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T7: Microclimatic effects
Weather-robust UAS flight planning and operation
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Motivation

— Wind-sensitive Advanced Air Mobility (AAM)
aircraft should also be able to operate under
adverse conditions, e.g. wind speeds of up to 14
m/s and high turbulence (EASA VTOL.2105)

— In particular take-offs and landings (T2 and T3) are
influenced by microclimatic effects (turbulence)

— Proof of wind stability is to be obtained using
microclimatic modeling methods

— Robust and precise weather forecasts in urban
areas are a prerequisite

Objective: Identification of the operational risks
of AAM aircraft in urban areas by formulating
weather-related operational boundaries and

limitations
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— Use of simulation environments
(e.g. RWIND2 or Simulink)

N
(')

N
\J

6 7 8 9 10 11 12 13 14 15
Longitude [°]

Figure 3: Simulated eddy dissipation rate

e [m?/s3] as a measure of turbulence in the

atmospheric boundary layer [4]

— Calibration of lift/drag polars for flight o
performance modeling [2] of AAM

— Calculation of aerodynamic gust loads
on the AAM aircraft using the Versatile
Aeromechanic Simulation Tool (VAST)

References:

[1] https.//www.dlubal.com/en/products/stand-alone-structural-analysis-
software/rwind-simulation

[2] J. Rosenow et al. (2023): Multiple Aircraft in a multi-criteria Trajectory
Optimization, Fifteenth USA/Europe Air Traffic Management Research
and Development

[3] https.//www.dlr.de/sc/desktopdefault.aspx/tabid-12766/22301_read-
51581/

Figu re 2: VAST simulation Showing the [4] Judith Rosenow, Hartmut Fricke (2019): Individual Condensation Trails in

. . Al t Traject Optimization, Sustainability, Vol 11,1 21,
| flow in the wake of the main rotor of a pircraft Tajectory Optimization, sustainability, Voiume 11, ssue
Network member in: helicopter[3] | )
DRESDEN ﬂ nstitut fur
concept _uftfahrt und

SCIENCE AND 1 '
INNOVATION CAMPUS ‘ _Og|St| k



	Folie 1

