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— The location of Advanced Air Mobility (AAM)
aircraft landing sites influences the acceptance
and efficiency of the AAM network but is subject
to requirements from the integration of | "
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maintenance/charging stations. P
— Efficient integration of UAS into urban 5 >t
environments requires coordination with
airspace and traffic management systems. >0.8-
— Restrictions for locating suitable landing sites: 50.6-
safety, noise reduction, urban planning, privacy,
and flight operations. 50.4
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Goal: Identification of multi-criterial optimal Longitude 1 '
. ) . ¥ Figure 1: Example of the network topology of a Single-Hub AAM network with a
locations for UAS landing sites. hub in Dresden [1]
Methods Results Networking in the RTG
— Utilization of mathematical — Multi-criterially optimized networks of — Close interconnection with T3 (safety-
optimization methods for AAM network hub-centric and point-to-point oriented design of AAM aircraft landing
design (types: Variable Routing Problem configurations for AAM operation. sites).
Time Windows, Resource Constrained
Project Scheduling Problem, n-Hub — Network-specific traffic management — Network design based on the results of
Location Problem). considering regulatory frameworks. analyzing various demand scenarios
(T11).
— Robust fleet and rotation planning. — Demand-oriented sizing of AAM
operations (fleet sizes and cycles in — Examination and evaluation of various
— Expansion to include subsequent AAM stochastic operational influences). disruptions on flight operations and
constraints after scaling up. effects on landing site selection (T7, T8,
| Q; T9).
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Zhilj < Xk VijikleN Figure 3: Network examples for future AAM scenarios in Saxony [2].
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N set of all candidate nodes ”
F set of all nodes, which can not become a hub ) —
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Figure 2: Linear optimization model for AAM Figure 4. Aircraft schedule for AAM network (based on [3]) Universitit Dresden, 2023
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