

Cartography: What My Parents Think I Study

181962379

Sources: https://pbs.twimg.com/media/ESwgOnRUMAEsSu8.jpg

https://media.gettyimages.com/photos/illustration-depicts-flemish-cartographer-gerardus-mercator-with-a-picture-id181962379?s=612x612

Cartography: What I Actually Study

Influences and Effects of COVID-19 Response

Dunkel et al. (2019)

SOCIAL (WHO)

Twitter users

Available from raw data

SPATIAL (WHERE)

Geotagged post locations

Available from raw data

TEMPORAL (WHEN)

Time of post

Available from raw data

TOPICAL (WHAT)

Content of post

Derived from hashtags

The Dataset

~4 MILLION POSTS

GEOTAGGED WITHIN EUROPE

DURING 2020*

AT LEAST ONE EMOJI AND ONE HASHTAG

Image source: https://about.twitter.com/e n/who-we-are/brandtoolkit

* No data available for November 2020

Objective

Goal:

Determine whether emojis can be used to identify relevant topics and their spatial-temporal evolution in a non-topic-specific dataset

Objective

Goal:

Determine whether emojis can be used to identify relevant topics and their spatial-temporal evolution in a non-topic-specific dataset

Basically...

Without first filtering the dataset by subject (like most other studies), what can trends in emoji usage tell us about the topics people discuss on Twitter?

Exploratory Analysis

Initial Results

	January	February	March	April	Мау	June	July	August	September	October	December
0	()	۲	æ	e	۲	۲	۲	•	©	@	•
1	•	٢	•	۲	\	\	\	٢	•	۲	\$
2	U	•	•	5	•	5	•	*	•	•	e
3	•	•	•	`				•	U		•
4	2	۲	(Å	۲	۲	۲	۲	•	۲	•
5	•	1	1	12	2	1	٥	٢	2	2	1
6	٥	۵	Ă	۲	0	0	2	<u>e</u>	۵	٥	•
7			۲				**	2			٢
8	0	0		0	۷	٥	0	0	<u>0</u>	0	e
9	•	•	••	•	`	99		0	5	•	•

Initial Results

	Germany	Italy	France	Netherlands	Sweden	United Kingdom	Belgium	Ireland
0	۲	۲	•	•	•	e	۲	e
1	٢	٢	e	4 0	e	•	©	•
2	7	U	•	10 0	*		•	1
3	U	6	Å		•	(e	*
4		۲		•		U	0	
5	Å	2	0	e	Å	2	9	1
6	•	۷	e		**	•		•
7	*	۵	6	6	6	0	Å	* *
8	<u>60</u>	Å	۲	•	0	A	6	A
9	0	•	1	e	•	**	•	۲

Uh.... Okay?

Typicality

Hauthal et al. (2021)

Purpose

Identify the most characteristic emojis within a **designated subset of a larger dataset** Other statistical measures, like absolute or relative frequency, only reveal most commonly used characters Typicality normalizes emoji usage over the dataset, allowing for the calculation of relative differences

Calculation

Typicality = $\frac{ns/Ns - nt/Nt}{nt/Nt}$ = $\frac{Rel. freq. within the subset - rel. freq. within the total dataset}{rel. freq. within the total dataset}$

Interpretation

Positive typicality: an occurrence is typical for the subset compared to the total dataset Negative typicality: an occurrence is atypical for a subset compared to the total dataset The greater the absolute value, the more typical or atypical the occurrence

Typicality

Hauthal et al. (2021)

Purpose

Identify the most characteristic emojis within a **designated subset of a larger dataset** Other statistical measures, like absolute or relative frequency, only reveal most commonly used characters Basically... Typicality erences For a given (spatial or temporal) subset of the data, how 'characteristic' or 'typical' of that subset is a taset given emoji? Typico Still confused? Let's take a look: Positive typicality: an occurrence is typical for the subset compared to the total dataset

Negative typicality: an occurrence is atypical for a subset compared to the total dataset

The greater the absolute value, the more typical or atypical the occurrence

Temporal Typicality

Number of Mask Tweets per Month

Number of Mask Tweets per Month

Number of Raised Fist Tweets per Month

Spatial Typicality

Spatial-Temporal Typicality

28 June 2022

WWW. PHDCOMICS. COM

Image source: https://phdcomics.com/co mics.php?f=1711

Thank You!

Questions? Comments?

