision (% RSD)	Preis	Zeitauf- wand	Einsatz von Lösungsmittel	einfaches Handhaben
Purge & Trap	ppb-ppt	1 – 30	hoch	30 min	(nein)	nein
Headspace	ppb	2 – 20	niedrig	30 min	nein	ja
LLE	ppt	5 – 50	hoch	60 min	1000 mL*	ja
SPE	ppt	7 – 15	mittel	30 min	bis zu 100 mL*	ja
SPME	ppt	1 – 12	niedrig	5 min	nein	ja

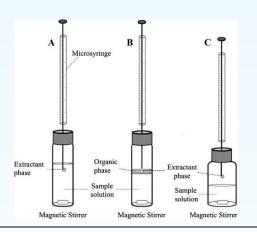

^{*} für 20 Proben

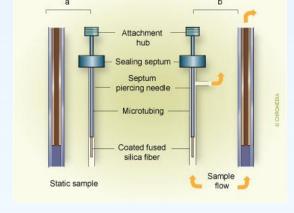

Anwendungsbeispiele für die Mikrofestphasenextraktion

Analyt	Matrix	Bemerkung
Benzen, Toluol, o-, m- und p-Xylen	Wasser	Bestimmungsgrenzen < 50 ng/L (MSD)
Chloroform	Wasser	Nachweisgrenze 30 ng/L (ECD)
Koffein	Getränke (Cola)	Nur Quarzglasstab 50 – 750 mg/L (MS)
Phenole	Wasser	mit NaCl, pH = 2
Triazine	Wasser	Nachweisgrenzen 20 – 90 ng/L, NaCl-Zusatz
Nitroaromaten	Grundwasser	Nachweisgrenzen < 1 – 10 μg/L
unpolare aromatische Amine	Modellwasser Elbewasser	Anreicherungszeit: 40 min, 1,5 g/L NaCl, Bestimmungsgrenzen im mittleren ng/L-Bereich, pH = 7

Weitere /Spezielle Techniken, Ausblick

SBSE (stire bar sorptive extraction); z. B. "twister "

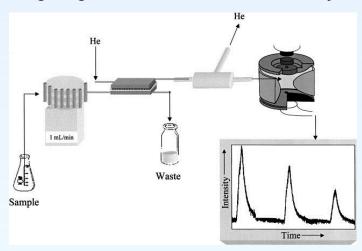

(b) desorption in a solvent


SPDE (solid phase dynamic extraction)

- beschleunigte GGW-Einstellung

in-tube SPME

- Anreicherung an Film im Inneren einer kurzen GC-Kapillare
- gut automatisierbare Kopplung SPME HPLC


SDME (single drope microextraction)

- anstelle immobilisierter Flüssigkeitsfilm LM-Tropfen
- gut mit HPLC koppelbar

Weitere /Spezielle Techniken, Ausblick

Membrane Introduction Mass Spectrometry

- Membran = Trennmedien, die einen selektiven Transport zwischen zwei Phasen vermitteln
- Trennung an Membranen: 1)Siebeffekt, 2) Lösungs-, Diffusionsverhalten
- MIMS geeignete für die "direkte" Analyse von Gasen und organischen Verbindungen

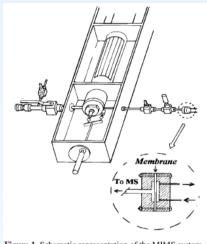
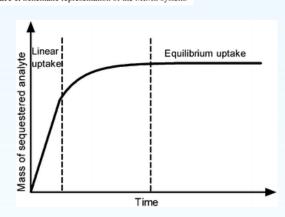



Figure 1. Schematic representation of the MIMS system.

Passivsammler

- zeitintegrierte Probenahme (Erfassung und Mittlung schwankender Konzentrationen)
- hohe Empfindlichkeit!
- schwierig: Kalibrierung (Randbedingungen), Erschöpfung Kapazität

Derivatisierung

- chemische Veränderung der Analyten, um chromatographische Trennung bzw. bestimmte Detektion zu ermöglichen bzw. zu verbessern
- Beispiel Gaschromatographie: Erzeugung gut verdampfbarer, thermisch stabilerer Verbindungen
- Beispiel HPLC: Bildung fluoreszierender Produkte (bessere/ empfindlichere Detektion)
- oftmals Umwandlung polarer Gruppen in unpolare (Erhöhung Flüchtigkeit)
- Derivatisierung kann vor oder nach der chromatographischen Trennung erfolgen
- Nachteile: zusätzlicher Schritt (Fehler),
 - Erhöhung Zeitaufwand Methodenentwicklung (Optimierung),
 - Derivatisierungsmittel (DM) kann als Störsignal auftreten (oft Überschuss notwendig),
 - andere Matrixbestandteile können mit DM reagieren,
 - Beständigkeit der Produkte nicht immer gegeben

<u> Derivatisierung - Beispiele</u>

Veresterung: Umsetzen von Carbonsäuren mit Alkoholgruppen unter sauren Bedingungen

Alkylierung: Einführung von Alkylgruppen (z. B. Verbindungen mit freien OHoder –NH₂-Gruppen)

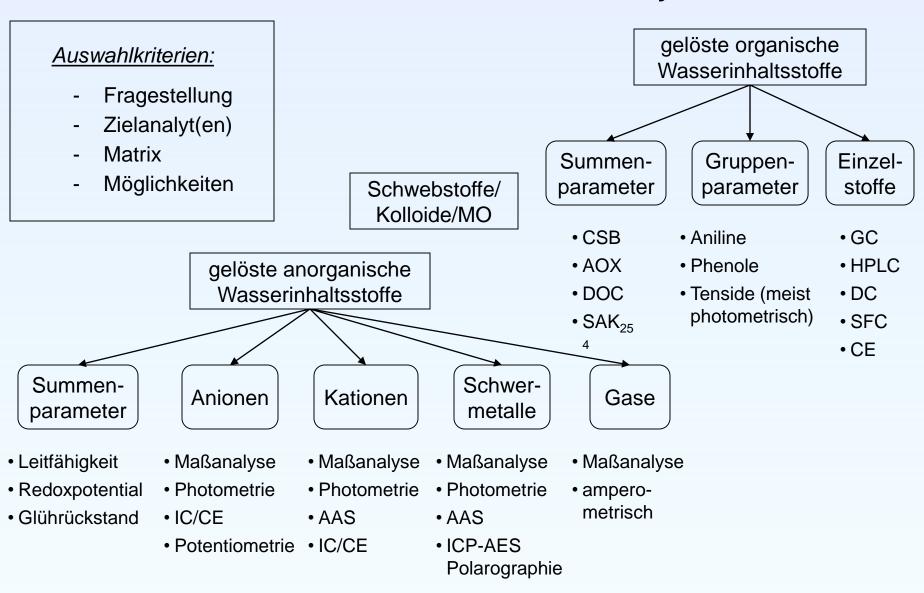
z. B. - Diazomethan

Acylierung: Einführung von Acylgruppen

Silylierung: Einführung von Silylgruppen (z. B. in Aminogruppe)

z. B. - Hexamethyldisilazan (HDMS) / Trimetylchlorsilan (TMCS) 2:1

- N-Methyl-N-(trimethylsilyl)trifluoracetamid (MSTFA)


Fluorierung: Einfügen eines Fluorophors – vorrangig für HPLC-FD

z. B. - 9-Fluorenylmethyllchlorformiat (FMOC-CI)

Weitergehende Literatur:

- J. Pawliszyn, H. L. Lord (Hrsg.): Handbook of sample preparation. Wiley: New Jersey, 2010.
- N. J. K. Simpson: Solid phase extraction: Principles, techniques and applications. Marcel Dekker: New York, 2000.
- R. Greenwood (Hrsg.): Passive sampling techniques in environmental monitoring. In: Wilson's comprehensive analytical chemistry; Vol. 48, Elsevier, 2007.
- K. Blau, J. M. Halket (Hrsg.): Handbook of derivatives for chromatography. Wiley & Sons Ldt: Chichester, 1993.
- J. Drozd, J. P. Novák: Chemical derivatization in gas chromatography. Journal of Chromatography Library, Band 19, Elsevier, 1981.
- W. J. M. Underberg, H. Lingeman: Detection-oriented derivatization techniques in liquid chromatography. CRC Pr. Inc., 1990.

Messmethoden in der Wasseranalytik

