

Faculty of Mechanical Engineering, Institute of Aerospace Engineering

Metström

Measurement of turbulent exchange processes downstream a single tree trunk

Dr.-Ing. Veit Hildebrand, Dipl.-Ing. Thomas Eipper, Johannes Ende Dresden, 08.09.2010

Outline

- Wind tunnel experiment during the first phase of Metström
 - Preparation of the wind tunnel model
 - First simulation of "Wildacker"

Outline

- Wind tunnel experiment during the first phase of Metström
 - Preparation of the wind tunnel model
 - First simulation of "Wildacker"
- 2 Second phase
 - Measurement behind a single trunk
 - Measurement behind a single tree
 - Reference experiment
 - Measurement of dispersion processes

Outline

- Wind tunnel experiment during the first phase of Metström
 - Preparation of the wind tunnel model
 - First simulation of "Wildacker"
- 2 Second phase
 - Measurement behind a single trunk
 - Measurement behind a single tree
 - Reference experiment
 - Measurement of dispersion processes

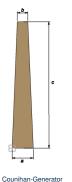
3 Laserscans

- Terrestrial laser scanning
- Laser scanning of single structures

Preparation of the wind tunnel model

- Measurements take place in the boundary layer wind tunnel of the TU Dresden
- Dimensions of the test section: 1.2m high, 1.4m wide and 8m long

Test section of boundary layer wind tunnel



TurbeEFA	
Second phase	
Laserscans	

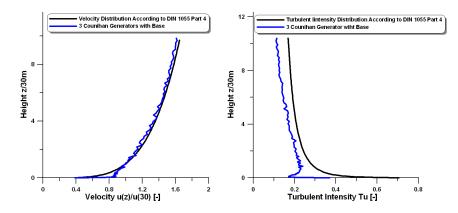
Preparation of the wind tunnel model Adjustment of the boundary layer

 Initialized by counihan-generators with bases and roughness elements

Base of a Counihan-Generator

Roughness element

Total set-up


Measurement of turbulent exchange processes downstream a single tree trunk

TurbeEFA	
Second phase	
Laserscans	

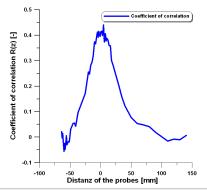
Preparation of the wind tunnel model Adjustment of the boundary layer

TurbeEFA	
Second phase	
Laserscans	

Preparation of the wind tunnel model Boundary conditions

- Determination of the spatial correlation
- Coefficient of correlation:

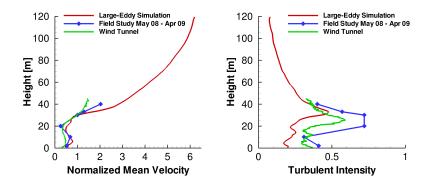
$$egin{aligned} \mathcal{R}_{\mathcal{K}}(z) &= rac{u_1' u_2'}{\sqrt{u_1'^2 \cdot u_2'^2}} \ \mathcal{R}_{\mathcal{K}}(z) &= rac{\sum_i (u_{1\,i} - ar{u_1}) \cdot (u_{2\,i} - ar{u_2})}{\sqrt{\sum_i (u_{1\,i} - ar{u_1})^2 \cdot \sum_i (u_{2\,i} - ar{u_2})^2}} \end{aligned}$$



TurbeEFA	
Second phase	
Laserscans	

Preparation of the wind tunnel model Boundary conditions

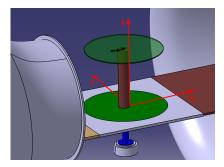
- Measurement with two Hot-Wire-Probes along the z-axis
- Refenrence height: 65mm

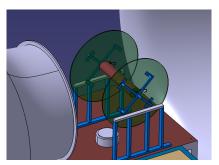


Turb	beEFA
Second	phase
Laser	scans

First simulation of "Wildacker" Profiles for "Main Tower"

TurbeEFA Second phase Laserscans Single Trunk Single Tree Reference Experiment Measurement of dispersion processes


Second phase



Measurement behind a single trunk

- Single trunks of a spruce, chestnut etc.
- 1550mm long, approx. 300mm wide
- Measurements of mean velocity and turbulent intensity around the trunk

Trunk in horizontal assembling

Trunk in vertical assembling

Measurement behind a single trunk

 Measurements take place in the low speed wind tunnel of the TU Dresden

Test preparation

TurbeEFA
Second phase
Laserscans

Measurement behind a single trunk Test procedure

• Two trunks with different roughness

Trunk 1 (spruce)

Trunk 2 (pine)

TurbeEFA	
Second phase	
Laserscans	

Measurement behind a single trunk Test procedure

- Measuring methods: Hot-Wire-Anemometry (HWA) and Particle-Image-Velocimetry (PIV)
- Modification of angle of attack (-90° 90°) and tilt angle (0° 40°)
- Flow rates of 3 m/s, 5 m/s and 10 m/s
- Measuring height z=650mm

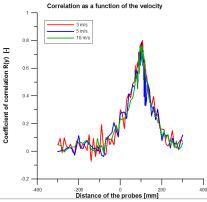
TurbeEFA
Second phase
Laserscans

Measurement behind a single trunk Measuring methods

• HWA: + High spatial and temporal resolution

- Fluid flow is affected by the probes
- Long testing time

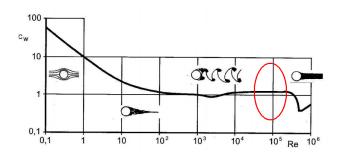
- + 2D flow field
- Needs high memory capacity and processing power



TurbeEFA
Second phase
Laserscans

Measurement behind a single trunk Effect of the flow rate

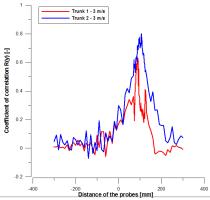
- Measuring with two HWA-probes along the y-axis
- Reference position: y=100mm



TurbeEFA Second phase Laserscans Single Trunk Single Tree Reference Experiment Measurement of dispersion processes

Measurement behind a single trunk Flow around a smooth circular cylinder

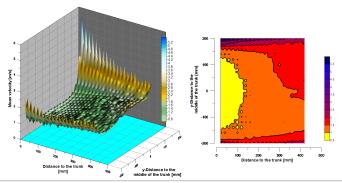
Influence of the Reynolds number



TurbeEFA Second phase Laserscans Single Trunk Single Tree Reference Experiment Measurement of dispersion processes

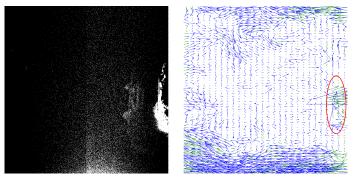
Measurement behind a single trunk Effect of the surface roughness

- Measuring with two HWA-probes along the y-axis
- Reference Position: y=100mm



Measurement behind a single trunk Flow field

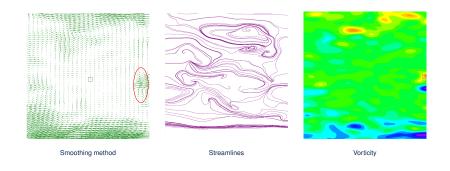
- Measuring with one HWA-probe
- Area of 400mm times 400mm
- Mean velocity



TurbeEFA Second phase Laserscans Single Trunk Single Tree Reference Experiment Measurement of dispersion processes

Measurement behind a single trunk PIV data analysis

Scattered light of the particle


Raw data vector field

TurbeEFA
Second phase
Laserscans

Measurement behind a single trunk PIV data analysis

TurbeEFA
Second phase
Laserscans

Measurement behind a single trunk Structure of the data base

	Projekt: Metström, Großer Beleg - Johannes Ende	
instationäre Ström	nungsmessung bei der Anströmung zweier Baumstämme mittels HDA	
Verfahren:		
HDA:	Messung der Geschwindigkeitskomponente u in x-Richtung als Korrelationsmessung	
	measurg der deschwindigkertakomponente om keikentung als konrelationsmeasung	
Beschreibung der M	Messung:	
	Korrelationsmessung bei konst. Abstand x=200mm und Flächenmessung (400mm x 400mm)	
	- für verschiedene Anströmgeschwindigkeiten (3 m/s, 5m/s, 10m/s)	
	- für verschiedene Anström- und Kippwinkel	
	-für verschiedene Korrelationskonfigurationen (0mm, 100mm, 200mm)	
	Höhe der Messung am Stamm bei z=650mm	
	Aufnahme von Zeitreihen über Dauer von 30 s bei Abtastfrequenz von 1250 Hz	
	Baum 1: Fichte mittel-rauhe Oberfläche (Durchmesser ca. 35cm)	
	Baum 2: Kiefer rauhe Oberfläche (Durchmesser ca. 33cm)	
Allgemein:		
Ort:	NWK TU-Dresden	
Versuchsaufbau:	Lagebeschreibung	

Korrelationsmessung entlang x=200mmm

Baum 1

	Konfiguration 0mm		Konfigurati	on 100mm	Konfiguration 200mm		
	u=3m/s	u=5m/s	u=3m/s	u=5m/s	u=3m/s	u=5m/s	
Winkel β=0°	Baum1 3ms 0°	Baum1 5ms 0°	Baum1 3ms 0°	Baum2 5ms 0°	Baum1 3ms 0°	Baum1 5ms 0°	

Mean document

TurbeEFA
Second phase
Laserscans

Measurement behind a single trunk Structure of the data base

Drojokti Moto	tröm. Großer Beleg - Johannes Ende
instationare Stro	mungsmessung bei der Anströmung zweier Baumstämme mittels HDA
Verfahren:	
HDA:	Messung der Geschwindigkeitskomponente u in x-Richtung als Korrelationsmessung
Beschreibung der	
	Korrelationsmessung bei konst. Abstand x=200mm und Flächenmessung (400mm x 400mm)
	- für verschiedene Anströmgeschwindigkeiten (3 m/s, 5m/s, 10m/s)
	- für verschiedene Anström- und Kippwinkel
	-für verschiedene Korrelationskonfigurationen (0mm, 100mm, 200mm)
	Höhe der Messung am Stamm bei z+650mm
	Aufnahme von Zeitreihen über Dauer von 30 s bei Abtastfrequenz von 1250 Hz
	Baum 1: Fichte mittel-rauhe Oberfläche (Durchmesser ca. 35cm)
	Baum 2: Kiefer rauhe Oberfläche (Durchmesser ca. 33cm)
Allgemein:	
Drt:	NWK TU-Dresden
Versuchsaufbau:	Lagebeschreibung

Konfluctionsmessung entlang x=200mm Baum 1 Konfluction 100mm Konfluction 200mm us3m/s us3m/s us3m/s us3m/s Baum 1.3ms 0² Baum 1.3ms 0² Baum 1.3ms 0² Baum 1.3ms 0²

Link to a single sheet

TurbeEFA
Second phase
Laserscans

Measurement behind a single trunk Structure of the data base

Projekt: Metström, Großer Beleg - Johannes Ende instationäre Strömungsmessung bei der Anströmung des Baumstammes 1						
instationare Strömungsmessung be	N der Anströmung des Baumstammes 1					
Verfahren:						
HDA:	Messung der					
	Geschwindigkeitskomponente u in x-					
	Richtung als Korrelationsmessung					
Allgemein:						
Ort:	NWK TU-Dresden					
Datum:	14.07.2010					
Durchführender:	Johannes Ende					
Parameter:						
Nennanströmgeschwindigkeit:	ū=3 m/s					
Kippwinkel des Stammes:	β+0°					
Anströmwinkel:	a+0°					
Konfiguration:	"0mm"					
Tagesdaten:						
Temperatur:	26,5 °C					
bar. Druck:	1009,3 hPa					
Kalibrier-Daten:						
Druckkalibrierung:	Druck-Kal 60Pa 20100714					
KalibrierungSonde1:	Sonden-1 20100714					
KalibrierungSonde2:	Sonden-2 20100714					
Messsdaten						
Datei mit Mittelwerten:	Korr 3ms OGrad OGrad Omm					
Datei mit Auswertung:	Korrelation 3ms 0mm					

Position der bewegli	ichen Sonde 1			Mittelwerte		
		geschwindigke	Re 💌	Sonde1 🔽	Sonde2 🔽	
[mm]	[mm]	[m/s]	E	[m/s]	[m/s]	
200	300	3,18	69960	3,79	0,37	Korr 3ms 0mm y=300mm
200	290	3,18	69960	3,67	0,42	Korr 3ms 0mm y=290mm

Single sheet

TurbeEFA
Second phase
Laserscans

Measurement behind a single trunk Structure of the data base

Verfahren:					
HDA:	Messung der				
	Geschwindigkeitskomponente u in x-				
	Richtung als Korrelationsmessung				
Allgemein:					
Ort:	NWK TU-Dresden				
Datum:	14.07.2010				
Durchführender:	Johannes Ende				
Parameter:					
Nennanströmgeschwindigkeit:	ū=3 m/s				
Kippwinkel des Stammes:	β+0°				
Anströmwinkel:	a=0°				
Konfiguration:	"0mm"				
Tagesdaten:					
Temperatur:	26,5 °C				
bar. Druck:	1009,3 hPa				
Kalibrier-Daten:					
Druckkalibrierung:	Druck-Kal 60Pa 20100714				
KalibrierungSonde1:	Sonden-1 20100714				
KalibrierungSonde2:	Sonden-2_20100714				
Messsdaten					
Datei mit Mittelwerten:	Korr 3ms OGrad OGrad Omm				
Datei mit Auswertung:	Korrelation 3ms 0mm				

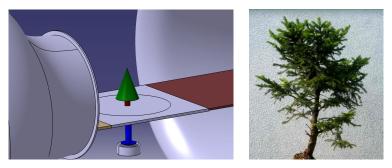
osition der bewegli	chen Sonde 1			Mittelwerte ü	ber 30s	
		geschwindigke	Re 💌	Sondel 🔽	Sonde2	-
[mm]	[mm]	[m/s]	E	[m/s]	[m/s]	
200	300	3,18	69960	3,79	0,37 🧲 🔟	rr 3ms 0mm y=300mr
200	290	3,18	69960	3,67	0,42	15 3ms 0mm v=200m

Link to a data sheet

TurbeEFA
Second phase
Laserscans

Measurement behind a single trunk Structure of the data base

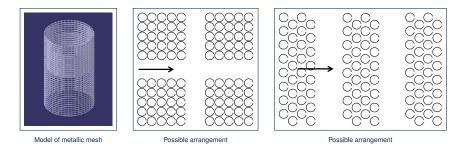
Projekt: Metström, Gr	oßer Bel	eg - Johannes E	nde			
instationäre Strömungsmes						
Verfahren:						
HDA:		Messung der				
		Geschwindigkeitskomponente u in x-				
		Richtung als Korrelationsmessung				
Allgemein:						
Drt:		NWK TU-Dresden				
Datum:		14.07.2010				
Durchführender:		Johannes Ende				
Parameter:	-	_			×	
Nennanströmgeschwindigk	📐 Когг	_3ms_0Grad_0Gr	ad_0mm			
Kippwinkel des Stammes:	Datei I	Bearbeiten Forma	t Ansicht ?			
Anströmwinkel:					_	
Konfiguration:			594 637		^	
Fagesdaten:			674			
Temperatur:			693			
bar. Druck:	4	.1387 0.3	724			
Kalibrier-Daten:		.2128 0.3				
Druckkalibrierung:		.0626 0.3	743			
KalibrierungSonde1:		.1699 0.3	762			
KalibrierungSonde2:		.1217 0.3				
Messidaten		.1928 0.3				
Datei mit Mittelwerten:	1 2	.1104 0.3	762			
			813			
Datei mit Auswertung:			813			
		.1500 0.3			- L	
Position der beweglichen So			787			
	4	.1104 0.3	794 806		le le	
•	1 3	.9433 0.3	800			-
[mm] [•		m		► 4	
	00	3,18	69960	3,79	0,37	Korr 3ms 0mm y=300mm
200	290	3.18	69960	3.67	0.42	Hose 3ms 0mm v=200m
		2,20		-,-,	2,12	


Data sheet

Measurement behind a single tree

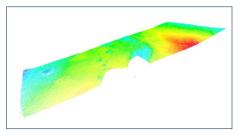
- Single tree at a scale of approx. 1:25
- Reinforced with liquid class (for example)
- Measurements of mean velocity and turbulent intensity around the trunk

Schematic assembling in the wind tunnel


Possible tree

Reference experiment

- Arrangements of model trees made of metallic mesh
- Metallic mesh: steel wires with 0.5mm diameter and mesh size of 3mm
- Measurements in, around and behind the arrangements



Measurement of dispersion processes

- Improvement of the experimental set-up
- Use of digital models of the topography and the canopy
- Implementation of contactless measurement technics

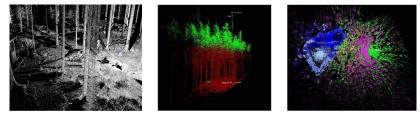
Model of the "Wildacker" in the wind tunnel

Digital model of the topography

TurbeEFA Second phase Laserscans

Terrestrial Laser Scanning Laser Scanning of Single Structures

Laserscans


V.Hildebrand, Th. Eipper, 09.09.2010

Terrestrial laser scanning

- Laser scan of the "Wildacker" from ground and the top of a tower
- Determination of point clouds
- Determination of leaf area index

Point clouds resulting from terrestrial laser scans

Laser scanning of single structures

- High resolution scans of smaler plants
- Structure of surface areas can be determined
- CAD-models can be produced out of the measurements

Indoor plant: picture (left),laser scan (middle) and the details (right)

TurbeEFA Second phase Laserscans

Terrestrial Laser Scanning Laser Scanning of Single Structures

Thank you for your attention.