

Fakultät für Maschinenwesen, Institut für Strömungsmechanik

LES von Strömungen in inhomogenen Wäldern mit Hilfe hochauflösender terrestrischer Laserscans

Fabian Schlegel und Jörg Stiller

MetStröm Workshop, Tharandt 2010

Dresden, 10.09.2010

Intro
Method
Results
Outlook

Introduction

- Chair of Fluid Dynamics
- DFG SPP 1276 MetStröm

Intro
Method
Results
Outlook

Introduction

- Chair of Fluid Dynamics
- DFG SPP 1276 MetStröm
- 2 Numerical Method
 - SGS-Model
 - Solver
 - Validation with Homogeneous Forest

Intro
Method
Results
Outlook

Introduction

- Chair of Fluid Dynamics
- DFG SPP 1276 MetStröm
- 2 Numerical Method
 - SGS-Model
 - Solver
 - Validation with Homogeneous Forest

3 Results

- Determination of Leaf Area Density
- Simulations for "Wildacker"

Intro
Method
Results
Outlook

Introduction

- Chair of Fluid Dynamics
- DFG SPP 1276 MetStröm
- 2 Numerical Method
 - SGS-Model
 - Solver
 - Validation with Homogeneous Forest

3 Results

- Determination of Leaf Area Density
- Simulations for "Wildacker"

Outlook

Intro	
lethod	
lesults	
utlook	

Chair MetStröm

Chair of Fluid Dynamics

Professor: Dr.-Ing. habil. Jochen Fröhlich

Research topics:

- Turbulent flows (LES, DNS)
- Statistical and hybrid turbulence modelling
- Multiphase flows
- Reactive flows
- Magnetohydrodynamics
- Flows with cavitation
- Optimization

Ressources:

- CFD-Codes: LESOCC2, PRIME, Semtex, OpenFoam and commercial software
- Workstations, clusters, access to High Performance Computing
- Various water channels equipped with laser measurement systems

Intro
/lethod
Results
utlook

Chair MetStröm

DFG SPP 1276 MetStröm

T. von Larcher and R. Klein, EULAG Workshop 2008

Intro
Method
Results
Outlook

Numerical Method

Fabian Schlegel, 10.09.2010

LES von Strömungen in inhomogenen Wäldern mit Hilfe hochauflösender terrestrischer Laserscans

Intro	
Method	
Results	
Outlook	

SGS-Model

Filtered Navier-Stokes-Equation (FNSE) with vegetation:

$$\partial_t \bar{u}_i + \partial_{x_j} \left(\bar{u}_i \bar{u}_j \right) + \partial_{x_i} \bar{p} = \partial_{x_j} \nu \bar{S}_{ij} - \partial_{x_j} \tau_{ij} + F_i$$

with:

$$F_i=-c_da\sqrt{ar{u_i}^2}ar{u_i}=-rac{ar{u_i}}{ au}$$

Transport equation for unresolved turbulent kinetic energy (TKE):

$$\partial_{t}K_{\tau} + \partial_{x_{j}}\left(\bar{u}_{j}K_{\tau}\right) - \partial_{x_{j}}\left(2\nu_{\tau}\partial_{x_{j}}K_{\tau}\right) = \frac{4}{5}\frac{(1-c_{GM})}{c_{Rm}c_{3m}}\nu_{\tau}\bar{S}_{ij}\bar{S}_{ij} - \frac{c_{\epsilon m}}{\Delta}K_{\tau}^{\frac{3}{2}} - \frac{2K_{\tau}}{\tau}$$

with:

$$\nu_{\tau} = \frac{5}{6} c_{3m} \Delta \sqrt{K_{\tau}}$$

[R. Shaw and U. Schumann, Boundary-Layer Meteorology 61: 47-64, 1992]

Intro	
Method	
Results	
Dutlook	

Solver

- OpenFOAM (R) C++ libraries (Version 1.6)
- Finite Volume Method
- Scheme of 2nd order accuracy in space
- 2nd order Euler backward scheme in time
- Pressure-implicit splitting operator algorithm (PISO) for pressure-velocity coupling
- Unstructured, nonorthogonal, hexahedral mesh

Intro	
Method	
Results	
Outlook	

Solver

Performance test with OpenFOAM (R) 1.6 on SGI Altix 4700 \rightarrow Mesh with 2 mil. cells on 200 CPUs has an efficiency of 99%

Fabian Schlegel, 10.09.2010

Intro	
Vethod	
Results	
Dutlook	

Validation with Homogeneous Forest

- Domain dimensions: 192 m x 96 m x 60 m
- 20 m tall forest with a bulk velocity of 2 m/s
- BC: free slip at top, no slip at bottom, periodic for both lateral directions
- 10,000 s for startup and 10,000 s for averaging

Intro	
lethod	
tesults	
utlook	

Validation with Homogeneous Forest

Intro	
lethod	
tesults	
utlook	

Validation with Homogeneous Forest

[H. Schmidt and U. Schumann, Journal of Fluid Mechanics 200: 511-562, 1989]

Intro	
Method	
Results	
Outlook	

Determination of Leaf Area Density

Terrestrial laser scanning

point cloud resulting from terrestrial laser scans

Point cloud (left) and corresponding voxel representation (right)

Numerical simulation

Averaging of voxel for hexahedral foam mesh

Leaf area density (averaged over 30 m width in y-direction)

Intro	
Method	
Results	
Outlook	

Simulations for "Wildacker" Setup

Name	Domain size	PAD	Spacing
Simulation C	$191\times96\times175\mathrm{m}$	a(z)	$\Delta = 1 \mathrm{m}$
Simulation D	$191 \times 96 \times 175\mathrm{m}$	a(x,z)	$\Delta = 1 \mathrm{m}$
Simulation E	$191 \times 96 \times 175\mathrm{m}$	a(x,z)	$\Deltapprox 2\mathrm{m}$
Simulation F	$760 \times 380 \times 210\mathrm{m}$	a(z)	$\Delta_{min} = 2 \mathrm{m}$
Simulation G	$760 \times 380 \times 210\mathrm{m}$	a(x,z)	$\Delta_{min} = 2 \mathrm{m}$
Simulation H ¹	$760 \times 380 \times 210\mathrm{m}$	a(z)	$\Delta_{\it min}=2{ m m}$

- BC: free slip at top, no slip at bottom, periodic for both lateral directions
- Logarithmic overlap law for rough walls at lower boundary
- Constant mass flux through the inflow boundary of 6 m/s

¹reference case for homogenous forrest without a clearing

Intro	
Method	
Results	
Outlook	

Simulations for "Wildacker"

Intro	
Method	
Results	
Outlook	

Simulations for "Wildacker"

Fabian Schlegel, 10.09.2010

Intro	
Method	
Results	
Outlook	

Simulations for "Wildacker"

Fabian Schlegel, 10.09.2010

Intro	
Method	
Results	
Outlook	

Simulations for "Wildacker"

Intro	
Method	
Results	
Outlook	

Simulations for "Wildacker"

- Clark tower (CM) bei x = 17 m
- Scaffolding tower 1 (GM1) bei x = 69 m
- Scaffolding tower 2 (GM2) bei x = 129 m
- Permanent scaffolding tower (HM) bei x = 181 m

Intro	
Method	
Results	
Outlook	

Simulations for "Wildacker"

Profiles of normalized mean velocity $|\langle \overline{U} \rangle| / U_{ref}$ for CM, GM1 and HM:

- CM and HM shows typical velocity profile for forrested areas
- Clearing visible in velocity profile for GM1
- Resolution has no significant effect on mean flow

Intro	
Method	
Results	

Simulations for "Wildacker"

Profiles of normalized Reynolds stress $-\langle u'w' \rangle / U_{ref}^2$ for CM, GM1 and HM:

- CM and HM shows typical velocity profile for forrested areas
- Within the forrest nearly no turbulent flux compared to the profile over the clearing (GM1)
- Resolution may effects the profile right infront of the forrest edge

Intro	
Method	
Results	
Outlook	

Simulations for "Wildacker"

Frequency spectra for HM at 42 m height

- Characteristic peaks at high wavelength, especially for domain length
- Spectra for all tower positions at 2, 10, 20, 30, 40 m height available
- Still work in progress

Intro	
Method	
Results	
Outlook	

Outlook

- Extension to 3D leaf area density
- Comparison with boundary layer model
- Improvement of subgrid-scale model by investigation of vegetation details

Idea of rough cylinder represented by point cloud for LES Pictures by A. Bienert

SAVE A TREE

Eat a beaver.