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Aftermath of hurricane Ida

R ] Aug. 26-Sept. 1, 2021 » Caused a blackout in many regions
B T - > Air conditioning was not available
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2016 crop failure in France
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Extreme weather events and their impacts

> Droughts =] Deaths by climate-related disasters
! Source: EM-DAT

> Floods M

> Heatwaves =]

> Wildfires 52
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Runoff [m®/s]
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Flood frequency analysis

Runoff [m®/s]
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> Used to estimate return levels of 100-year floods &
(floods that occur on average every 100 years) g
> Helpful for designing flood barriers =
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Climate change projections
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Traditional approaches to climate risk
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Climate risk assessment for the three case studies

» 1845 Dresden flood:

cold winter + lots of snow followed by increasing temperatures + rain
» 2021 Hurricane lda:

power outage followed by heatwave, people can’t use air conditioning
» 2016 crop failure in French breadbasket:

what are the drivers?
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Limitations of traditional climate risk assessments

» Impacts are rarely driven by a single climate extreme
» Currently limited knowledge on
1)  Which weather conditions lead to impacts?
2) What is the dependence between climate impact drivers?
3) Do climate models simulate climate impact drivers well?
4) Do impact models simulate climate-impact relationships well?




Compound events

“(1) two or more extreme events occurring simultaneously or EESESSS=NETES
successively, LT AT
(2) combinations of extreme events with underlying e

conditions that amplify the impact of the events, or
(3) combinations of events that are not themselves extremes
but lead to an extreme event or impact when combined.”

Criticism SEEREE IDCC e
Ambiguities include: ' -

the role of the underlying conditions (amplifying? part of the event?),

the scale implied by the terms ‘successive’ (temporal) or ‘simultaneous’ (spatial);
whether the combination of events leading to an impact is restricted to non-extremes;

whether a single event can be a compound event of multiple variables or the event is
made up of two or more distinct events.

VVVY

IPCC SREX (2012); Leonard et al. (2014)
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New proposal (2014)

“A compound event is an extreme impact that depends on multiple statistically
dependent variables or events.”

> Shift of focus from climate extremes to extreme impacts!

Criticism
How do we know whether the drivers are statistically dependent?

Leonard et al. (2014) WIREs Climate Change S/ i de 1




“Reconciliation” workshop in Zurich (Spring 2017)

» |IPCC SREX authors

» Leonard et al authors

» Experts from different domains
» Early career scientists

“Compound weather and climate events refer to the combination of multiple
drivers and/or hazards that contributes to societal or environmental risk.”

[ [
Modulator —_— Driver —_— Hazard _— Impact
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Climate change

Zscheischler et al. (2018) Nature Climate Change S/ i de 1




Embedding in the IPCC risk framework

“Compound weather and climate events refer to the combination of multiple
drivers and/or hazards that contributes to societal or environmental risk.”

Climatic drivers

Non-climatic
drivers

/ e

Cllmate
Natural Socioeconomic
variability pathways

Anthropogenic
climate change

Risk

Adaptation and
migration actions

Hxposure Governance

f

Non-climatic
drivers

Zscheischler et al. (2018) Nature Climate Change
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What is not a compound event?

» Definition is very broad

» Encapsulates many different events at many different spatial and
temporal scales

» How can we meaningfully structure such events to aid analysis?




A typology of compound events

» Can help structure our thinking on high-impact events
» Can help select/develop appropriate analysis tools for a given event type

» Can trigger synergies between different impact communities for which
similar event types are relevant

Zscheischler et al. (2020) Nature Reviews Earth & Environment




A typology of compound events

Preconditioned events

Precondition

Driver 1

Hazard

#

» False spring
» Rain-on-snow flood

Multivariate events

Hazard 1

—

Driver -—

Modulator | — Hazard 2

Hazard n

» Compound flooding
» Concurrent drought & heat
» Concurrent wind & precipitation extremes

Temporally compounding events =

Fixed geographical region

Hazard 1

Modulator Bezard

Y Goaath:
N. A 08 .
_— Impact

Driver s

Hazard n

» Sequence of storms/heavy precip. events
» Cyclone followed by a heatwave

Spatially compounding events

Multiple regions

Driver 1 e Hazard 1
Modulator |— Driver 2 _— Hazard 2 —_—
Driver n —_— Hazard m

» Global crop failure

/ www.ufz.de 18




Spatially compounding: 2002 Floods in Central Europe
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Challenges in compound event research

1. ldentifying meteorological drivers of extreme impacts.
2. Evaluating climate and impact models with respect to compound events.

3. Creating robust projections of high-impact events.
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Drivers of tree mortality
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Hammond et al. (2022) Nature Communications - /

21



Impacts of concurrent drought-heat events

Forest mortality

Crop failure

Mega-wildfires

Fish die-off

Reduced energy production

YVVVVVYVYY
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Dependence of drivers affects occurrence probability

Droughts
Heatwaves

wet dry

10y

Compound drought-heatwave events
P=1/1B x 110G 1/100

Temperature

P|OO

Precipitation /
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Hot and dry summers often co-occur, but spatially variable

Less frequent hot , , More frequent hot
& dry summers 0 10 20 30 40 50 60 & dry summers
T f.p (%)

When temperature and
precipitation are independent

Bevacqua et al. (2022) Nature Climate Change S/
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Comparison: Observations vs climate models

Brown areas: models show
stronger negative correlations
compared to observations

I Average number of stations for precipitation
0.6

Difference in correlation
o
o

.
CH

Models show stronger dependence in some regions. No observations!
» Overestimation of models?
» Missing observational constraint?

Zscheischler & Seneviratne (2017) Science Advances /S

25




Impacts of concurrent drought-heat events

YVVVVVYVYY

Y

Forest mortality

Decreased carbon uptake
Crop failure

Reduced energy production
Fish die-off

What about other high-impact
events for which drivers are not
well known?

26



More sophisticated approaches for driver identification

» Create large set of potential predictors
» Select those that best predict impact

Climate

Extreme impacts
crop failure, forest mortality,
floods, wildfire,...




2016 crop failure in France
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Using machine learning to identify impact drivers
Annual streamflow maxima in Dresden
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Courtesy: Shijie Jiang 4
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Quantifying (compounding) drivers with machine learning

RR: recent rainfall

RT: recent temperature
SM: soil moisture

SP: snow pack

DP: discharge peak
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2002 Elbe flood, Dresden
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New metric: Richness in interactions
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New metric: Flood complexity
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Flood complexity

Application to 3527 catchments
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Jiang et al. (in prep)
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Large floods underestimated when flood complexity is high

Dresden: Flood frequency analysis without largest event (1845)

o | ® Bestestimate for 215-year event
S ® Observed 215-year event (1845)
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Challenges in compound event research

1. ldentifying meteorological drivers of extreme impacts.
2. Evaluating climate and impact models with respect to compound events.

3. Creating robust projections of high-impact events.
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The value of large ensemble simulations

2m temperature (°C)

1 3 5 7 9 11 13 15 17
Time (days from start ensemble)

» Separation of climate change trends from internal climate variability
> |dentification of worst case scenarios

» Robust projections of complex events

Courtesy: Karin van der Wiel (KNMI)
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Uncertainty in risk estimates

Compound drought-heat Compoupd precipitation 3-year droughts
and wind extremes
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Projections of compound hot-dry summers

1950-1980

fup = Probability of concurrent hot & dry summer

Uncertainty large in the future
Bevacqua et al. (2022) Nature Climate Change

2° C warmer world
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Precipitation trends drive future occurrence of hot-dry events

Correlation

between fyp and AP yean

-0.2 0.2
Intermodel correlation

However: uncertainties in precipitation projections are often irreducible.
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Bevacqua et al. (2022) Nature Climate Change
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Climate storylines for central Europe

Worst cas
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1 HELMHOLTZ TECHNISCH'E
CO“CIUSlonS UFZ Centre for Environmental Research @ gEIEVSEDRES"}TAT

» Viewing climate climate impacts through a “compound event” lens
offers new perspectives on climate risk assessment

» Compound event research aims to develop new paradigms to better
understand and project climate risks

» Ignoring compounding drivers can lead to misspecification of climate
risks
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