

17_Driveability Testing Alliance

Driveability Testing Alliance (DTA)

- Partnership consisting of 4 companies (AMFD, Dewetron, Genesys-Offenburg, Stähle)
- Consortium to ensure the best environment for automated real-driving tests (e.g. EuroNCAP and active car safety systems)
- Comparison of active car safety systems under standardised test methods
- Plug & play solution with universal hardware and software
- Easy installation into almost every vehicle class and high process stability

Setup

AMFD

- Development of test methods
- Execution of the real-driving tests
- Post-processing of the measuring data with dedicated evaluation methods

Dewetron GmbH

 Data acquisition system incl. synchronous data acquisition software with multiple interfaces (analogue signals, CAN, FlexRay, temperatures etc.)

GeneSys Elektronik GmbH

- Fiber optic gyroscope platform
- DGPS
- G-sensors
- 7 POIs (Point of Interest)

Stähle GmbH

• Automated self-driving system (actuators)

Driving Maneuvres

- Forward Collision Warning (FCW)
- Autonomous Emergency Braking (AEB)/Car-to-Car
- Vulnerable Road Users (VRU)
- Lane Departure Warning (LDW)
- Lane Support Systems (LSS)
- Emergency Lane Keeping (ELK)
- ... (https://www.euroncap.com/en/forengineers/technical-papers/)

Technical Data

SFP-Hybrid from Stähle

Steering robot: SSP-FrontFree

• CAN, LAN, RS232, Dig IN/OUT

Nominal steering moment: 60 Nm @ 1280 °/s

Max. steering torque: 75 Nm
 Max. control speed: 1700 °/s.

Brake pedal: AP-FF-B-Hybrid

Max. stroke: 150 mm
 Max. Force (optional extendable): 350 N
 Max. control speed: 0,4 m/s

Gas pedal: AP-FF-G-Hybrid

• Max. control speed: 900 °/s

ADMA-G PRO+ from GeneSys

3 closed loop fiber optic gyroscope

Angle range yaw / roll / pitch: +- 180 / 60 /

60°

3 servo G-sensors

Measuring range: +- 5 g
 Position accuracy: 0,01 / 0,2 /

0,4 / 0,6 / 1,2 / 1,5 m (depends on GPS receiver)

DGPS

Max. measuring frequency: 1000 Hz

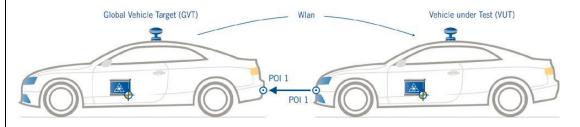
DEWE2601 from Dewetron

• 64 channels real-time (G-values, forces, positions, strain-gauges, CAN, ...)

Specimens

• Cars, trucks and motorcycles

Features


Short installation and commissioning time plus modular adjustments to any specific car

Location

Fahrzeugtechnisches Versuchszentrum Dresden Chair of Automotive Engineering August-Bebel-Straße 32 01219 Dresden (https://goo.gl/maps/QwMGh6A6cjm)

Functional Principle

- Setting the target values for each test scenario by the driving program (Stähle Drivermodule)
- Actual values gathered by sensor platform (ADMA-G PRO+)
- Sensor data recorded and processed by the central measuring box and computer (DEWE2601)
- Variance analysis of real and target values (velocity, position, G-values, ...) through controller
- Closed loop controlling of the car with actuators (SFP-Hybrid-Stähle)
- Car to car, car to infrastructure and car-VRU (Vulnerable Road Users) communication via sensor platform

Software for Controlling and Data Acquisition

- DEWESOFT-7-DAS Software
- DEWESOFT-OPT-CAN
- DEWESOFT-OPT-CAN-OUT
- PLUGIN-ADMA
- PLUGIN-POLYGON
- PLUGIN-CAM-GIGE
- Stähle Drivermodule

Reference Projects

Various tests for OEM

Contact

Dipl.-Ing. (FH) Axel Gerhard
Driving dynamics, Driving Comfort
Email: axel.gerhard@tu-dresden.de
Tel.: +49 (0) 351 / 647 51944
Fax.: +49 (0) 351 / 463 37066