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Elbe flood 1845
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Aftermath of hurricane Ida

Ø Caused a blackout in many regions
Ø Air conditioning was not available 

during the following heatwave



2016 crop failure in France

Ben-Ari et al. (2018) Nature Communications
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Extreme weather events and their impacts

Ø Droughts
Ø Floods
Ø Heatwaves
Ø Wildfires
Ø Storms/Hurricanes
Ø …
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Annual maximum streamflow in Dresden
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Flood frequency analysis
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Ø Used to estimate return levels of 100-year floods
(floods that occur on average every 100 years)

Ø Helpful for designing flood barriers

1806 1819 1832 1845 1858 1871 1884 1897 1910 1923 1936 1949 1962 1975 1988 2001 2014
Year

Ru
no

ff 
[m

3 /s
]

0
10

00
20

00
30

00
40

00
50

00



8

Climate change projections

IPCC (2022)
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Traditional approaches to climate risk

Ø Warmest day of the year (TXx)
Ø Maximum daily precipitation (RX1day)
Ø Maximum length of dry spell
Ø Frequency of heat waves
Ø Intensity of droughts
Ø …

IPCC (2021)
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and projected changes for more moderate extreme precipitation 
are also more uncertain. Extreme precipitation, represented by 
the number of days with daily precipitation exceeding 50 mm and the 
annual fraction of precipitation falling during days with the top 10% 
daily precipitation amount, is projected to increase on the eastern 
coast of Southern Central America, but to decrease along the Pacific 
coasts of El Salvador and Guatemala (Imbach et al., 2018). Chou et al. 
(2014b) and Giorgi et al. (2014) projected an increase in extreme 
precipitation over South-Eastern South America and the Amazon. 
Projected changes in moderate extreme precipitation represented 
by the 99th percentile of daily precipitation by different models 
under different emissions scenarios, even at high warming levels, 
are mixed: increases are projected for all regions by the CORDEX-
CORE and CMIP5 simulations, while increases for some regions and 
decreases for other regions are projected by CMIP6 simulations 
(Coppola et al., 2021a). Extreme precipitation is projected to increase 
in the La Plata basin (Cavalcanti et al., 2015; Carril et al., 2016). Taylor 
et al. (2018) projected a decrease in days with intense rainfall in the 
Caribbean under 2°C global warming by the 2050s under RCP4.5 
relative to 1971–2000. 

In Europe (Table 11.17), extreme precipitation will likely increase at 
global warming levels of 2°C and below, but very likely increase for 
higher warming levels for the region as whole. The CMIP6 multi-
model median projects an increase in the 10- and 50-year return 
values of Rx1day and Rx5day over a majority of the region at the 2°C 
global warming level, with more than 95% of the region showing 
an increase at higher warming levels (Figure 11.7; C. Li et al., 2021). 
The most intense precipitation events observed today in Europe are 
projected to almost double in occurrence for each 1°C of further global 
warming (Myhre et al., 2019). Extreme precipitation is projected to 
increase in both boreal winter and summer over Europe (Madsen 
et al., 2014; Christensen et al., 2015; Nissen and Ulbrich, 2017). There 
are regional differences, with decreases or no change for the southern 

part of Europe, such as the southern Mediterranean (Tramblay and 
Somot, 2018; Lionello and Scarascia, 2020; Coppola et al., 2021a), 
uncertain changes over central Europe (Argüeso et al., 2012; Croitoru 
et al., 2013; Rajczak et al., 2013; Casanueva et al., 2014; Patarčić 
et al., 2014; Paxian et al., 2014; Roth et al., 2014; Fischer and Knutti, 
2015; Monjo et al., 2016) and a  strong increase in the remaining 
parts, including the Alps region (Gobiet et al., 2014; Donnelly et al., 
2017), particularly in winter (Fischer et al., 2015), and in northern 
Europe. In a 3°C warmer world, there will be a  robust increase in 
extreme rainfall over 80% of land areas in northern Europe (Madsen 
et al., 2014; Donnelly et al., 2017; Cardell et al., 2020). 

In North America (Table 11.20), the intensity and frequency of extreme 
precipitation will likely increase at the global warming levels of 
2°C and below, and very likely increase at higher warming  levels. 
An increase is projected by CMIP6 model simulations (Li et al., 
2021) and by previous model generations (Wu, 2015; Easterling 
et al., 2017; Innocenti et al., 2019), as well as by RCMs (Coppola 
et al., 2021a). Projections of extreme precipitation over the southern 
portion of the continent and over Mexico are more uncertain, with 
decreases possible (Sillmann et al., 2013b; Alexandru, 2018; Coppola 
et al., 2021a). 

In summary, heavy precipitation will generally become more frequent 
and more intense with additional global warming. At global warming 
levels of 4°C relative to the pre-industrial, very rare (e.g.,  one in 
10 or more years) heavy precipitation events would become more 
frequent and more intense than in the recent past, on the global 
scale (virtually certain), and in all continents and AR6 regions: The 
increase in frequency and intensity is extremely likely for most 
continents and very likely for most AR6 regions. The likelihood 
is lower at lower global warming levels and for less-rare heavy 
precipitation events.  At the global scale, the intensification of 
heavy precipitation will follow the rate of increase in the maximum 

Annual maximum daily precipitation change (Rx1day) - median
(a) At 1.5°C global warming (b) At 2.0°C global warming (c) At 4.0°C global warming
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Figure 11.16 | Projected changes in annual maximum daily precipitation at (a) 1.5°C, (b) 2°C, and (c) 4°C of global warming compared to the 1850–1900 
baseline. Results are based on simulations from the Coupled Model Intercomparison Project Phase 6  (CMIP6) multi-model ensemble under the Shared Socio-economic 
Pathway (SSP), SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The numbers on the top right indicate the number of simulations included. Uncertainty is 
represented using the simple approach: no overlay indicates regions with high model agreement, where ≥80% of models agree on the sign of change; diagonal lines indicate 
regions with low model agreement, where <80% of models agree on the sign of change. For more information on the simple approach, please refer to the Cross-Chapter Box 
Atlas 1. For details on the methods see Supplementary Material 11.SM.2. Changes in Rx1day are also displayed in the Interactive Atlas. Further details on data sources and 
processing are available in the chapter data table (Table 11.SM.9).
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Figure 11.16 | Projected changes in annual maximum daily precipitation at (a) 1.5°C, (b) 2°C, and (c) 4°C of global warming compared to the 1850–1900 
baseline. Results are based on simulations from the Coupled Model Intercomparison Project Phase 6  (CMIP6) multi-model ensemble under the Shared Socio-economic 
Pathway (SSP), SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The numbers on the top right indicate the number of simulations included. Uncertainty is 
represented using the simple approach: no overlay indicates regions with high model agreement, where ≥80% of models agree on the sign of change; diagonal lines indicate 
regions with low model agreement, where <80% of models agree on the sign of change. For more information on the simple approach, please refer to the Cross-Chapter Box 
Atlas 1. For details on the methods see Supplementary Material 11.SM.2. Changes in Rx1day are also displayed in the Interactive Atlas. Further details on data sources and 
processing are available in the chapter data table (Table 11.SM.9).
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warmer climate, and it is very likely that heatwaves will occur 
with a higher frequency and longer duration.The SR1.5 (Chapter 3, 
Hoegh-Guldberg et al., 2018) assessment on projected changes in 
hot extremes at 1.5°C and 2°C global warming is consistent with the 
AR5 assessment, concluding that it is very likely a global warming 
of 2°C, when compared with a 1.5°C warming, would lead to more 
frequent and more intense hot extremes on land, as well as to longer 
warm spells, affecting many densely inhabited regions. The SR1.5 
also assessed it is very likely that the strongest increases in the 
frequency of hot extremes are projected for the rarest events, while 
cold extremes will become less intense and less frequent, and cold 
spells will be shorter. 

New studies since AR5 and SR1.5 confirm these assessments. New 
literature since AR5 includes projections of temperature-related 
extremes in relation to changes in mean temperatures, projections 
based on CMIP6 simulations, projections based on stabilized global 
warming levels, and the use of new metrics. Constraints for the 
projected changes in hot extremes were also provided (Borodina 
et al., 2017b; Sippel et al., 2017b; Vogel et al., 2017). Overall, 
projected changes in the magnitude of extreme temperatures over 
land are larger than changes in global mean temperature, over mid-
latitude land regions in particular (Figures 11.3, 11.11; Fischer et al., 
2014; Seneviratne et al., 2016; B.M. Sanderson et al., 2017; Wehner 
et al., 2018b; Di Luca et al., 2020b). Large warming in hot and cold 

extremes will occur, even at the 1.5°C GWL (Figure 11.11). At this 
level, widespread significant changes at the grid-box level occur for 
different temperature indices (Aerenson et al., 2018). In agreement 
with CMIP5 projections, CMIP6 simulations show that a  0.5°C 
increment in global warming will significantly increase the intensity 
and frequency of hot extremes, and decrease the intensity and 
frequency of cold extremes on the global scale (Figures 11.6, 11.8 
and 11.12). It takes less than half of a degree for the changes in TXx 
to emerge above the level of natural variability (Figure 11.8) and the 
66% ranges of the land medians of the 10-year or 50-year TXx events 
do not overlap between 1.0°C and 1.5°C in the CMIP6 multi-model 
ensemble simulations (Figure 11.6, Li et al., 2021). 

Projected warming is larger for TNn and exhibits strong equator-to-
pole amplification, similar to the warming of boreal winter mean 
temperatures. The warming of TXx is more uniform over land and 
does not exhibit this behaviour (Figure  11.11). The warming of 
temperature extremes on global and regional scales tends to scale 
linearly with global warming (Section 11.1.4; Fischer et al., 2014; 
Seneviratne et al., 2016; Wartenburger et al., 2017; Li et al., 2021; 
see also SR1.5, Chapter 3). In the mid-latitudes, the rate of warming  
of hot extremes can be as large as twice the rate of global 
warming (Figure 11.11). In the Arctic winter, the rate of warming of 
the temperature of the coldest nights is about three times the rate 
of global warming (Appendix, Figure  11.A.1). Projected changes 

Colour
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Figure 11.11 | Projected changes in (a–c) annual maximum temperature (TXx) and (d–f) annual minimum temperature (TNn) at 1.5°C, 2°C, and 4°C of 
global warming compared to the 1850–1900 baseline. Results are based on simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model 
ensemble under the Shared Socio-economic Pathways (SSPs) SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The numbers in the top right indicate the number 
of simulations included. Uncertainty is represented using the simple approach: no overlay indicates regions with high model agreement, where ≥80% of models agree on the 
sign of change; diagonal lines indicate regions with low model agreement, where <80% of models agree on the sign of change. For more information on the simple approach, 
please refer to the Cross-Chapter Box Atlas 1. For details on the methods see Supplementary Material 11.SM.2. Changes in TXx and TNn are also displayed in the Interactive 
Atlas. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).
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Figure 11.11 | Projected changes in (a–c) annual maximum temperature (TXx) and (d–f) annual minimum temperature (TNn) at 1.5°C, 2°C, and 4°C of 
global warming compared to the 1850–1900 baseline. Results are based on simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model 
ensemble under the Shared Socio-economic Pathways (SSPs) SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The numbers in the top right indicate the number 
of simulations included. Uncertainty is represented using the simple approach: no overlay indicates regions with high model agreement, where ≥80% of models agree on the 
sign of change; diagonal lines indicate regions with low model agreement, where <80% of models agree on the sign of change. For more information on the simple approach, 
please refer to the Cross-Chapter Box Atlas 1. For details on the methods see Supplementary Material 11.SM.2. Changes in TXx and TNn are also displayed in the Interactive 
Atlas. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).
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Climate risk assessment for the three case studies

Ø 1845 Dresden flood: 
cold winter + lots of snow followed by increasing temperatures + rain

Ø 2021 Hurricane Ida: 
power outage followed by heatwave, people can’t use air conditioning

Ø 2016 crop failure in French breadbasket:
what are the drivers?
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Limitations of traditional climate risk assessments

Ø Impacts are rarely driven by a single climate extreme
Ø Currently limited knowledge on 

1) Which weather conditions lead to impacts?
2) What is the dependence between climate impact drivers?
3) Do climate models simulate climate impact drivers well?
4) Do impact models simulate climate-impact relationships well?
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Compound events

“(1) two or more extreme events occurring simultaneously or 
successively, 
(2) combinations of extreme events with underlying 
conditions that amplify the impact of the events, or 
(3) combinations of events that are not themselves extremes 
but lead to an extreme event or impact when combined.”

IPCC SREX (2012); Leonard et al. (2014)

Criticism 
Ambiguities include:
Ø the role of the underlying conditions (amplifying? part of the event?), 
Ø the scale implied by the terms ‘successive’ (temporal) or ‘simultaneous’ (spatial);
Ø whether the combination of events leading to an impact is restricted to non-extremes;
Ø whether a single event can be a compound event of multiple variables or the event is 

made up of two or more distinct events.
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New proposal (2014)

“A compound event is an extreme impact that depends on multiple statistically 
dependent variables or events.”

Leonard et al. (2014) WIREs Climate Change

Ø Shift of focus from climate extremes to extreme impacts!

Criticism 
How do we know whether the drivers are statistically dependent?
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“Reconciliation” workshop in Zurich (Spring 2017)

“Compound weather and climate events refer to the combination of multiple 
drivers and/or hazards that contributes to societal or environmental risk.”

Zscheischler et al. (2018) Nature Climate Change

by weather or climate drivers. These drivers are not 
necessarily causally related, but they can be.

For example, preconditioning is a key element  
in the occurrence of large river floods in Europe20 and 
the USA21. Here, floods (the hazard) often arise from 
a combination of saturated soils or extensive snow 
cover (the precondition) and precipitation and/or 
snowmelt (the driver), the latter of which is related to 
cyclones, severe storms and warm conveyor belts22,23. In 
high- latitude24 and mountainous regions25,26, rain- on-  
snow events also represent important flood- generating 
processes that typify preconditioning. On 10 October 
2011, for instance, a rain- on- snow flood in the Bernese 
Alps, Switzerland caused CHF ~90 million of damage27 
(FIG. 2b). The event was caused by sustained snowfall (the 
driver of the precondition), leading to extensive snow 
cover (the precondition). When an atmospheric river 
(a narrow filament of intense water- vapour transport28) 
subsequently brought warm and moist air towards the 
Alps, it resulted in intense rainfall and a temperature 
increase that raised the freezing line from 1,500 m to 
3,200 m in 24 h, driving snowmelt. The combination of 
these two factors (snowmelt and intense rainfall) gave 
rise to the flood27 (the hazard).

Initial soil moisture is relevant not only for flooding 
but also for the incidence of wildfires, wherein dry con-
ditions increase vegetation susceptibility to ignition. For 
instance, in the larch forests of Siberia, extreme wildfire 
occurrence (the hazard) can be explained by surface 
moisture conditions in the previous year29 (the precondi-
tion). Furthermore, in the northern Mediterranean, the 
exceptional droughts of 2003 and 2016 also contributed 
to extreme wildfire events in France30. Owing to the tight 
link between soil moisture and precipitation, occur-
rence of rainfall during the fire season is the strongest 
control on burned area over the western USA, either 
directly through its wetting effects or indirectly through 
feedbacks to vapour- pressure deficit16.

However, wildfires themselves can also be the drivers 
of the precondition. Indeed, during precipitation events, 
earlier fires can increase susceptibility to run- off and, 
thereby, flash floods (related to soil sealing), as well as 
mudflows (linked to loss of stabilizing vegetation and 
rapid ash mobilization)31. In 2013, for example, a flash 

flood in a Ugandan mountain valley killed several people 
and destroyed infrastructure, triggered by non- extreme 
precipitation but preconditioned by upstream fires 
and landslides32.

Preconditioning is also highly relevant for climate 
impacts in biological systems33. For instance, early spring 
onset in temperate ecosystems can lead to higher vege-
tation activity and soil- moisture depletion (the precon-
dition), thereby, potentially exacerbating carbon losses 
(the impacts) resulting from meteorological drought and 
heatwaves (the hazard) during summer34,35. Similarly, 
unusual warming events at the end of the winter season 
in temperate and boreal climates can encourage early 
vegetation growth (the precondition), causing greater 
impacts than would occur in the absence of warming 
when followed by a frost event (the hazard). These 
so- called ‘false- spring’ events regularly lead to exten-
sive agricultural losses and damage to native forests36, 
though impacts depend on the growth strategies of the 
affected species37. Indeed, a false- spring event in early 
2010 in the north- eastern USA caused substantial dam-
age to sugar maple trees37 (FIG. 2c), while a similar event 
in Europe during 2017 resulted in EUR 3.3 billion of 
economic losses from damage to fruit trees and wine 
crops38. Weather conditions can also precondition the 
risk of livestock mortality, as demonstrated in Mongolia, 
where mass- mortality events have been linked to an 
amplifying effect of summer droughts on the mortality 
response to anomalously cold winters39.

Multivariate events
Multivariate events refer to the co- occurrence of multi-
ple climate drivers and/or hazards in the same geograph-
ical region causing an impact (FIG. 3a; TABLE 1). In such 
events, multiple drivers can cause one or more hazards 
(FIG. 3b) or, alternatively, a single driver can cause multi-
ple correlated hazards (FIG. 3c). The notion of multivariate 
events thus includes concurrent climate extremes in the 
same location, also referred to as a ‘compound hazard’ 
in the multi- hazard literature19,40. Moreover, it incorpo-
rates extreme multivariate climate anomalies that are not 
necessarily extreme in the contributing variables, that is, 
the marginal distributions, but can, nevertheless, cause 
large impacts41–43.

A commonly studied multivariate event is compound 
coastal flooding5,6,44. In coastal regions, floods often arise 
through a combination of multiple drivers, including 
storm surge, waves, high river discharge and direct sur-
face run- off. These drivers are typically causally related 
through associated weather patterns (the modulator), for 
instance, when a storm7 causes both extreme rainfall and 
storm surge. In Ravenna, Italy, during February 2015, 
for example, a low- pressure system produced a storm 
surge and heavy precipitation in multiple river catch-
ments (the drivers), resulting in compound flooding (the 
hazard), which caused widespread damage totalling tens 
of millions of euros44 (FIG. 3b). Compound flooding risk 
varies along coastlines and can be estimated indirectly 
by quantifying the dependence of extreme storm surge 
with either heavy precipitation5,45–47 or extreme river 
discharge (the drivers)11,48. Elevated risk has been dis-
covered at the coasts of Australia45,46, North America5,11 

Modulator Driver ImpactHazard

Climate change

Fig. 1 | Elements of a compound weather and climate event. Overview of elements 
KP|VJG�ENKOCVG�CPF�YGCVJGT�FQOCKP�VJCV�OCMG�WR�C�EQORQWPF�GXGPV��%QORQWPF�GXGPVU�
consist of multiple climate drivers and/or multiple hazards (illustrated by the green 
CPF|DNWG�DQZGU��TGURGEVKXGN[��VJCV�RQVGPVKCNN[�ECWUG�CP�KORCEV�
TGF�DQZ���/QFWNCVQTU�

HQT|GZCORNG��VJG�'N�0KÍQs5QWVJGTP�1UEKNNCVKQP��KPHNWGPEG�VJG�HTGSWGPE[��OCIPKVWFG�
CPF|NQECVKQP�QH�VJG�FTKXGTU�CPF��VJWU��RQUUKDN[�EJCPIG�JC\CTF�HTGSWGPE[�CPF�KPVGPUKV[��
Climate change can affect all elements contributing to a compound event, that is, 
modulators, drivers and hazards. Arrows refer to a direct causal link between the 
different elements.
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Embedding in the IPCC risk framework

“Compound weather and climate events refer to the combination of multiple 
drivers and/or hazards that contributes to societal or environmental risk.”

Zscheischler et al. (2018) Nature Climate Change

PERSPECTIVE NATURE CLIMATE CHANGE

supporting a separate analysis of hazards and drivers. Moreover, 
the multivariate distribution of climate drivers may change over 
time, for instance if one driver is affected by trends25,58 (temperature 
increase, sea-level rise59, trends in storm activity) or changes in the 
distribution (changes in temperature variance60, shifts in precipita-
tion distribution61). Finally, the dependence between climate drivers 
may change over time, which also affects the multivariate distribu-
tion of drivers. For instance, the increase in concurrent extreme 
storm surge and precipitation events for United States coasts has 
been attributed to changes in the dependence between surge and 
precipitation rather than to trends in either of these variables12. 
Similarly, the dependence between summer temperature and pre-
cipitation is expected to change under strong GHG forcing7. Note 
that even if we can model the whole distribution of drivers or haz-
ards based on observational data, estimating dependence in the 
tails62, for instance between different hazards, may still be challeng-
ing if the sample size is not very large.

Identifying which multivariate constellations of climate variables 
are associated with hazards allows climate model output to be inter-
rogated for exactly these constellations. Assessing the likelihood 
of such constellations in future projections will help to investigate 
risk. Besides providing a tool for the assessment of hazard likeli-
hoods, this approach will bring focus on those physical processes 
that need to be better understood to represent hazards in dynamical 
models, providing guidance on which variables and dependencies 
between variables need to be simulated skilfully or bias-adjusted63 
to correctly quantify hazards. The impact research community and 
the climate science community can both contribute to this effort 
by working closely together, revising and integrating currently used 
approaches and moving towards a multivariate perspective in all 
compartments of model construction, bias adjustment and analysis.

Climate change processes and associated effects
The bottom-up approach helps to define the required scope of 
the modelling of physical processes that give rise to a particular  

compound event. How can we represent these processes adequately? 
While spatial and temporal scales of compound events can vary 
significantly, the impacts are commonly felt at the local scale over 
relatively short timescales. However, local-scale events are often 
embedded within larger-scale systems, which in turn are affected by 
planetary-scale features such as shifts in the radiation balance and 
associated changes in mean temperature, mean sea level, the loca-
tion of the jet stream and others. Modelling approaches that rep-
resent these ranges of space and time scales are therefore needed. 
The non-stationarity of most compound events — both because of 
anthropogenic climate change and because of other more local-scale 
changes in the land surface due to urbanization and other forms 
of development — has significant implications for how compound 
events should be modelled.

These implications can be understood through the example of 
estimating the probability of flooding for a particular catchment. 
In the past, if historical records of sufficient length were available, it 
was common to use these records to estimate the exceedance prob-
ability of a future event through a method called flood frequency 
analysis. However, such methods are only appropriate when the cli-
matic drivers of floods are stationary over time. Flood frequency 
analysis is not appropriate as a basis for designing future infrastruc-
ture under considerations of significant climate change, since the 
historical statistics may no longer reflect flood hazard in the future. 
This means that to estimate the probability of flooding, we need 
to understand the nature of changes affecting extreme events much 
more explicitly, leading to a widening of the system boundaries. For 
many event-based hydrological models, antecedent moisture con-
ditions are typically treated as calibration parameters, for example 
through loss parameters of the hydrological model. However, under 
future climate, extreme rainfall may increase at a faster rate than 
average rainfall, and evapotranspiration may change as well, so that 
the relationship between flood-producing rainfall and the catch-
ment’s antecedent conditions is no longer stable and may need to be 
modelled explicitly, for example by using a continuous hydrological  
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Fig. 1 | Extended risk framework. Multiple climatic drivers cause one or multiple hazards leading to societal and environmental risk. The climate drivers 
(which may vary from local-scale weather to large-scale climate modes, represented by yellow circles) and/or hazards may be mutually dependent. Non-
climatic drivers related to vulnerability and exposure may also contribute to risk. Background risk figure adapted from ref. 96, IPCC.
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What is not a compound event?

Ø Definition is very broad
Ø Encapsulates many different events at many different spatial and 

temporal scales
Ø How can we meaningfully structure such events to aid analysis?
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A typology of compound events

Ø Can help structure our thinking on high-impact events
Ø Can help select/develop appropriate analysis tools for a given event type
Ø Can trigger synergies between different impact communities for which 

similar event types are relevant

Zscheischler et al. (2020) Nature Reviews Earth & Environment
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A typology of compound events

In many regions, the concurrence of drought and heat-
wave is closely related to the ENSO, including South 
Africa53, South America54 and the USA. In Texas dur-
ing 2011, for example, sea- surface temperature patterns 
that resemble the characteristics of La Niña events55 
(the modulator) promoted stationary Rossby waves (the  
driver), which, in turn, established compound hot and 
dry conditions (the hazards) (FIG. 3c). Land–atmosphere  
feedback further intensified these conditions, which 
caused record statewide agricultural losses, record-  
breaking wildfires and massive commercial timber  
loss55.

Indeed, compound and extended hot and dry condi-
tions generally lead to tree mortality56,57, crop failure58, 
large reductions in carbon uptake59–62, wildfires30,63, 
thermoelectric power plant failures64 and are a key cli-
mate feature of many weather- related disasters65. When 
precipitation deficits and high temperatures combine 
with low humidity and strong winds, increased evap-
otranspiration can quickly deplete soil moisture. Such 
conditions can cause flash droughts, with often severe 
impacts on crop yields, livestock forage production and 
natural ecosystems66.

Concurrent warm and wet extremes can also lead 
to severe impacts. In January 2018, for instance, anom-
alously warm and wet conditions occurred across the 
Western Alps, triggering widespread landslides at low 
elevations and massive snowfall higher up, causing crit-
ical discharge levels and threatening popular ski resorts 
owing to a substantially increased avalanche risk67.

Co- occurring wind and precipitation extremes also 
exemplify multivariate events. In the mid- latitudes and 
the subtropics, such events are typically associated with 
strong extratropical and tropical cyclones, respectively68, 
with widespread impacts69–72. For example, the strong 
wind gusts of winter storm Kyrill in 2007 caused sub-
stantial damage to buildings and infrastructure that were 
further exacerbated by heavy rainfall69. In several storms, 
heavy precipitation was caused by thunderstorms located 
in the unstable air behind the cold front69,71.

Temporally compounding events
Temporally compounding events refer to a succession of 
hazards that affect a given geographical region, leading 
to, or amplifying, an impact when compared with a sin-
gle hazard (FIG. 4a; TABLE 1). The hazards are promoted 
by one or more drivers, which, in turn, are caused by a 
modulator. The succession of hazards can be of the same 
type (for example, multiple tropical cyclones73, heat-
waves74,75 or heavy- precipitation events76) or consecutive 
occurrence of different hazards (for example, a flood77 or 
tropical cyclone78, followed by a heatwave). The hazards 
in temporally compounding events can be correlated 
through a common driver, directly related as cascad-
ing hazards19 or simply occur by chance. In practice, it 
is often difficult to distinguish these cases because of 
limited sample size and an incomplete understanding 
of the system.

Temporal clustering has been studied extensively 
for extratropical79–82 and tropical cyclones73. It is widely 
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Fig. 2 | Preconditioned events. a | Key elements of preconditioned events. b | The main features of a rain- on- snow 
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Preconditioned events Multivariate events

known, for example, that cyclone clusters (multiple 
cyclone drivers) arise owing to secondary cyclogene-
sis along trailing fronts and/or persistent and recur-
rent favourable jet states79,83,84 (the modulator). The 
occurrence of cyclone clusters is further related to, and 
influenced by, modulators such as large- scale telecon-
nection patterns85–88, tropical forcing89 and persistent 
atmospheric- circulation patterns76. For instance, signif-
icant temporal clustering of strong cyclones is observed 
over the eastern Atlantic, the downstream area of the 
Atlantic storm track and over the central Pacific79. 
The severe storms Lothar and Martin crossing Europe in 
December 1999 (REF.81) and the clustering of storms hit-
ting the UK in January 2014 (REF.89) provide high- impact 
illustrations of temporally compounding extratropical 
cyclones. Tropical clustering is also apparent in parts of 
the Caribbean and along the coast of Central America85.

Temporal clustering of heavy- precipitation events on 
sub- seasonal timescales is also commonplace, increas-
ing the risk of flooding. In southern Switzerland, for 
instance, multiple heavy- rainfall events (the drivers) 
linked to upper- level Rossby- wave breaking resulted in 
substantial lake flooding (the hazard) and correspond-
ing damage76 (FIG. 4b). However, as mentioned previously, 
temporal compounding events can also refer to multiple 
hazards. In July 2018, for instance, factors influencing 

the East Asian summer monsoon drove consecutive 
flooding and heatwaves (the hazards) in southern Japan, 
resulting in 300 deaths and vast economic losses77 
(FIG. 4c).

Temporally compounding effects relevant for vegeta-
tion are dependent on the temporal convolution of sev-
eral time- continuous drivers. For instance, an increased 
wildfire frequency in south- eastern Australia can tip a 
eucalyptus forest to a non- forest state90. The extreme 
2016 wheat loss in France has further been attributed to 
a combination of unusually warm temperatures in late 
autumn and unusually wet conditions in the following 
spring91.

Spatially compounding events
Spatially compounding events occur when multiple con-
nected locations are affected by the same or different 
hazards within a limited time window, thereby causing 
an impact (FIG. 5a; TABLE 1). The compounding of hazards 
in different locations is established via a system capable 
of spatial integration, which accumulates hazard impacts 
in spatially distant locations. The hazards and hazard 
drivers are often caused by a modulator92, which creates 
a physical link between the different locations.

Impact- integrating systems can operate at the global 
or regional scale. On the planetary scale, the spatially syn-
chronized occurrence of hazards and associated impacts 
can be imposed by large- scale modes of climate variabil-
ity, such as the ENSO93,94, atmospheric teleconnections95 
or driven by circumpolar- wave patterns96. The global 
food system provides one such illustration, wherein 
synchronous crop failure due to spatially co- occurring  
hazards2 poses a potential threat to food security94,97, with 
wide- ranging economic impacts98. In 1983, for example, 
a strong El Niño event (the modulator) fuelled heatwaves 
and droughts in crop- producing regions (South Africa, 
North America and Brazil — the hazards), resulting in 
the largest synchronous wheat failure in modern his-
tory93 (the impact; FIG. 5b). On more regional scales, 
atmospheric teleconnections99 and individual weather 
systems like atmospheric blockings100 or storms — such 
as Lothar101 and Ophelia102 in Europe — can cause spa-
tially correlated hazards, including heavy precipitation 
and wind extremes.

In addition to the physical climate hazards, sub-
stantial risk also arises in a more societal respect. For 
instance, an energy system largely based on renewables 
can be highly vulnerable to weather conditions, which, 
in certain circumstances, might lead to low energy out-
put from solar panels and wind turbines in multiple 
regions concurrently103, increasing the risk of power 
failures. Road and railway networks are also highly vul-
nerable to spatially co- occurring climate hazards, espe-
cially surface and river flooding, which regularly cause 
significant damage104. Similarly, concurrent storm surges 
over extended coastline stretches can damage multiple 
ports, causing interruption in national or international 
supply chains105.

Emergency- response actions are an additional 
impact integrator affected by spatially correlated haz-
ards. For  instance, the spatial distribution of up to 
250 simultaneous wildfires in the late- season 2017 
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Temporally compounding events Spatially compounding events

northern California ‘firestorm’ (the hazards) — linked 
to low humidity and strong winds106 (the drivers) — 
overwhelmed the ability to respond, leading to extreme 
impacts18 (FIG. 5c). Spatially co- occurring floods can also 
affect emergency response. The 2010/2011 wet season 
in Australia, for example, led to several floods in differ-
ent regions, affecting many agencies, including state and 
federal governments, insurers, mining and agriculture 
industries9.

Indeed, river systems can be viewed as regional inte-
grators of correlated precipitation extremes. For exam-
ple, in 2016, a large area of Louisiana, USA, experienced 
widespread flooding when multiple tributaries of the 
Mississippi river were simultaneously flooded, the water 
of which drained downstream, leading to overtopping of 
floodwalls and levees, causing a human disaster and sig-
nificant socio- economic impacts107. Similarly, correlated 
extreme river discharges that caused large flood events 
affecting multiple countries in Europe at the same time 
put great pressure on transnational risk- reduction and 
risk- transfer mechanisms108,109.

Soft boundaries
While the above four categorizations of compound 
events are comprehensive, the imposed boundaries are 
subjective. Thus, not all events fit perfectly into the pre-
sented categories, and some cannot be easily assigned to 
a single type, necessitating soft boundaries. For instance, 
the extremely hot and dry 2011 summer in Texas, USA, 
is presently placed as a multivariate event, given its 
connection to a modulator (FIG. 3c). However, dry soils 
associated with an earlier precipitation deficit also 
amplified the magnitude of the heatwave and drought 
via land–atmosphere feedbacks, falling into the precon-
dition category (FIG. 2). In fact, such a combination of a 
multivariate event (sea- surface temperature patterns or 
an atmospheric block) and preconditions (dry soils) are 
a common feature of compound hot and dry events50,110. 
Similar combinations are also commonplace in coastal 
flooding, wherein deep and extensive low pressure 
causes a storm surge and heavy precipitation (multivar-
iate), amplified by saturated soils (the precondition), as 
observed in the Netherlands in January 2012 (REF.8).
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In addition, it is often challenging to separate pre-
conditioning and temporally compounding events. For 
instance, the succession of a warm period at the end 
of winter and a frost event in spring (a preconditioned 
‘false spring’) can also be interpreted as a temporally 
compounding event. Conversely, the temporally com-
pounding extreme wheat loss in France during 2016 
could alternatively be interpreted as a preconditioned 
event wherein a mild autumn and winter favoured the 
build- up of parasites, leading to large- scale disease 
spread when wet conditions followed in spring91.

These examples illustrate the diversity and complex-
ity of compound- event processes. In practice, an event 
will often be a combination of two or three categories. 
Separating out the different elements will help with fur-
ther analysis and provide guidance on which approaches 
to use to study different parts of the event.

Methods for compound- event analysis
Compound- event research aims to increase under-
standing of key physical processes contributing to an 
event, improve their prediction, assess associated risks, 
explore suitable adaptation strategies and quantify pro-
jected changes. Thus, an additional goal of the proposed 
typology is to facilitate and provide guidance for the 
usage of appropriate analysis and modelling tools, as 
is now discussed. However, since there is no clear dis-
tinction between the proposed classes, the analysis of 
a given event might require a combination of different 
approaches. Moreover, owing to the diversity of possible 
compound events, adaptation of the methods below will 
likely be required in most cases.

Diagnosing compound- event drivers
The typology provides guidance on the broad classes 
of causal structure for compound events, which subse-
quently need to be populated by specific drivers, modu-
lators, preconditions and hazards that collectively lead to 
the impacts. An initial step for the analysis of compound 
events is to understand the underlying phenomena (such 
as which hazards might cause an impact) and identify 
the hazards’ drivers.

In some cases, the causal mechanisms underlying 
specific events (that is, the connection between modula-
tors, drivers, hazards and impacts) are well documented 
and congruent with impact models that have a strong 
physical basis for that class of event. For example, it is 
known that heat stress in humans and other mammals 
(such as livestock) is dominated by the combination 
of temperature and humidity, and, to a lesser extent, 
by solar radiation and wind12. If, however, drivers are 
unknown, compositing a large number of cases of a 
given phenomenon can be used both to identify key var-
iables and to understand the physical processes5,7,46,47,111. 
For instance, composite meteorological maps of events 
causing concurrent storm surge and river- discharge 
extremes can reveal their atmospheric drivers7. Recent 
advances in dynamical- systems theory for studying 
joint recurrences112 have also been successfully applied 
to reveal the drivers behind spatially and temporally 
concurrent extremes in wind and precipitation113. Here, 
composites of locations with high joint recurrence rates 
(that is, a high likelihood of concurrent extremes) are 
related to atmospheric conditions.

For more complex cases, the key variables (drivers 
and hazards), and particularly their associated spatial and  
temporal scales, might not be immediately obvious. For 
example, the Lake Como reservoir114 is used to provide 
hydropower, flood protection and irrigation water sup-
ply for downstream districts. Weather and climate influ-
ence the system through multiple points of interaction, 
including: reservoir inflows (affected by the timing and 
magnitude of rainfall and evaporative processes, com-
bined with snowmelt), water demand, long- term trends 
in precipitation and evaporation, physical system con-
straints (how quickly floodwater can be released from the  
reservoir) and operational policies. Understanding  
the precise combination of climatic variables (and their 
associated temporal and spatial scales) that could trigger 
system failure (and, hence, an impact) might, therefore, 
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REV IEWSØ False spring
Ø Rain-on-snow flood

Ø Compound flooding
Ø Concurrent drought & heat
Ø Concurrent wind & precipitation extremes

Ø Sequence of storms/heavy precip. events
Ø Cyclone followed by a heatwave Ø Global crop failure
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Spatially compounding: 2002 Floods in Central Europe

Dresden, August 2002

Led to the creation of the 
European Union Solidarity Fund
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Challenges in compound event research

1. Identifying meteorological drivers of extreme impacts.

2. Evaluating climate and impact models with respect to compound events. 

3. Creating robust projections of high-impact events.

?
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Drivers of tree mortality

Hammond et al. (2022) Nature Communications
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Impacts of concurrent drought-heat events

Ø Forest mortality
Ø Crop failure
Ø Mega-wildfires
Ø Fish die-off 
Ø Reduced energy production
Ø …



P > 1/100
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Dependence of drivers affects occurrence probability
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Hot and dry summers often co-occur, but spatially variable

More frequent hot 
& dry summers

Less frequent hot 
& dry summers

When temperature and 
precipitation are independent

Bevacqua et al. (2022) Nature Climate Change
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Comparison: Observations vs climate models 

Models show stronger dependence in some regions. 
Ø Overestimation of models? 
Ø Missing observational constraint?

Brown areas: models show 
stronger negative correlations 
compared to observations

Zscheischler & Seneviratne (2017) Science Advances

Average number of stations for precipitation

No observations!
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Impacts of concurrent drought-heat events

Ø Forest mortality
Ø Decreased carbon uptake
Ø Crop failure
Ø Reduced energy production
Ø Fish die-off 
Ø …

Ø What about other high-impact 
events for which drivers are not 
well known?
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More sophisticated approaches for driver identification

Ø Create large set of potential predictors
Ø Select those that best predict impact

Extreme impacts
crop failure, forest mortality, 

floods, wildfire,…
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2016 crop failure in France

Ben-Ari et al. (2018) Nature Communications
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Using machine learning to identify impact drivers
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Quantifying (compounding) drivers with machine learning

 
4 

400 times and the test set 100 times, with all SHAP interaction values being calculated based on 77 

samples in the test sets only. 78 

 79 

Fig. 1 | Procedure for identifying compounding effects in river flood drivers. A catchment in 80 

Slovenia with an outlet at 49.07°N, 18.91°E is used as an example. a, Conceptual diagram showing 81 

relationships between data, ML model, and explanation. Meteorological drivers (green boxes, 82 

including recent rainfall (RR) and recent temperature (RT)) and catchment preconditions (orange 83 

boxes, including soil moisture (SM) and snowpack (SP)) are used as input variables. The model 84 

output refers to all identifiable discharge peaks (DP) regardless of their magnitude. b, Illustration of 85 

SHAP interaction values for model outputs. The tick labels indicate the different types of variables, 86 

with the number representing the number of days before a discharge peak for the corresponding 87 

feature. c, The relationship between the aggregated contributions and the event-averaged magnitude 88 

of the different types of variables for all samples in the catchment. The points indicate the median of 89 

RR: recent rainfall
RT: recent temperature
SM: soil moisture
SP: snow pack
DP: discharge peak

Jiang et al. (in prep)
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2002 Elbe flood, Dresden

Interaction richness
6/48=12.5%

Jiang et al. (in prep)
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 681 

Extended Data Fig. 4 | Illustration of the interaction richness of two flood event samples in one 682 

catchment. a-b, The input features (colored bars) and model output (orange point) of two flood 683 

samples. c, The pairwise interaction effects between features (including the main effects of the 684 

features in the diagonal) colored by the SHAP interaction values for the flood sample in panel a. The 685 

red dots highlight the main interactions where the SHAP interaction value exceeds the threshold 686 

(indicated by the red line in the color bar). Here, the threshold is calculated as the 80th percentile of 687 

the positive interaction values between features (including the main effects of the features) across all 688 

the samples in the catchment. In this case, the number of main interactions is 16, so the interaction 689 

richness is 16/48 = 33.3%, where 48 is the number of all potential interactions in the model (note that 690 

we have disabled the interactions between the input features of rainfall and temperature in the model). 691 

d, The pairwise interaction effects between features for the flood sample in panel b, for which the 692 

interaction richness is 23.0%. 693 
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New metric: Richness in interactions

Interaction richness
16/48=33.3%

Interaction richness
11/48=23%

Jiang et al. (in prep)
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New metric: Flood complexity

Few 
compounding 

drivers

Many 
compounding
drivers

Flood magnitude increases 

August 2002

Elbe (Dresden)

Jiang et al. (in prep)
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Flood complexity
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Fig. 4 | Flood complexity and its relationship to catchment attributes. a, Spatial distribution of 259 

flood complexity for individual catchments (median across 100 replicates). The gray polygons 260 

represent the IPCC climate reference regions33, each of which contains at least 50 study catchments. 261 

The bold abbreviation indicates the region has an average flood complexity significantly higher than 262 

the global average (one-sided t-test, α=0.001). b, Flood complexity of catchments in IPCC reference 263 

regions and correlations with catchment characteristics. The red dashed line indicates the average 264 

flood complexity across all catchments. Box plots show the median, 25th percentile, 75th percentile, 265 

and 1.5x interquartile range of the data. Correlations in the lower panel represent Spearman’s rank 266 

correlations (within each region) between flood complexity and catchment size, catchment-average 267 

stream gradient, forest cover extent, and sand fraction in soil. We only display the correlation results 268 

for reference regions where catchment attributes have sufficient variability, e.g., the interdecile range 269 

of a catchment attribute in the region should be at least 60% of the interdecile range of the same 270 

attribute across all catchments. c-d, The relationship between flood complexity and catchment-271 

average snow cover extent (c) and climate moisture index (d). The red line shows the LOWESS 272 

(locally weighted scatterplot smoothing) of the points and the shaded area indicates the 95% 273 

Application to 3527 catchments

Jiang et al. (in prep)
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Fig. 5 | Impact of flood complexity on estimating large flood magnitudes. a, Estimation error in 290 

the magnitude of the largest observed floods per catchment against different levels of flood 291 

complexity. The estimation error in each catchment is calculated as the relative error between the 292 

estimated magnitude extrapolated from all other flood events and the observed magnitude of the 293 

largest flood in the observations (see Methods). A negative error indicates an underestimation of the 294 

largest flood magnitude. Box plots show the median, 25th percentile, 75th percentile, and 1.5x 295 

interquartile range across catchments within different flood complexity bins (x-axis). The number 296 

indicates the sample size of each bin, and the letters are assigned based on a one-sided t-test with a 297 

significance level of 0.05 (different letters indicate statistically significant differences in the mean 298 

estimation error). b, Proportions of catchments where the estimated largest flood is 30% lower than 299 

observed (i.e., below the red dashed line in panel a). The error bar indicates the 95% confidence 300 

interval, which is approximated as !̂ ± 1.96(!"($%%&!")(  (!̂ is the estimated proportion and n is the 301 

sample size). The letters above each bar indicate the significance of the difference between 302 

proportions (one-sided z-test, α=0.05). 303 
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Large floods underestimated when flood complexity is high

Jiang et al. (in prep)
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Dresden: Flood frequency analysis without largest event (1845)

Heterogeneity in flood 
generating processes



36www.ufz.de

Challenges in compound event research

1. Identifying meteorological drivers of extreme impacts.

2. Evaluating climate and impact models with respect to compound events. 

3. Creating robust projections of high-impact events.

?
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The value of large ensemble simulations

Ø Separation of climate change trends from internal climate variability
Ø Identification of worst case scenarios
Ø Robust projections of complex events

Figure 1. (a) GMST time series from the transient spin-up experiment (individual ensemble members in yellow;

ensemble and 5 year running mean in red) and HadCRUT4 observed data (in light blue; 5 year running mean in

darker blue). Grey shading shows the selected 5 year time slices for the three large ensembles. (b) Time series

of 2 m temperature for a random land point. Lines show individual ensemble members, coloured by initial

condition from the transient spin-up experiment, for clarity only 6 out of 16 initial conditions are shown.

Data

Data was saved at a daily timescale. We have attempted to save as many surface variables as possible, to

facilitate climate-impact studies. Consequently, 3D fields were limited to a few levels (925, 850, 500, 200, 50,

20 hPa). A few variables were saved at 6 hourly frequency for part of the present-day ensemble and all of the

2 �C and 3 �C ensembles.

The full list of available variables can be found here https://docs.google.com/spreadsheets/d/

1CopJSbN6c_B18B4nzXM2cT4WBkh-qKJ27pA1I1WIPIg/edit#gid=0.

Collaboration

It took a lot of computer and human hours to create these large ensemble data. Therefore, I’m keen to share

the data, such that it can contribute to more scientific progress than I would be able to achieve alone. If you’re

2/3

Courtesy: Karin van der Wiel (KNMI)
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Uncertainty in risk estimates

Bevacqua et al. (2023) Nature Communications

precipitation-wind events yields a much larger sample size (compared
to compound hot-dry warm-season events). In line with the curse of
dimensionality, when we consider multi-year droughts, the relative
uncertainties increase with the dimensionality of the considered
compound event (Fig. 2c). Hence, employing large sample sizes is even
more important for estimating the occurrence of higher-dimensional
compound events such as multi-year floods, co-occurring fire
drivers30,31, concurrent droughts in multiple regions13, and spatially
extended floods32. While arguably our examples are somewhat
extreme by focusing on a sample size as small as 31 years, the issues
remain for larger sample sizes (Fig. 2). Furthermore, we note that it is
not uncommon in the literature that probabilities of compound events
are estimated based on such small sample sizes33–38, including prob-
abilities of high-dimensional events13,20,30,39. Shorter periods than
31 years are often used for projections at fixed global warming levels,
e.g. in reports of the Intergovernmental Panel on Climate Change3.

Compound event attribution
In the aftermath of a high-impact weather event, the extent to which
anthropogenic climate changehas contributed to the event is regularly
questioned40. Addressing this attribution question is important to gain
a better understanding of how climate change has affected and might
affect extreme events and their impacts41. One way to approach the
question is to frame it in terms of a probability ratio PR, defined as the

ratio of the probability of an extreme event occurring under current
conditions (factual world) to the probability that the event occurs in a
world without anthropogenic climate change (counterfactual world)42.
Such probabilities can be estimated using climate model simulations,
for example by comparing runs simulating both worlds43, or by using
approaches based on non-stationary extreme value theory, where the
occurrence of extreme events is fitted against a covariate such as
globalmean temperature44. Values of PR > 1 imply that climate change
contributed to a certain event occurrence; for instance, PR = 2 implies
that climate change made a certain event class (typically defined as all
events exceeding a critical threshold) two times more likely. So far,
attribution studies havemainly treated events as univariate, however—
becausemany climate-related impacts are caused by a combination of
multiple drivers—studies on compound event attribution are
emerging43–46.

As attribution studies typically focus on very extreme events, they
are often based on large ensemble climate model simulations. For
example, the weather@home experiment, a large ensemble of simu-
lations of the regional atmosphere-only climate model HadRM3P47 has
been widely used by the attribution community. Other studies have
relied on the multi-model CMIP5 and CMIP6 ensembles to gather
enough data to isolate any climate change forced signal from internal
climate variability noise, though the ability to disentangle internal
variability from model differences ultimately depends on the number

Fig. 1 | Historical (1950–1980) frequency of compound events and associated
uncertainties. a Ensemble mean frequency of compound hot-dry events (fHD;
during the warm season) based on the MPI-GE model. Stippling indicates areas
where the compound event ensemble-mean frequency is smaller than expected in
a reference case that assumes independencebetween the compounddrivers (here,
independence between average temperature and precipitation during the warm
season). d, g fHD of the ensemble members associated with the 5th and 95th per-
centiles amongst all themembers, respectively, of the fHD averaged over the region

in the green box. b, e, h As in panels a, d, g, but for concurrent daily precipitation
and wind extremes (fPW) and based on the CESM1-CAM5 model. c, f, i As in panels
a, d, g, but for the frequency of three consecutive annual soil moisture droughts
(f3YD). Univariate extremes were defined via percentile-based thresholds, i.e. hot
anddry seasons occurring every 10 yearson average, precipitation andwind events
occurring twice a year, and soil moisture droughts every 5 years (see Methods).

Article https://doi.org/10.1038/s41467-023-37847-5

Nature Communications | ��������(2023)�14:2145� 4
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Projections of compound hot-dry summers

1950-1980 2° C warmer world 
(rel. to preindustrial)fHD = Probability of concurrent hot & dry summer

Bevacqua et al. (2022) Nature Climate Change

Uncertainty large in the future
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Precipitation trends drive future occurrence of hot-dry events

Bevacqua et al. (2022) Nature Climate Change

Correlation
between fHD and ΔPmean

However: uncertainties in precipitation projections are often irreducible.
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Climate storylines for central Europe

Bevacqua et al. (2022) Nature Climate Change

Hot-dry summer 
every ~4 years

Hot-dry summer 
every ~10 years
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Conclusions

Ø Viewing climate climate impacts through a “compound event” lens 
offers new perspectives on climate risk assessment 

Ø Compound event research aims to develop new paradigms to better 
understand and project climate risks

Ø Ignoring compounding drivers can lead to misspecification of climate 
risks


