Highly Immersive Driving Simulator

Field of Study
- Driving dynamics and ride comfort simulation tests
- Analysis of the effect chain understanding of stimuli from different domains
- Human Machine Interaction (HMI) and Human Factors
- Studies on driver assistance systems (ADAS/AD)
- Traffic psychological aspects

Technical specification – Dome/Mockup
- Architecture:
 - Concurrent RealTime iHawk
 (RedHawk Linux, Xeon Gold 6234 @3.3GHz (8 CPUs), 48GB RAM, NVIDIA Quadro P400, Real-Time Clock & Interrupt Module, SIMulation Workbench)
 - Simulation Master
 (Win10, Core i9-10850K @3,60GHz (10 CPUs), 128GB RAM)
 - 4x Image Generator (3x Projection, 1x Mirrors)
 (Win10, Core i7-10700K @3,80GHz (8 CPUs), 32GB RAM, NVIDIA GeForce RTX 3080)
- Visualization:
 - Spherical CFRP projection screen (Dome)
 - Horizontal: 225° Field-of-View
 - Vertical: 40° Field-of-View
 - 3-channel projection system
 - NORXE P1 Projektoren with N1 lense
 - WQXGA resolution (3x 2560x1600) @120Hz
 - Projection ratio ~1:1
 - Exterior mirrors, rear view mirror, dashboard and center console designed as displays
- Acoustics:
 - 5.1 audiostem system
 - Real-time simulation of powertrain, wind, ambient traffic and tire rolling noise
- Haptics:
 - Automatic gearshift
 - D-Box Seat Shaker
 - Motorized seat belt
 - Sensodrive Force-Feedback SensoWheel
 - JoysonSafety Steering Wheel
 - 360° RGB-Lightbar
 - Hands-on-Detection
 - Individual buttons
- Misc.:
 - Individual display visualization (driver information system, HMI)
 - Contactless SmartEye head- & eyetracking

Simulation software
- Realtime-Backbone: SIMulation Workbench
- Simulation-Framework: VI-DriveSim, Matlab Simulink
- Vehicle simulation: VI-CarRealTime
- Traffic & environment simulation: VI-WorldSim
- Visualization: VI-WorldSim
- Acoustics: Simsound

Metrics
- Driver/Mockup:
 - Gas/brake pedal actuation, steering angle/torque, gear, indicator, lights, hand brake
 - Touch display interaction
 - Steering wheel: Hands-On-Detection
- Traffic & Environment simulation:
 - Positions, speeds, accelerations of ego and target vehicles, suspension/powertrain/aerodynamics, sensor data etc.

Location
Driving Simulator Laboratory, 01705 Freital

Contact
Dipl.-Ing. Stefan Plaettner
stefan.plaettner@tu-dresden.de
0351-647 51948
Technical specification – Motion platform

<table>
<thead>
<tr>
<th>Component</th>
<th>Equations</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion platform (3 DOF*)</td>
<td>$\ddot{x}; \dot{y} (m/s^2) / \ddot{\psi} (°/s^2)$</td>
<td>9; 9 / 206</td>
</tr>
<tr>
<td>* active</td>
<td>$\dddot{x}; \ddot{y} (m/s^2)$</td>
<td>14; 14 / 320</td>
</tr>
<tr>
<td></td>
<td>$x; y (m) / \dot{\psi} (°)$</td>
<td>inf; inf / inf</td>
</tr>
<tr>
<td>Yaw bearing (1 DOF)</td>
<td>$\dddot{\psi} (°/s^2)$</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>$\dot{\psi} (°/s)$</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>$\psi (°)$</td>
<td>inf</td>
</tr>
<tr>
<td>Hexapod (6 DOF)</td>
<td>$\dddot{x}; \dddot{y}; \dddot{z} (m/s^2) / \dddot{\phi}; \dddot{\theta}; \dddot{\psi} (°/s^2)$</td>
<td>6; 6; 9 / 300; 300; 500</td>
</tr>
<tr>
<td></td>
<td>$\dddot{x}; \dddot{y}; \dddot{z} (m/s)$ / \dddot{\phi}; \dddot{\theta}; \dddot{\psi} (°/s)$</td>
<td>0,45; 0,45; 0,42 / 50; 50; 45</td>
</tr>
<tr>
<td></td>
<td>$x; y; z (m) / \phi; \theta; \psi (°)$</td>
<td>0,15; 0,15; 0,13 / 17; 17; 15</td>
</tr>
<tr>
<td>Seat shaker</td>
<td>$\dddot{z} (m/s^2)$</td>
<td>10</td>
</tr>
<tr>
<td>Overall dimensions (m x m x m)</td>
<td></td>
<td>4,4 x 4,4 x 4,6</td>
</tr>
<tr>
<td>Overall mass (kg)</td>
<td></td>
<td>~ 5000</td>
</tr>
</tbody>
</table>