

The benefits of compound event research for climate risk assessments

Jakob Zscheischler

Helmholtz Centre for Environmental Research – UFZ Chair of Data Analytics in Hydro Science, TU Dresden Inaugural lecture – May 10, 2023

Elbe flood 1845

DIE ELBBRÜCKE AM 31. MÄRZ 1845 9½ UHR VORMITTAGS.

Aftermath of hurricane Ida

- Caused a blackout in many regions
- Air conditioning was not available during the following heatwave

2016 crop failure in France

Extreme weather events and their impacts

- > Droughts
- > Floods
- > Heatwaves
- Wildfires
- > Storms/Hurricanes
- **>** ...

Annual maximum streamflow in Dresden

Flood frequency analysis

Runoff [m³/s] 300 3000 4

2000

Used to estimate return levels of 100-year floods (floods that occur on average every 100 years)

Helpful for designing flood barriers

Climate change projections

Traditional approaches to climate risk

- Warmest day of the year (TXx)
- Maximum daily precipitation (RX1day)
- Maximum length of dry spell
- Frequency of heat waves
- Intensity of droughts
- **>** ...

Top-down modelling chain

Climate risk assessment for the three case studies

- ➤ 1845 Dresden flood: cold winter + lots of snow followed by increasing temperatures + rain
- 2021 Hurricane Ida: power outage followed by heatwave, people can't use air conditioning
- ➤ 2016 crop failure in French breadbasket: what are the drivers?

Limitations of traditional climate risk assessments

- Impacts are rarely driven by a single climate extreme
- Currently limited knowledge on
 - 1) Which weather conditions lead to impacts?
 - 2) What is the **dependence** between climate impact drivers?
 - 3) Do climate models simulate climate impact drivers well?
 - 4) Do impact models simulate climate-impact relationships well?

Compound events

- "(1) two or more extreme events occurring simultaneously or successively,
- (2) combinations of extreme events with underlying conditions that amplify the impact of the events, or
- (3) combinations of events that are not themselves extremes but lead to an extreme event or impact when combined."

Criticism

Ambiguities include:

- the role of the underlying conditions (amplifying? part of the event?),
- the scale implied by the terms 'successive' (temporal) or 'simultaneous' (spatial);
- whether the combination of events leading to an impact is restricted to non-extremes;
- whether a single event can be a compound event of multiple variables or the event is made up of two or more distinct events.

New proposal (2014)

"A compound event is an **extreme impact** that depends on multiple **statistically dependent** variables or events."

> Shift of focus from climate extremes to extreme impacts!

Criticism

How do we know whether the drivers are statistically dependent?

Leonard et al. (2014) WIREs Climate Change

"Reconciliation" workshop in Zurich (Spring 2017)

- > IPCC SREX authors
- > Leonard et al authors
- > Experts from different domains
- > Early career scientists

"Compound weather and climate events refer to the **combination of multiple drivers and/or hazards** that contributes to societal or environmental **risk**."

Embedding in the IPCC risk framework

"Compound weather and climate events refer to the **combination of multiple drivers and/or hazards** that contributes to societal or environmental **risk**."

What is not a compound event?

- Definition is very broad
- Encapsulates many different events at many different spatial and temporal scales
- How can we meaningfully structure such events to aid analysis?

A typology of compound events

- Can help structure our thinking on high-impact events
- Can help select/develop appropriate analysis tools for a given event type
- Can trigger synergies between different impact communities for which similar event types are relevant

Zscheischler et al. (2020) Nature Reviews Earth & Environment

A typology of compound events

- Sequence of storms/heavy precip. events
- Cyclone followed by a heatwave

Global crop failure

Spatially compounding: 2002 Floods in Central Europe

Led to the creation of the European Union Solidarity Fund

Dresden, August 2002

Challenges in compound event research

- 1. Identifying meteorological drivers of extreme impacts.
- 2. Evaluating climate and impact models with respect to compound events.
- 3. Creating robust projections of high-impact events.

Drivers of tree mortality

Credit: Emily Solly

Tmax VPD CWD -PPT -SM -PDSI

Impacts of concurrent drought-heat events

- Forest mortality
- Crop failure
- Mega-wildfires
- > Fish die-off
- Reduced energy production
- **>** ...

Dependence of drivers affects occurrence probability

Hot and dry summers often co-occur, but spatially variable

More frequent hot & dry summers

Comparison: Observations vs climate models

Average number of stations for precipitation

No observations!

- Models show stronger dependence in some regions.
- Overestimation of models?
- Missing observational constraint?

Impacts of concurrent drought-heat events

- Forest mortality
- Decreased carbon uptake
- Crop failure
- Reduced energy production
- > Fish die-off
- **>** ...

What about other high-impact events for which drivers are not well known?

More sophisticated approaches for driver identification

- Create large set of potential predictors
- Select those that best predict impact

2016 crop failure in France

Using machine learning to identify impact drivers

Quantifying (compounding) drivers with machine learning

RR: recent rainfall

RT: recent temperature

SM: soil moisture

SP: snow pack

DP: discharge peak

Jiang et al. (in prep)

2002 Elbe flood, Dresden

Interaction richness 6/48=12.5%

Jiang et al. (in prep)

New metric: Richness in interactions

New metric: Flood complexity

Elbe (Dresden)

Few compounding drivers

Flood magnitude increases ---

Flood complexity

Application to 3527 catchments

Jiang et al. (in prep)

Large floods underestimated when flood complexity is high

Dresden: Flood frequency analysis without largest event (1845)

Jiang et al. (in prep)

Challenges in compound event research

- Identifying meteorological drivers of extreme impacts.
- 2. Evaluating climate and impact models with respect to compound events.
- 3. Creating robust projections of high-impact events.

The value of large ensemble simulations

- Separation of climate change trends from internal climate variability
- Identification of worst case scenarios
- Robust projections of complex events

Uncertainty in risk estimates

Projections of compound hot-dry summers

1950-1980

 f_{HD} = Probability of concurrent hot & dry summer

Uncertainty large in the future

2° C warmer world (rel. to preindustrial)

Precipitation trends drive future occurrence of hot-dry events

Correlation between f_{HD} and ΔP_{mean}

However: uncertainties in precipitation projections are often irreducible.

Climate storylines for central Europe

Hot-dry summer every ~4 years

Hot-dry summer every ~10 years

Conclusions

- Viewing climate climate impacts through a "compound event" lens offers new perspectives on climate risk assessment
- Compound event research aims to develop new paradigms to better understand and project climate risks
- Ignoring compounding drivers can lead to misspecification of climate risks

