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1 Introduction and intention of this opinion  

Under section 1(1) of the Civil Aviation Act, drones are formally classified as aircraft and are 

"remotely piloted aircraft systems" (RPAS) or "unmanned aerial vehicles" (UAVs). In this 

document, the term 'drone' is used to cover both types of aircraft. In this context, 

unmanned therefore refers to the flight operation functions and thus also includes the 

carriage of persons by drone. Currently, with the onward march of the digital revolution in 

society and the opportunities it presents for low-cost and increasingly high-capacity data 

collection and transmission capabilities, drones are experiencing explosive growth, resulting 

in a similar growth in air traffic. Spatially, these activities have so far been concentrated on 

very low-level airspace (VLL – <150 m) and low ranges of action (<20 km) of the individual 

drones. The reason for this is that the monitoring technology used is in the VHF/UHF 

frequency band and that so far most drones have been flown in visual line-of-sight (VLOS) 

operation. In Germany, VLL airspace is – except at aerodromes – uncontrolled (airspace class 

G) and thus self-organizing to a very large extent and managed without VFR (visual flight 

rules) air traffic control. 

Forecasts by the SESAR (Single European Sky Air Traffic Management Research) Drone 

Outlook1 state that, by 2050, there are expected to be some 7 million consumer leisure 

drones (toys) operating across Europe, with a further 400,000 being used for commercial 

purposes, including: 

 around 100,000 in the agriculture sector to enable precision agriculture to help drive 

increased levels of productivity; 

 around 10,000 in the energy sector to limit the risks involved in performing 

hazardous monitoring and maintenance on complex technical systems; 

 around 100,000 in the logistics (urgent services) sector for the provision of vital 

deliveries and as a premium delivery service for very high-value commodities; 

 around 50,000 for police and fire force functions (civil protection). 

                                                        
1
 See 

https://www.sesarju.eu/sites/default/files/documents/reports/European_Drones_Outlook_Study_2016.pdf   

https://www.sesarju.eu/sites/default/files/documents/reports/European_Drones_Outlook_Study_2016.pdf
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The result would be a significant increase in the density of aircraft in the airspace. In 

commercial use alone, the increase would be more than 10-fold compared with today's 

approximately 20,000 conventionally controlled certificated aircraft (business aircraft and 

helicopters). Over the same period, the number of these conventional aircraft will, according 

to the SESAR ATM Masterplan Forecast, rise to around 45,000 worldwide – a figure that 

appears modest in comparison2. This is driven by the wide range of emerging new business 

models based on drones which, according to estimates by PWC and Goldmann Sachs, could 

achieve an annual worldwide turnover of over 100 billion deals by 2020 alone.3 4 Blyenburgh 

expected similarly progressive trends, with a tripling of the numbers of movements by drone 

by the end of 2018 alone.5 These estimates give an idea of the potential, but the actual 

spread of drones will also depend very heavily on the regulatory environment.  

In addition, it has to be assumed that, in the near future, numerous new types of drone will 

be deployed that can rise to significantly higher altitudes and can even enter the controlled 

airspace (> 2,500 ft or just over 750 m above ground) where, in a visionary manner, for 

instance as an air taxi, they can cross long distances without encountering obstacles or 

congestion and without having to take a detour. In the long term, there are also likely to be 

increasingly large drones, both in the form of present-day commercial fixed-wing aircraft and 

rotorcraft in the cargo sector and later also in the movement of persons. SESAR expects 

remotely piloted/autonomous flights to account for 20 % of air traffic in the aforementioned 

controlled airspace by 20506.  

Although the current development of drones offers a wide range of opportunities, there are 

also various possible undesirable effects (negative externalities). These include accidents 

involving personal injury or damage to property on the ground, on buildings and other fixed 

                                                        
2 (Un)certain skies? Drones in the world of tomorrow – © OECD/ITF 2018, https://www.itf-
oecd.org/sites/default/files/docs/uncertain-skies-drones_0.pdf     
3 PwC (2016), Clarity from above: PwC global report on the commercial applications of drone technology, 
PricewaterhouseCoopers, Warsaw. 
4 Goldman Sachs (2016), “Drones: Reporting for Work”, www.goldmansachs.com/our-
thinking/technologydriving-innovation/drones/ . 
5
 Blyenburgh (2018), Drone Operations: Today & Tomorrow, Blyenburgh & Co, Paris 

6
 PwC (2016), Clarity from above: PwC global report on the commercial applications of drone technology, 

PricewaterhouseCoopers, Warsaw. 

https://www.itf-oecd.org/sites/default/files/docs/uncertain-skies-drones_0.pdf
https://www.itf-oecd.org/sites/default/files/docs/uncertain-skies-drones_0.pdf
http://www.goldmansachs.com/our-thinking/technologydriving-innovation/drones/
http://www.goldmansachs.com/our-thinking/technologydriving-innovation/drones/
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installations; accidents in the air involving aircraft, cable cars or other drones; criminal or 

terrorist threats posed by devices equipped with firing systems, explosives or chemicals; 

invasion of privacy through the recording of images or sounds or through the unlawful 

introduction of sensors into other people's privacy; drones being used to steal objects; noise 

pollution; disturbing the optical or acoustic environment of people (even still below 

prescribed noise thresholds); alarming or scaring people with regard to the aforementioned 

threats or as a result of natural reflexes; having an adverse impact on the natural habitats of 

animals. These problem areas have been the subject of discussions at national, European 

and international level for some time now and are currently resulting in initial but not yet 

comprehensive regulatory steps. National regulations have to date displayed a wide range of 

administrative, operational and airspace management rules, which also vary significantly 

depending on the category of drones (OECD/ITF 2018 pp. 15 ff). 

It is thus obvious that solutions for addressing the very dynamic development in the VLL 

airspace, which has so far been predominantly used, will have to be found via more precise 

regulation in an airspace that will be used to a significantly higher extent in the future. On 

the other hand, possibilities for fundamentally enlarging the area of operation are to be 

created in order enable the many and varied business models that involve beyond visual line 

of sight operations (BVLOS). Germany, as an attractive location for innovative drone 

manufacturers, needs a framework that allows new business models and transport 

technologies while simultaneously meeting stringent requirements regarding safety, 

security, privacy, capacity and efficiency in their integration into the airspace. 

Since this framework is established in interaction between national and international bodies, 

it is imperative, and in our own interests, that we demonstrate national commitment to 

fleshing it out. In June 2018, the European Commission, the Council of Ministers and the 

European Parliament agreed on uniform rules for the marking and operation of civilian 

drones, and thus in particular those weighing less than 150 kg. These rules will enter into 

force in the near future, and Member States will have to ensure that manufacturers of 

affected unmanned aerial vehicles meet dedicated requirements. Within the EU, drones that 

could be dangerous for persons, the privacy of third parties or aviation, are then to be 

marked for individual identification. In addition, drone manufacturers will, in the future, 
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have to follow rules (not yet completely established), specifically in the construction of 

heavy drones. These rules will cover requirements for maximum altitudes, ranges, data 

protection and automatic emergency landing capabilities. The Commission now has to flesh 

out the details of the new directives. By way of contribution to this process, the following 

opinion sets out recommendations regarding national involvement in their fleshing-out. The 

aim is, by means of standardization, to impose as few constraints as possible on innovation 

by establishing a framework that can be easily grasped.  

Accordingly, the present opinion addresses the challenges and opportunities induced by the 

growth in drones in the mobility sector. It concludes by providing the Federal Minister with 

recommendations for action to the effect that measures should be consolidated to provide 

targeted support to the regulatory and standardization processes ongoing in the context of 

the new EU Basic Regulation from 2018. This is the only way to provide the numerous 

development and procedural processes that are starting, in Germany and in other countries, 

with a compatible framework for certification at a later date. Specifically, reference is made 

here to drone testing centres as a component of Smart Cities, the number of which has been 

growing in Germany as well since 2018, encouraged by the EU's Urban Air Mobility (UAM) 

initiative7. This promises the applicant towns and cities relevant funding for the trialling of 

3D mobility in conurbations. 26 towns and cities are currently members of the UAM 

initiative, e.g. Hamburg, Dresden, Leipzig, Munich, Ingolstadt. The recommendations made 

in this opinion are designed to support a structured approach in these projects as they pass 

through the subsequent certification and licensing process. 

                                                        
7
 EIP-SCC - European Innovation Partnership on Smart Cities and Communities, https://eu-smartcities.eu  



 

9 

 

2 Categorization and operational scenarios of drones 

2.1 Categorization, operation categories and drone classes 

In accordance with EU Basic Regulation 216/2008 (no longer in force), certification 

requirements have so far applied only to drones with a maximum take-off mass of more 

than 150 kg. Light drones were thus governed by the heterogeneous legislation at national 

level. To achieve harmonization in Europe, the EU Basic Regulation was recast for all weight 

categories. This instrument was adopted by the Council and Parliament on 4 July 2018 and 

entered into force on 11 September 2018.8 To address the different kinds of potential risk 

inherent in the very specific types of operation, drones have been classified by the European 

Aviation Safety Agency (EASA) since 2008 into the following three categories – open, specific, 

and certified. 

2.1.1 'Open' category 

EASA's open category focuses on light drones where the risk posed to third parties on the 

ground or in the air is considered to be comparatively low. The operation of drones in this 

category is not to be subject to authorization by the aviation authorities. This also includes 

drones used for recreational or sporting purposes. Another principle is that a pilot may only 

control one drone at any given time and only within the visual line of sight (VLOS). 

Operation categories and drone classes 

To ensure safety, the primary subdivision is into operation categories and drone classes. The 

three operation categories A1 to A3 stipulate the distance from people on the ground at 

which drones may be operated and are supplemented by restrictions on the permitted 

altitude. The five open drone classes (subcategories) C0 to C4 regulate what drones may 

operate in the respective operation categories (see also Figure 1). A sixth drone class 

                                                        
8
 See https://www.easa.europa.eu/document-library/regulations/regulation-eu-20181139 or https://eur-

lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R1139   

https://www.easa.europa.eu/document-library/regulations/regulation-eu-20181139
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R1139
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R1139
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additionally takes into account private self-constructed aerial vehicles (model aircraft) as 

frequently encountered in model aircraft flying clubs. The classification is based on the 

maximum take-off mass (MTOM) or the kinetic energy of the drone as a measurement of the 

potential risk posed to people on the ground. 

Kinetic energy as a basis of classification  

In connection with the kinetic energy, it is possible to determine whether a drone colliding 

with a person will have fatal consequences. This topic has been the subject of numerous 

studies in recent years. Dalamagkidis et al. (2008) and Skobir und Magister (2011), for 

instance, studied the kinetic energy of drones with reference to their velocities. The studies 

by Monash University (2013) and Arterburn et al. (2017) deepen the studies by including 

different injury models relating to the region of the body hit and by taking into account the 

varying degrees of injury by different components of the drone. Shelley (2016) also 

calculates the "social" costs that accidents involving drones and persons can entail. To 

determine a kinetic energy threshold as of which a collision is assumed to be fatal, EASA 

refers to the 1949 Gurdjian Experiment. This experiment demonstrated that, in the event of 

a collision with blunt objects, the human skull possesses the capability to absorb energies up 

to 80 J without suffering a fracture. In addition, EASA assumes that, in the event of a 

muliticopter crash, an average of only 46.5 % of the actually occurring kinetic energy impacts 

on the head of a person. This average value produces two scenarios, which analyse different 

types of hit. In conjunction with the aforementioned threshold of 80 J, the result is an 

accepted actually occurring kinetic energy of 172 J.  

These assumptions are relevant especially because they determine the maximum weight 

limit of class C1 drones permitted in operation category A1. In this category, drones may be 

operated over people but not over gatherings of people. EASA assumed a linear connection 

of 48 J of kinetic energy per 250 g of take-off mass. This results in a maximum take-off mass 

(MTOM) of 900 g as a ceiling for drone class C1. Because of the great relevance of this 

weight restriction, given by the permitted operation over people, the correlation established 

here between the MTOM and kinetic energy in the event of a collision of a drone with a 

person is definitely worth reviewing and the existing class model is to be verified. 
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Maximum take-off mass as a basis of classification 

The EASA documents do not provide any detailed justification for the weight restrictions of 

the drone classes permitted in A2 and A3. It thus has to be assumed that the MTOM 

thresholds have evolved historically or have emerged as a result of market analyses. Thus, 

for instance, Class C2, which is approved in operation category A2, allows drones with a 

take-off mass of up to 4 kg. According to an EASA study, this segment comprises 92 % of the 

drones currently being operated on the European market. These are mostly equipped with 

navigation and automation systems, can carry payload and pose a heightened risk to third 

parties. The maximum take-off mass of drone classes C3 and C4, which may only be flown far 

from people (operation category A3), is 25 kg. Thus, the MTOM of this class is equivalent to 

the currently prevailing weight limitation for drones on the national levels of the EASA 

Member States. Operation category A3 reflects not only commercial operations with 

sophisticated camera systems but also the large number of model aircraft that are 

traditionally flown in model aircraft flying clubs. It is obvious that higher MTOMs of drones 

entail a greater operational risk. The reason for this is the positive correlation – described 

above – between the maximum take-off mass and the kinetic energy that becomes effective 

in the event of a collision with persons. In order to reduce the risk to third parties on the 

ground, there is a subdivision into operation categories which, in accordance with the 

MTOM, permit operations over , at a defined distance from or at a subjectively suitable 

distance from people. To continue to reduce the risk to third parties in the air, a maximum 

permissible altitude above ground level (AGL) of 120 m applies to drones, which is thus 30 m 

below the minimum flight altitude for manned visual flight rules (VFR) aviation (150 m AGL) 

under the Rules of the Air Regulations. In addition, only visual line of sight (VLOS) flights are 

permissible in the entire EASA open category. The following Figure 1 illustrates once again 

the links between the operation categories and drone classes (UAS).These links are 

described in greater detail further below. 
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Figure 1 Operation categories and drone classes for the EASA open category [EASA (A) NPA 2017] 

Supplementing these requirements are further requirements to be met by pilot competence 

and the technical equipment for open category drones: 

 Pilot competence: The remote pilots (RPs) have to be trained. The higher the 

potential risk (mass, velocity), the more extensive the training of the RP must be, to 

be demonstrated in online tests or tests at recognized bodies. The form of these 

competence tests is directly coupled to the drone classification scheme, which means 

that it should likewise be verified and, if necessary, further fleshed out. 

 Product requirements: EASA makes no provision for certification in the open 

category. It does, however, refer to existing rules governing projects under 

Regulation (EC) No 765/2008. Accordingly, drones are to be inspected by accredited 

bodies (e.g. TÜV). Manufacturers can find out what requirements have to be taken 

into account for a product by consulting the harmonized EU standards. If they 

ascertain that their product is in conformity with these requirements, it will receive 

the CE marking. In the case of drones, the product will receive an additional marking 

indicating the drone class whose requirements it meets. So far, however, only few 

standards have been applicable to drones, and so EASA will establish requirements 
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specific to each class. As far as safety is concerned, the main aspects to be 

emphasized here are loss of link management and mechanical strength. One example 

of loss of link management that can already be found in some drone applications is 

the return-to-home function. In the event of the loss of the data link, this failsafe 

functionality ensures that a drone does not continue its mission in an uncontrolled 

manner but autonomously returns to a pre-programmed location and lands there. 

This function can also take effect if the state of charge of the battery is too low. 

 Type of power: The product requirements also state that all Class C0, C1, C2 and C3 

drones must be electrically powered. Only Class C4 self-constructed drones may use 

other types of propulsion, such as internal combustion engines. 

 Geofencing: Geofencing refers to a function that does not allow drones to enter a 

pre-defined (restricted) area, such as a major airport within the meaning of section 

21b of the Rules of the Air Regulations or an urban area. Here, a distinction has to be 

made between no-drone zones and limited-drone zones. In the former, the operation 

of drones is categorically prohibited, whereas in the latter it is permissible only for 

certain drone classes. The result is that as a first step, the EASA Member States are to 

determine prohibited and restricted areas in their own airspace and indicate them 

via web-based platforms or apps. In order to prevent drones automatically 

penetrating these areas, including altitude restrictions, it is necessary to create 

uniform standards, chart systems and databases so that manufacturers can 

implement the geofences in the drones' flight controllers. The European Organization 

for Civil Aviation Equipment (EUROCAE) has been tasked with creating these 

standards. 

 Electronic identification system (e-ID): To make it possible to reproduce 

infringements, an electronic identification system (e-ID) is a further product 

requirement to be met by open category drones. This means the capability to identify 

a flying drone without physical access (operator, drone class, position, altitude). One 

of the data bases for e-ID is the envisaged registration requirement for operators and 

drones with a take-off mass of 250 g or more. The electronic identification system 

can then be used for the criminal prosecution of persons who deliberately misuse 

drones. 
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2.1.2 'Specific' category 

The EASA specific category covers the operation of drones that do not comply with the 

aforementioned provisions of the open category and thus pose a comparatively higher risk. 

This concerns, for instance, beyond visual line of sight operations (BVLOS), operation over 

gatherings of people involving drones whose characteristics do not comply with Class C1 or 

at altitudes over 120 m above ground level (AGL). This necessitates an authorization granted 

by the competent aviation authority that includes adapted operating limits in line with the 

mission-specific risk. This is to be identified in accordance with the specific operations risk 

assessment (SORA) (see section 5.1 for more details). If the mission-specific risk can be 

reduced to an acceptable risk by the operator taking appropriate risk mitigation measures, 

operational authorization will be granted. At this point, however, it should be mentioned 

that SORA only addresses safety risks. The aspects of security and privacy have not yet been 

addressed by SORA – a shortcoming that should be remedied by means of an appropriate 

widening of the risk analysis. The primary requirement for e-ID is that infringements can be 

reproduced in the same way as in the EASA open category. In addition, it is likely that the 

majority of operations in the specific category will be of a commercial nature (the fees for an 

operating authorization are significantly higher than €200.) The professionalism and 

competence of the operators involved with this means that the risk of deliberate misuse of 

drones tends to be low, but it cannot be ruled out. The remaining recreational operations 

are accounted for primarily by the model aircraft flying clubs. On the clubs' grounds, 

however, aircraft are also flown at altitudes over 120 m AGL. In addition, model aircraft with 

an MTOM of more than 25 kg are used. In both cases, the clubs have to obtain an 

operational authorization. Since, however, the operations are restricted to the grounds of 

any given club, it can also be assumed here that any risk regarding security or privacy tends 

to be insignificant. It is possible to additionally reduce the privacy risk by checking whether 

the organization of the operator is suitable for specific missions. Regardless of the fact that 

these risk aspects may be of a limited nature, they are to be included in SORA. 
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2.1.3 'Certified' category 

Operations in the EASA certified category, which involve drones with an MTOM of > 150 kg, 

are subject to similar rules to those with which we are already familiar from manned 

aviation. Here, it is not only a specific mission that is authorized. Rather, there is a (costly) 

certification of the drone, as a result of which, however, it can be used for large number of 

missions. In the future, the airworthiness of the drone will be tested on the basis of 

conformity by means of EASA directives (certification specifications – CS). At present, EASA 

has not issued any CS for drones9. Accordingly, for airworthiness certification, a 

development company must apply the procedure set out in EASA Policy Statement E-Y013-

01 or the certification specifications published by JARUS: CS Light Unmanned Rotorcraft 

Systems (CS-LURS) for rotary-wing aircraft or CS Light Unmanned Aeroplane Systems (CS-

LUAS) for aircraft with an MTOM of 750 kg  The formulation of a CS for drones in the near 

future is advisable in order to establish clarity concerning the effort involved for the 

development company in obtaining certification, ideally through the provision of joint 

testing and certification grounds by the authorities. 

2.1.4 Conclusion 

The information provided above illustrates the heterogeneity of drones, identifies the need 

for action and also demonstrates considerable differences in the current depth of regulation 

and thus also in terms of standardization. In the open category, regulation is already at a 

very advanced stage today, whereas there are only basic rules governing the specific and 

certified categories: 

 Open: Drones of this category are currently the most common models from the spheres 

of gaming and surveying/photography. They must not exceed a maximum take-off mass 

(MTOM) of 25 kg including payload and must exhibit a maximum altitude of between 

50 m and 120 m. The do not normally require explicit authorization before use or any 

further certification of the pilot. Nevertheless, German legislation distinguishes various 

                                                        
9
Since 1 February 2019, JARUS has had a draft version of a CS-UAS. 
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sub-categories that require proof of competence as of 2 kg MTOM and a licence as of 

5 kg. This also applies as of an altitude of 100 m, irrespective of the mass. 

 Specific: Drones of this category do not completely meet the requirements of the open 

category (negative definition), have to be precisely explained with regard to their 

intended use and be issued certification by the competent authority (in Germany the 

aviation authority of the federal state in question) for this specific scenario. For the 

scenario, a specific operations risk assessment (SORA) has to be performed as part of the 

authorization process. Any risk mitigation requirements identified in this process have to 

be met as a condition for issuing the aforementioned certification. 

 Certified: These drones with an MTOM > 150 kg do not completely meet the 

requirements of the open or specific categories (negative definition) and require 

individual certification because of the heightened potential of risk, a licensed remote 

pilot (RP) and an operator certified by a Light or Certified UA Operator Certificate 

(LUC/CUC) issued by the competent authority.  

In Germany, these categories have, since 2017, been formalized by the Federal Ministry of 

Transport and Digital Infrastructure' national Drone Regulations (see note in the open 

category. However, as a result of the new EU Basic Regulation dating from 2018, it has to be 

assumed that the national regulations will, in the medium term, by replaced by explicit rules 

developed by EASA. 

2.2 Operating scenarios 

The civil drones on which the present opinion focuses are already in use today in the 

transport sector for measuring instruments, freight and in some cases even persons. A wide 

range of future specific areas of application is envisaged, and visionary conceptual studies 

for air taxis for the carriage of passengers have been published (Audi, Airbus, Lillium). Some 

of the envisaged operating scenarios are only made possible by the "4th Industrial 

Revolution", because they presuppose a close fusion of physical, digital and human systems. 

However, business models that have so far been impossible or least not commercially viable 

using manned aircraft (such as the use of present-day helicopters) are today already 

developing at a furious pace and with a rapidly growing degree of maturity.  
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In this context, drones are always a carrier medium. They can transport people, goods, 

measuring equipment or devices that perform activities themselves, for instance repairs or 

the fertilization of fields. Among the numerous types of drone, the most common is the 

multicopter configuration (rotary blade), followed by the fixed-wing configuration. Table1 

below shows the current shares and the shares forecast by EASA. Most of these drones are 

electrically powered; 92 % of all open category and specific category drones with an MTOM 

not exceeding 25 kg used for civil purposes effectively weigh less than 4 kg. 

 

Table 1 Global share of drones by design configuration [EASA] 10 

Another characteristic of drones revealed by the EASA study is the expected lifetime of only 

30 months, which reflects the currently massive rhythm of innovation.  

With the high level of innovative intensity, the heterogeneity of the drones and their areas 

of application also increases. The first question that arises is: which of the existing areas of 

application and which of the areas of application conceivable in the future for drones will 

develop and how? This is the only way to later derive recommendations for action by 

transport policymakers when addressing the issue of drones. Of course, the following is 

confined to a selection of operating scenarios. 

Drones as a means of transport for measuring equipment 

Today, drones are already fitted with a wide range of equipment for data collection and 

transmission. The main types of equipment transported are cameras (e.g. daylight, thermal 

imaging, corona, pmd11) and detectors (e.g. lasers, radar, ultrasound, temperature, 

                                                        
10

 Cf. EASA [A-NPA (B), 2017], p.10 ff.; CAGR = Compound Annual Growth Rate  
11

Photonic mixer device – an optical sensor whose operating principle is based on the time-of-flight process. 
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humidity). This sector is currently developing at a very dynamic pace with a wide range of 

possible areas of application, for instance in agriculture (e.g. monitoring of growth 

processes, tree populations, infestation with pests, damage, maturity for harvesting), 

maintenance (e.g. inspection of difficult-to-access or hazardous facilities such as aircraft 

surfaces, offshore wind turbines, transmitter masts), disaster control (e.g. finding of 

earthquake victims, landmines or leaks by the German Disaster Relief Agency), industrial 

espionage, recording of accidents by the police, border protection, capturing of damage by 

the fire brigade, construction industry (monitoring the progress of construction work and 

protection against unauthorized access and theft), surveying, taking of aerial photographs, 

spatial data. In all these sectors, standardization is still low and the market is dominated by 

special solutions. This state of affairs will in the short term allow noticeably simplified 

market access, but will in the long term place a constraint on the connectivity and 

combination of various systems and providers. Requirements in the sphere of privacy rights 

and, continuing along this path, data protection and safety are easier to meet if the areas 

overflown are in private ownership (e.g. applications in agriculture or on building sites), 

which makes these applications more dynamic, especially in these sectors. 

Drones as a means of transport for active equipment and machines 

There is great potential inherent in drones for carrying out work requiring a high degree of 

precision at difficult-to-access and/or hazardous locations. Areas of application so far have 

been primarily agriculture (e.g. targeted fertilization or pest control), maintenance (e.g. 

repair of difficult-to-access facilities such as power lines, gas and oil pipes, wind turbines), 

special effects at major events, personal flying assistant (indicates the way to preset 

destinations, e.g. for people with dementia) and applications in the private sphere. 

Drones as a means of transport for goods 

Drones can also carry goods as a fast and reliable alternative to land-based transport. 

Numerous companies in the logistics and, more specifically, CEP (courier, express and parcel) 

sectors as well as Google and Amazon are currently testing the use of drones for the delivery 

of parcels. Initially, the focus was on time-critical deliveries and deliveries in difficult-to-

access regions. Currently, tests are also being carried out with deliveries to sparsely 
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populated regions. The first delivery operations over urban areas were carried out by the 

drone manufacturer Matternet in cooperation with Mercedes-Benz and the Swiss online 

marketplace Siroop. In a three-week project, drones transported parcels weighing up to 2 kg 

from the dealer to one of four defined "rendezvous" points in the city of Zurich, where they 

landed on a designated Mercedes-Benz van. The supplier delivers the parcels to the end 

customer. The project was authorized on case-by-case basis based on SORA. The increasing 

volume of consignments in the CEP sector in combination with reduced barriers to trade 

make the need for innovative solutions in the delivery of parcels obvious. 

Compared with land-based transport, drones make more direct routes possible by navigating 

in three-dimensional space. In total, however, they exhibit less favourable energy 

consumption and emissions because these are significantly higher per flight route than 

movement on the earth's surface. Modern, electric multicopter drones in the open category 

have a specific power requirement of over 100 W/kg. Compared with this, an e-Golf requires 

less 12 13 than 10 W/kg. One of the strengths of drones is the (easier) access to difficult-to-

reach destinations (e.g. large high-rise buildings, oil platforms, islands, mountainous regions, 

primeval forests/jungle regions, disaster zones, contaminated/irradiated areas) and the very 

precise (in terms of time and space) delivery to almost any location (e.g. to passenger cars, 

parcel boxes). Nevertheless, it will not be possible to fully leverage the potential commercial 

benefits inherent in drones because there are likely to be legal constraints on their usability 

and because of the costs of safety and security, which are addressed below. 

The challenges include the hitherto very short ranges of drones in VLOS operations, the 

potential risk posed by collisions and crashes, especially in BVLOS operations, the limited 

load (max. 25 kg heavy drone including payload for the open category) and the high costs 

because of the absence of consolidation effects (maximum of one parcel per drone). In the 

future, too, drones will continue to be suitable primarily for very urgent deliveries or 

                                                        

12 See https://www.drohnen.de/19418/dji-phantom-4-pro-v2-0-test/ , https://www.dji.com/de/phantom-4-
pro-v2/info#specs (battery power for 30 min. flying time with 1.4 kg) 
13

Calculated from a consumption of approx. 14 kWh/100 km and a mass of approx. 1,800 kg on the basis of the 
mean speed of the NEDC of 34 km/h (7.8 W/kg).  

https://www.drohnen.de/19418/dji-phantom-4-pro-v2-0-test/
https://www.dji.com/de/phantom-4-pro-v2/info#specs
https://www.dji.com/de/phantom-4-pro-v2/info#specs
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deliveries to difficult-to-reach areas, where the costs are of less importance than in the case 

of standard deliveries. 

The especially suitable application areas include time-critical deliveries (e.g. spare parts) that 

are imperative in order to maintain the production line (e.g. in the event of failure of critical 

machines) or to complete a product plus deliveries that are essential for survival such as 

organ transport, the movement of medicines or banked blood in competition with the 

present-day more cost-intensive use of helicopters.  
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Drones as a means of transport for persons 

Numerous companies are currently working on "air taxis", i.e. drones in the certified 

category (see also Chapter 2.1.3). In some cases, modular designs are being developed 

where the cab of a ground-based vehicle is combined with the propulsion technology of an 

aircraft and can thus also fly. The technological developments in this sphere are dynamic but 

still at a very early test phase in the investigation of feasibilities. Appreciable use of air taxis 

is only likely if, in comparison with present-day manned helicopters, there is a significant 

reduction in costs and very good connectivity with the ground-based transport systems. This 

is addressed in more detail in Chapter 6. 

In summary, it can be said that the diversity of applications is increasing but there are hardly 

any resilient figures on market trends, which are considered to be very dynamic. The 

challenge is thus to examine regulatory approaches to date in the light of risk limitation on 

the one hand and market growth on the other hand.  
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3 Regulatory challenges and prospects  

3.1 Requirements for action in the context of regulation so far  

By 2012 at the latest, the competent aviation authorities of the countries of Europe and thus 

also the EU, or more specifically the European Aviation Safety Agency (EASA) tasked by it, 

has recognized a urgent need for the regulation of construction rules and the certification of 

drones in the "common" airspace (i.e. airspace that has hitherto also been used by 

conventional aviation) because of the market trends described above and the fundamental 

need for regulation of all matters concerning the Single European Sky in accordance with 

Regulation (EU) 216/2008, which was repealed in June 2018. This Regulation called on EASA 

to draft a uniform European regulatory framework for construction rules and the 

certification (certification specifications – CS) of drones such as those that already exist for 

conventional aerial vehicles. The development company is responsible for furnishing proof 

that the design meets EASA's CSs. Table 2 contains a list of the CSs currently existing for 

similar aerial vehicles14: 

 

Certification specification  Title/subject 

CS-22 Sailplanes and Powered Sailplanes 

CS-23 Normal, Utility, Aerobatic and Commuter 

Aeroplanes 

CS-25 Large Aeroplanes  

CS-27 Small Rotorcraft 

CS-29 Large Rotorcraft 

                                                        
14

 See https://www.easa.europa.eu/document-library/certification-specifications   

https://www.easa.europa.eu/document-library/certification-specifications
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CS-34 Aircraft Engine Emissions and Fuel 

Venting 

CS-36 Aircraft Noise 

CS-APU Auxiliary Power Units 

CS-AWO All Weather Operations 

CS-E Engines  

CS-ETSO European Technical Standard Orders 

CS-P Propellers 

CS-VLA Very Light Aeroplanes 

CS-VLR Very Light Rotorcraft 

Table 2 Currently existing EASA Certification Specifications for drone-like aerial vehicles  

The intention was to provide the companies developing drones with information as to the 

conditions under which new products could be operated and how they could be operated, 

thereby creating a sound planning basis for new business models. The specifications were 

also designed to address the issues of aviation safety and aviation security. In 2015, EASA 

published an Advanced Notice of Proposed Amendment (A-NPA 2015-10). Later that year, it 

added a Technical Opinion in which it called on the industry and the general public to submit 

comments and proposals for potential adaptations. After reviewing the feedback, EASA then 

published a 'Prototype' Commission Regulation on Unmanned Aircraft Operations in Europe 

with 33 proposals in 201615. This version already focused on both industrially developed and 

self-developed drones, since both variants could ultimately be used for both commercial and 

non-commercial purposes. From this, it derived that both should also be subject to the same 

rules. Another significant feature of the recommended regulatory framework was an implicit 

                                                        
15

 See https://www.easa.europa.eu/sites/default/files/dfu/UAS%20Prototype%20Regulation%20final.pdf  

https://www.easa.europa.eu/sites/default/files/dfu/UAS%20Prototype%20Regulation%20final.pdf
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questioning of the current Basic Regulation (216/2008) with its 150 kg mass threshold or the 

competence of EASA for certifying drones and thus with certification requirements uniform 

throughout Europe. EASA subsequently drafted, especially for "small drones", the technical 

opinions presented in Chapter 2 above on the introduction of three drone categories, 

supposedly corresponding to the potential risk in any given case, but also with regard to the 

intended operating area (for instance use over urban areas versus over water). To this end, 

the risk-based open, specific und certified categories were introduced across the entire 

weight range.  

The legal foundations for the development and operation of drones must cover aspects of 

safety, security and privacy. In aviation, safety and security are, as it were, two sides of the 

same coin. On the one hand there is the safety of operations within the system of aviation, 

whereas on the other hand there is security, which refers to protection against external 

threats that may impact on the system of aviation.  

As far as security is concerned new types of rules and regulations have to be developed. 

There are usually no persons on board who could suffer harm if the system were to be 

intentionally misused or unlawfully interfered with. The rules for safeguarding manned 

aviation against acts of unlawful interference are set out In ICAO Annex 17. They include, for 

instance, the security screening of passengers and their baggage, the screening of cargo and 

the background checking of staff. In the EASA open and specific categories, they are either 

not necessary (e.g. passenger screening) or only applicable to specific missions (e.g. cargo 

screening in commercial operations involving the delivery of parcels) or, in certain cases, 

only feasible with a great deal of effort and expense (e.g. background checks on pilots of 

hobby drones in the open category). 

At present, light drones and their components, especially in the EASA open category, are 

accessible to anyone without appreciable barriers because they can be purchased. This is in 

stark contrast to manned aviation with its stringent checks. Thus, if drones of this category 

continue to be available openly and without a requirement for ID to be shown, the security 

focus may shift from safeguarding against acts of unlawful interference with light drones to 

preventing the deliberate misuse of light drones. For the EASA open category, security 
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focuses on reducing the risk of deliberate misuse, whereas safety addresses this issue from 

the point of view of ensuring proper operations. For missions in the EASA specific category 

that entail an unacceptable safety or security risk, risk mitigation measures can be defined 

by the specific operations risk assessment (SORA) they require (see also Chapter 5.1).  

In addition to safety and security, the issue of privacy must continue to be addressed. 

Privacy is relevant in the use of drones because they are frequently fitted with a camera or 

other sensor technology. This means that personal data can be recorded at places that were 

previously inaccessible to the public (e.g. private property). On top of this, the parties 

affected by the recording may not be aware if drones are flying at higher altitudes. This gives 

rise to the risk of interference with the privacy of third parties and failure to observe the 

protection of personal data if the data recorded are published or forwarded. It is true that 

the limits regarding an invasion or privacy are frequently subjective. However, privacy and 

data protection are deemed to be a basic right, not least following the recent entry into 

force of the General Data Protection Regulation (GDPR) in Europe and the related renewal of 

the national Federal Data Protection Act, and must therefore be taken into consideration in 

the new rules and regulations.  

3.2 Challenges concerning the regulation of drones 

The trends described above confront the present-day air transport systems with unique 

challenges in the following spheres: 

 maintenance of aviation safety  

o These include firstly challenges resulting from the joint use of the controlled airspace 

by drones and conventional, commercially used aerial vehicles (using instrument 

flight rules, IFR) and from the possible risk posed to persons and objects on the 

ground by the operation of drones. It is to be examined whether, and if so to what 

extent, present-day air navigation service providers (such as DFS) are able to simply 

control drones alongside other air traffic. There is much that militates in favour of an 

enlarged, presumably centralized service. 

o Second, there are unresolved issues regarding the joint use of very low level (VLL) 

airspace by the open and specific categories with present-day visual flight rules 
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traffic, which is predominantly not commercially oriented and takes place on a 

decentralized and, as it were, unplanned basis. 

 In light of the ultimately chosen monitoring philosophy for drones, it will then be 

necessary to consider whether the division into upper, lower and very low level (VLL) 

airspace on the one hand and controlled and uncontrolled airspace on the one hand 

should be maintained.  

 maintenance of security as the prevention of sabotage or terrorist attacks;  

 data security (including cyber security), e.g. in data transmission (robustness of the C2 or 

C3 data link between remote pilot and drone); 

 ensuring privacy and data protection when drones are flown over densely populated, i.e. 

normally urban, areas; 

 ensuring sufficient capacity as the maximum achievable safe air traffic throughput taking 

into account the various airspace classes (C – G) and types of aerial vehicle (multicopter, 

fixed wing, tilt-rotor hybrid); 

 minimization of further, yet to be identified negative effects of drone operation (e.g. 

nuisance to humans and nature caused by flying vehicles that are audible); 

 ensuring that this new transport system is integrated in a manner compatible with urban 

planning. 

Figure 2 below shows – by way of example for the sphere of safety – trends in the frequency 

of occurrences involving conflicts between drones and conventional aerial vehicles. What is 

conspicuous is the high number of sightings at altitudes of more than 150 m (500 ft)16, which 

is actually not permissible for the open category. Safeguarding today's high level in aviation 

safety is thus quite obviously a key requirement to be met by the activities to shape the 

operational framework for drones, and this requirement has not so far been met. An analysis 

by the European Central Repository17 (ECR/ECCAIRS) revealed 2,141 drone-related 

occurrences for the period from 2010 to 2016. These occurrences are subdivided into 

accidents and incidents. A recent occurrence with huge consequences was the unlawful 

                                                        

16
 Cf. EASA [A-NPA (B), 2017], p. 55 ff. 

17
 Evaluated from https://ec.europa.eu/jrc/en/scientific-tool/eccairs-european-central-repository-aviation-

accident-and-incident-reports  

https://ec.europa.eu/jrc/en/scientific-tool/eccairs-european-central-repository-aviation-accident-and-incident-reports
https://ec.europa.eu/jrc/en/scientific-tool/eccairs-european-central-repository-aviation-accident-and-incident-reports
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approach of drones into the no-drone zone at the UK's second largest airport, Gatwick, in 

December 2018, which resulted in the cancellation of all commercial flight operations at the 

airport for 36 hours. Most of the occurrences registered were thus incidents in which a 

drone approaching a manned aircraft was reported. Figure 2 below shows not only the 

frequency of such incidents but also the distance between the aircraft and the drone at the 

time of discovery as a measure of the criticality of the situation. 

 

 

Figure 2 Reported drone incidents, 2012-2016 (top) with distance at time of discovery, 2010-2016 (bottom) 
[EASA] 

A look at EASA's UAS Safety Risk Portfolio18 for the reported occurrences involving drones in 

the period between 2012 and 2016 provides further insight: in addition to a large number of 

incidents, there were also 33 accidents with no fatalities. The greatest safety problems are of 

an operational nature, followed by those of a terrorist and human nature. The 

aforementioned UAS Safety Risk Portfolio identifies three components as sources of the 

                                                        
18

 See https://www.easa.europa.eu/sites/default/files/dfu/UAS%20Safety%20Analysis.pdf  

https://www.easa.europa.eu/sites/default/files/dfu/UAS%20Safety%20Analysis.pdf
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technical safety issues: guidance and control system (flight controller), propulsion and power 

supply. 

3.3 Consequences for the evolution of the regulatory framework 

Because of the especially dynamic market trends, the open and specific categories were 

given priority for the development of the aforementioned regulatory framework. This 

process is now getting underway for the certified category. In 2017, EASA published NPA 

2017-05 (B)19 – revised on the basis of 3,700 (!) comments from around 250 institutions and 

interested users – as a regulatory framework for both of the first-mentioned drone 

categories. This large participation illustrates just how much importance is obviously 

attached to the regulation of drone operations by the users. In NPA 2017-05 (B), the 

suggestion is made that the EU Basic Regulation be updated to the effect that, in the future, 

all drones, regardless of their mass (MTOM), in other words also those below 150 kg, are to 

be considered in a harmonized manner throughout the EU. The Basic Regulation was then 

adopted by the European Parliament on 22 December 2017 and transposed by the EU in line 

with this suggestion. To be able to interpret the Basic Regulation in as purposeful a manner 

as possible, EASA prepared a further Technical Opinion (01/201820), published on 6 February 

2018, for the open und specific drone categories. In this opinion, EASA again makes it clear 

that the operation of drones continues to need a regulatory framework harmonized 

throughout Europe in order to guarantee a maximum level of aviation safety, privacy and 

data protection. Thus, taking into account developments at ICAO, the Joint Authorities for 

Rulemaking on Unmanned Systems (JARUS) and the US Federal Aviation Administration 

(FAA), EASA has already prepared a draft21 of such a regulatory framework. The main 

recommendations contained in the draft are as follows: 

 Risk mitigation for the operation of drones in the open category is to be achieved 

through a combination of operational restrictions, rules, requirements concerning the 

                                                        

19 https://www.easa.europa.eu/sites/default/files/dfu/NPA%202017-05%20%28B%29.pdf  
20 https://www.easa.europa.eu/sites/default/files/dfu/Opinion%20No%2001-2018.pdf  
21

 
https://www.easa.europa.eu/sites/default/files/dfu/Draft%20AMC%20%20GM%20to%20draft%20Regulation%
20.-.%20and%20to%20the%20draft%20Annex%20%28Part-U.pdf  

https://www.easa.europa.eu/sites/default/files/dfu/NPA%202017-05%20(B).pdf
https://www.easa.europa.eu/sites/default/files/dfu/Opinion%20No%2001-2018.pdf
https://www.easa.europa.eu/sites/default/files/dfu/Draft%20AMC%20%20GM%20to%20draft%20Regulation%20.-.%20and%20to%20the%20draft%20Annex%20(Part-U.pdf
https://www.easa.europa.eu/sites/default/files/dfu/Draft%20AMC%20%20GM%20to%20draft%20Regulation%20.-.%20and%20to%20the%20draft%20Annex%20(Part-U.pdf
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qualifications of the remote pilot and technical requirements (CE label) to be met by the 

drone. This is to be done in such a way that operation is "safe" without prior 

authorization by the supervisory authority (Federal Aviation Office/German Air 

Navigation Services in Germany). 

 Risk mitigation for the operation of drones in the specific category is to be achieved by 

making it mandatory for the operator to conduct a specific operations risk assessment 

(SORA) before putting the drone into service or before the start of the mission in the 

case of specific mission conditions. Alternatively, the operator can obtain a certificate 

that authorizes him to conduct clearly defined operations. 

For Member States, i.e. also for Germany, there remains a relevant scope for decision-

making:  

 for determining the use of airspace, including specifically its "non-use" by drones of all 

categories; and 

 for implementing the construction and certification specifications for all drone 

categories, including specifically the certified category, which are now being fleshed out 

by EASA.  

Thus, prohibited zones, restricted zones and – vice versa – special zones for drone 

operations are to be defined nationally (EU Basic Regulation, Article 12 Airspace areas or 

special zones for UA operations). As a first step, the Federal Ministry of Transport and 

Digital Infrastructure's 2017 Drone Regulations implemented this at a very general level. 

Further requirements for action can be derived from the draft as follows: 

 In areas in which drones are allowed to operate, it must be ensured that intervention 

(safe failure) is possible if the remote pilot loses control of the drone. 

 For operations involving the transport of dangerous substances, which have so far not 

been allowed to be transported or only allowed to a limited extent, control/inspection 

procedures are to be established along the lines of ICAO's recommendations in Doc 9284 

'Technical Instructions for the Safe Transport of Dangerous Goods by Air'. 

 To enforce compulsory registration, a 10-digit numerical code for the clear identification 

of the drone keeper is recommended. Because of the very dynamic market, the 

requirements derived from this alone that are to be met by the digital database 
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management system are very demanding if this system is to have real-time capability 

and be able to withstand legal scrutiny. 

 The competent authority (Federal Supervisory Authority for Air Navigation 

Services/Federal Aviation Office) is to establish permanent practices for risk-based 

oversight (RBO) that will ensure that the drone operators actually meet the 

requirements, in particular reporting, training of inspectors, conduct of audits. 

 The Aeronautical Information Service (AIS), with the airspace adjustments implemented 

for the operation of drones, is to be adapted geometrically, geographically (3D) and 

procedurally (rules governing entry, exit, distance from objects, etc.). 

 The publication information in the Aeronautical Information Publication Germany (AIP) 

has to be enlarged. 

 Reports of accidents/incidents caused by drones are to be included in the litigation 

procedures of the Federal Aviation Office and the Federal Agency for Air Accident 

Investigation. 

These fundamental requirements (SESAR also refers to the requirements in the last bullet 

points as U-space services – see below) make it clear that the requirements relating to drone 

operations in areas of dense ground infrastructure or densely populated areas, especially 

around safety-critical installations (such as airports), have to be very detailed if safe air 

traffic is to continue to be ensured. For instance, Munich Airport has already had security 

analyses conducted in order to determine the likelihood of drones unlawfully entering the 

airport grounds. It will then draw up risk mitigation measures that can be used to respond 

immediately and efficiently to such occurrences22.  

This requirement obviously has objectives that conflict with the needs for the flexible use of 

airspace, promoted by a dynamic market and the resultant increasing scarcity of airspace, 

which in the past has always seemed to be unlimited. The challenge is thus to give concrete 

shape to the rules governing the use of airspace by drones and to shape, in terms of space 

and content, construction and certification specifications (CS, GM (guidance material and 

                                                        
22

Project by Flughafen München GmbH with DLR GfR mbH in 2017/2018. 
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AMC (acceptable means of compliance)) shoulder-by shoulder with EASA, which, in the 

opinion of the Board, should be attended to by the Federal Minister. 
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4 Planning certainty through specific drone airspace 

management 

The lack of rules, or the existence of unclear rules, governing the use of airspace by drones 

entail some uncertainty for both manufacturers and users, which can result in a reluctance 

to innovate. Thus, regulation that is more foreseeable can help to enhance planning 

certainty for the stakeholders, thereby boosting innovations. With this in mind, several 

categories of airspace management for drones are addressed. 

4.1 Drone categorization 

The introduction of the three risk-based drone categories and the additional classes in the 

open category has obviously not yet created a sufficiently accurate degree of separation with 

regard to the specific operational framework for flight planning within an operational areas 

to be determined with maximum range and integration into the UAS traffic management 

system (UTM) for an individual drone design (construction and certification). This requires 

the establishment of a further framework, the reasons for which are given below. 

So far, drones in the open and specific categories have been assessed and certified at 

national level, because EASA had no competency before the recast of the EU Basic 

Regulation. In the wider context of the application of SORA for specific drones, developers of 

these drones focused primarily on specific missions. Thus, for instance, some drones that are 

used for reconnaissance missions have significantly longer flying times but hardly any 

additional payload because of the heavier batteries they need to reach higher altitudes. This 

has resulted in significant heterogeneity of the drones available on the market. 

The following examples of drones are designed to illustrate this situation, singling out in 

each case one representative of the various configurations. So far, there have been very few 

fixed wing drones in the category up to 25 kg. They are, however, an important element of 

many urban air mobility schemes, because they reach a higher flying speed and range than 

propeller-based designs, although this is at the expense of reduced controllability 
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(manoeuvrability) in dense urban areas. This approach is thus also listed in the following 

Table 3. 

 

 Flettner-

type 

helicopter 

drone 

Single 

rotor 

drone 

Hexacopter 

drone 

Airship 

drone 

Fixed 

wing 

drone 

Rotor diameter 

(RD) 

2.8 m 2 m    

Length   < 1 m 10 m  

Width   < 1 m 3.34 m  

Height   < 0.5 m 3.77 m  

Wingspan     3.2 m 

MTOM  85 kg 14 kg 5 kg 15 kg 25 kg 

Horizontal flying 

speed 

20 m/s 15 m/s 15 m/s 10 m/s 40 m/s 

Rate of climb 2 m/s 5 m/s 2 m/s 3 m/s 5 m/s 

Maximum flying 

time 

50 min 20 min 18 min 120 min 30 min 

Payload 30 kg 6 kg 1 kg  6 kg 

Table 3 Examples of different types of drone  

When considering these values, however, their high dependency on the useful load must not 

be overlooked. It is therefore advisable to further differentiate these values for later 

regulation. Notwithstanding this, these different operational parameters result in 

significantly divergent flight profiles, mission planning activities and potential risks which 

should be reflected in the UTM blueprint in the form of different flight performance 
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categories (along the same lines as ICAO 's conventional aircraft performance categories as a 

function of the approach speed). Such rules could be possibly incorporated into updated 

Drone Regulations at national level, but above all into EASA rules, including the envisaged CS 

for drones in the certified category. For drones in the open and specific categories, the 

aforementioned Certification Specification for Light Unmanned Rotorcraft Systems  (CS-

LURS) published by the legally non-binding JARUS group could serve as a model for this. 

Finally, with regard to the "risk-based" approach, the question has to be asked, especially for 

the EASA category open, class C1 (operation also permissible over people), whether, given 

the heterogeneity identified, there can be any risk equivalence at all within one category. 

The risk is (primarily) determined via the risk of a crashing drone hitting people on the 

ground. Quantitatively, this risk can be determined via the kinetic energy E  0.5 m v2 of the 

drone at the moment of the hypothetical collision (m = mass of the drone, v = true airspeed 

of the drone). As already explained in section 4.3.1, EASA provides for an MTOM of 900 g 

and a maximum impacting kinetic energy of 80 J in this class. In simple terms, the 

acceptability of this limit can be determined by balancing the vertical forces which, starting 

from a hovering drone at a height h, result in a corresponding falling velocity at near-ground 

level. This balance places gravitational force in opposition to resistance. Maximum sped vE is 

a result of the balance of these forces (  Using this fundamental 

correlation, it is possible to calculate any speeds that are dependent on the collision height 

(e.g. 1.80  m above ground level as the average height of a human being). If these 

calculations are performed for typical present-day multicopters, the results for potential 

energy and vE  are those shown in the following Table 4. To obtain the average impacting 

kinetic energy in a collision with a human being (to EASA), this is multiplied by a factor of 

0.465 (representation of a partially elastic collision): 

 

ID Drones Mass m 
[kg] 

Diameter d 
[m] 

Effective  
reference 
area A [m²] 

vE [m/s] 

A Blade200QX 0.2 0.2 0.009 18.5 
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B DJI Spark 0.3 0.17 0.007 27.0 

C DJI Mavic 0.7 0.33 0.026 21.5 

D YUNEEC H520 1.6 0.52 0.064 20.5 

E DJI Inspire 4.0 0.61 0.086 28.0 

Table 4 Geometric and operational parameters of various drones in the open/specific categories[Bluhm, 
2018] 

The results are shown in the following Figure 3 taking the maximum permissible altitude into 

account. It will be seen that multicopters A, B and C are not above the threshold of 80 J even 

at an altitude of 120 m AGL. On the other hand, and as expected, multicopters D and E 

exhibit at the maximum permissible altitude a higher impacting kinetic energy than is 

allowed in operation category A1.  

 

Figure 3 Impacting kinetic energy of the modelled multicopters as a function of altitude [Bluhm, 2018] 

With these results, the assumption of a linear connection between the MTOM and the 

kinetic energy (to EASA) can continue to be examined. To this end, the values of the 

impacting kinetic energy from the preceding calculations are compared with the expected 

EASA values. 

Drone ID MTOM [kg] Ekin calculated 
[J] 

Ekin EASA [J] Deviation [%] 

A 0.2 14 17 + 19 
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B 0.3 31 27 - 15 

C 0.7 78 65 - 16  

D 1.6 161 146 - 10 

E 4.0 684 357 - 48 

Table 5 Error analysis of the linearized energy model (to EASA) 

Table 5 shows significant deviations in this regard. Moreover, since the threshold of 80 J is 

based on the Gurdjian experiment with blunt objects, other design-specific and, if 

appropriate, person-specific factors have to be taken into account. In particular, elements 

such as sharp edges on the fuselage, propellers, landing skids or payloads (e.g. camera 

system), which constitute a small contact area in the event of a collision, require further 

consideration. In summary, it can thus be said that the present risk-based approach cannot 

yet be classified as finally matured and that the provisions will have to be specified in greater 

detail in order to objectively reconcile risk and flexibility in construction and operation. 

4.2 Taking the weather into account 

The weather, especially wind, has a major impact on the controllability of a drone. 

Accordingly, impacts such as rain, snow or operation in a humid atmosphere (fog) have to be 

examined by the manufacturer of the drone and operational limitations have to be 

specified23. If, for instance, a reduction in manoeuvrability under certain conditions is 

identified, this must be observed when planning the flight route. The manufacturer is 

obliged to state the ambient conditions necessary for any given operation. This includes, 

among other things, the operating temperature range plus the humidity and wet weather 

capability. If a drone is unable, according to its operational properties, to be operated 

reliably under certain environmental conditions such as precipitation, critically low or high 

temperatures (a typical problem in battery technology), a detect and avoid (DAA) system on 

the drone must be able to detect this adverse condition and warn the remote pilot (RP) in a 

                                                        
23

 EASA; Technical Opinion, p.98, 2015 
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timely manner.24 In conventional aviation, there exist numerous meteorological thresholds, 

including for the minimum horizontal visibility (flight visibility), ground visibility yes/no 

(obviously dependent on the height of operation), light (day/night definition), wind speeds 

and thus side wind components, precipitation (rain, snow, ice) and significant meteorological 

phenomena (SIGMET) such as icing zones, thunderstorms). From this depend operational 

procedures and infrastructure use (runway or helipad according to EASA, NOTAM and IR-

OPS). Such thresholds are to be reviewed for the UAS Traffic Management System (UTM) 

and to be specified appropriately. 

4.3 Technologies and institutions for UAS traffic management  

As already described, drones are very heterogeneous in their technological capabilities. As a 

result, it is recommended that, for targeted UAS traffic management (UTM), operational 

areas be formulated in which any given drones are likely to be active and consequently have 

to be monitored and, if necessary, controlled.  

4.3.1 Operating ranges 

Restrictions specific to drones, such as maximum range, maximum flying time and the 

horizontal and vertical speed, must be observed when routing and determining their 

operational purpose. It remains the fact that a drone is controlled at all times by a remote 

pilot (RP). This pilot is situated with the visual line of sight (VLOS) of the drone. First, the 

parameters for a drone with a low useful load are assumed. In addition, it is assumed that at 

the destination there is a possibility to charge the drone with energy. This term means the 

complete restoration of the optimum condition of a drone. This includes the replenishing the 

energy resources, filling up the drone with all substances required for the flight and possible 

maintenance work. This implies that the full range of the aerial system stands for the flight 

from an origin to a destination. However, this does not refer to safety allowances for 

reaching alternative landing sites or to other reserves. Especially in areas close to city 

centres, which may be characterized by a large number of flight restrictions, instructive 

results may be created. 

                                                        
24

 ICAO Manual on Remotely Piloted Aircraft Systems (RPAS) Doc 10019 AN/507  



  

38 

 

In conventional manned aviation, the limits of the area of operation have to be defined 

precisely. Within this mission area, it must be possible to demonstrate a safe flight in 

flawless normal state plus faulty conditions and emergency restoration capabilities. As 

described above, environmental conditions such as wind speed and light/visibility have to be 

taken into account when determining this area. In manned aviation, various masses are 

given for each aircraft type: dry operating mass, zero fuel mass, maximum landing and 

maximum take-off mass. The "flight envelope" is additionally taken into account with 

minimum and maximum speeds (failure to comply with which may result in low and high 

speed buffet (stall) and maximum altitude.  

Thus, the operation of drones also requires a definition of areas of operation. Compliance 

with these operational limitations is imperative, especially in a complex urban operating 

area. The operation of a drone outside its area of operation should be considered a serious 

incident within the meaning of the Air Accident Investigation Act and should be described 

more precisely. On the other hand, normal operation should be defined as the drone being 

able to autonomously regulate its flight parameters with a sufficiently small statistical error 

provided that the external influences do not exceed pre-defined limits. This relates to the 

behaviour of the pitch and roll angle, the flight speed, the course, the course speed and the 

altitude. An exemplary challenge here is determining the minimum necessary accuracy, and, 

further on, statistically actual (higher) accuracy in drone routing. 

4.3.2 Accuracy in routing 

The accuracy achievable in routing is thus obviously dependent on numerous factors 

(sources of error) and/or the correct determination of the current environmental conditions 

and those that are likely to be encountered during the operation. These include the 

response distance due to the time lag in flight control: a control command consists of two 

sub-processes, namely command and control. First, status information is sent from the 

drone to the remote pilot (RP) (control). This contains information from the detect and avoid 

devices, the position and location of the drone and other system-relevant information. With 

the help of data provided, the RP is able to respond and send a control command to the 

drone (command). With an operating range of just under 30 km, this results in a time lag of 
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2∙10-4 s, which may appear minute but nevertheless has to be taken into account when 

determining the flight expectation area. In addition there are signal 

processing times in the drone and the response and action time of the 

RP. These parameters may be relevant especially in the case of a 

disturbance. If, based on the automotive industry, a response and 

action time of around 1.5 seconds25 is estimated and a travel speed of 

around 12.5 m/s is taken as a basis, this already produces a location 

error of the drone of around 20 m. In addition, the dimensions of a 

drone have to be taken into account when calculating permissible 

flight routes (with the standard assumption of a spherical drone: the sphere is transformed 

into a point and its radius is added to the obstacle areas and subtracted from the open 

spaces). Finally, for the dimensioning of safety distances, it is imperative that positioning 

accuracy be considered. As a rule, the direct positioning of drones to the nearest centimetre 

is based on an on-board multi-sensor system consisting of an RTK-capable (real-time 

kinetics) GNSS receiver and additional sensors. In this case, the absolute positioning accuracy 

depends greatly on the local GNSS measuring conditions. However, especially in urban areas, 

satellite shadowing, non-line of sight reception, signal diffraction or multipath effects may 

cause positioning errors that are relevant in this respect. Based on a 3D model of the 

buildings and vegetation in the operating area, a GNSS geometric chart should thus be 

prepared and integrated into the flight planning process. This will make it possible to already 

avoid degraded GNSS environments during the planning process. The challenge is thus to 

ensure continuously good geo-referencing even though it is likely that only small and 

lightweight sensors will be used on drones. Additional sensors (e.g. MEMS [micro-electro-

mechanical systems] inertial sensors) can be used to reduce positioning errors. However, 

drift effects result in a deterioration of the positioning accuracy only a few seconds after the 

loss of GNSS26. Even if additional MEMS inertial sensors are used, a GNSS loss of 30 seconds 

can result in deviations of 10 to 100 m. This could lead to serious complications in urban 

                                                        

25 Breuer, Bert; H. Bill, Karlheinz, Bremsenhandbuch: Grundlagen, Komponenten, Systeme, Fahrdynamik, p. 61 
ff. Springer Verlag, 2017 
26

 Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B., Performance characteristic 
MEMS-based IMUs for UAVs navigation, pp. 337-343, International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, 2015 
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areas. Satellite shadowing is another determining effect that impacts on positioning 

accuracy.  

In addition to GPS-based control, increasing numbers of stationary navigation marks or 

transmitters (4G/5G transmitter masts) have been installed in recent years, especially in 

conurbations, which can provide very accurate guidance to drones. Moreover, it is likely 

that, in the future, drones will be able to communicate with one another, in a similar manner 

to the present-day Traffic Collision Avoidance System (TCAS), which will greatly enhance air 

safety as the number of drones increases. 

4.4 Need for action 

The Board thus sees a need for action in the adaptation of the airspace structure in the VLL 

airspace, which, over conurbations, has so far been either uncontrolled airspace (type G) or 

– but usually only very partially – has fallen within a control zone (type D) of an airport near 

or in a city.  

Furthermore, it is obvious that today's self-organized decentralized airspace management in 

this uncontrolled VLL airspace is not very compatible with the requirements of safe drone 

management. Here, approaches have to be developed that can resolve the conflict between 

the objectives of present-day visual flight rules (VFR) operations (often of a recreational 

nature) and those of drone traffic (likely to be of an increasingly commercial nature) that will 

then correspond more to planned, present-day instrument flight rules (IFR) operations. 

Here, the only suitable solution would appear to be a centralized approach to surveillance 

similar to present-day air traffic control of IFR operations, because this is the only way to 

appropriately take into account the likely automation of drone operations. 

The consequence of this is that the Board believes that UTM surveillance and control should 

be technologically and procedurally centralized. Depending on the degree of automation, it 

should be based either at an ANSP such as DFS (low level of automation) or at companies 

such as the DLR GfR or similar, which specialize in the surveillance of highly automated 

remote objects (here, for instance, GALILEO satellite navigation systems with centralized 
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surveillance). Appropriate extensions and/or adaptations to the certification requirements 

for ANSPs on the basis of Regulation (EU) 1035/2011 should be developed for this purpose.27 

Subsequently, a decision would have to be taken on the funding of such a centralized 

institution. Clearly, the operators of drones will have to pay the costs. In the future, this will 

in turn raise the question as to the economic regulation of this centralized institution that 

monitors the type and level of drone charging with the aim of covering the costs of the 

efficient provision of services to the effect that this institution does not generate any 

excessive monopoly returns. 

                                                        
27

Commission Implementing Regulation laying down common requirements for the provision of air navigation 
services and amending Regulations (EC) No 482/2008 and (EU) No 691/2010 
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5 Safety, safety acceptance and privacy rights  

5.1 Specific operations risk assessment (SORA) 

The need for safe drone flight operations has already been frequently addressed. The risk-

based approach of all EASA drone categories specifically points in this direction, although 

there are still shortcomings, examples of which were identified in Chapter 3 (e.g. compliance 

with 80 J, failure to consider safety, security and privacy risks). SORA provides concrete 

guidance within the framework of the approval procedure, specifically for the specific 

category, but it does not provide the standards against which residual risks are to be 

assessed and ultimately tolerated. However, the target levels of safety (TLS), which are to be 

derived via the residual risks, are instrumental in defining the nature and scope of possible 

risk mitigation measures within SORA and in this way define the height of the market access 

barrier (red/green decision in the flow chart in Figure 4). 
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Figure 4 SORA process on the basis of JARUS [Bluhm, 2018] 

The key risk, the uncontrolled crash of a drone onto people on the ground, is reflected in 

three ground risk classes in SORA28. Each class stands for a maximum permissible kinetic 

                                                        

28
The bases for determining the ground risk class (step 2 of the SORA process) are the maximum diameter of 

the drone and the resultant kinetic energy plus the envisaged operational scenario (e.g. VLOS over a controlled 
area, located inside a sparsely populated environment). 
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energy between 700 J and just under 1,100 kJ (i.e. orders of magnitude higher than in the 

open category C1 with 80 J) coupled with one of eight operational scenarios that reflect 

essentially the dependence on the density of persons overflown and the distance from the 

drone (VLOS/BVLOS). By taking into account lethality factors (mortality rate) per ground risk 

class, which can be improved by means of risk mitigation measures (e.g. providing a 

parachute for the event of motor failure on the drone) and widening the concept of 

operations to up to 12 airspace classes29, an air risk class is determined for each ground risk 

class, which takes account of a collision of the drone with manned aircraft (but not between 

drones). Air risk classes 1 to 4 are then converted into Specific Assurance and Integrity Levels 

(SAILs). To mitigate the risk, collision prevention systems can then be retrofitted. SORA is 

thus not a genuinely transparent, differentiated safety assessment, event though it is 

heading in the right direction. There is thus a need for evolution of SORA, including in the 

light of the introduction of possible new drone categories or even classes and evolving 

airspace classes.  

5.2 Privacy and security  

Privacy refers in particular to the risk of private individuals or enterprises being deliberately 

spied on by means of drones fitted with cameras, directional microphones or other sensor 

technology or wanting to introduce sensors into the private life or corporate sphere of third 

parties. The last-mentioned aspect overlaps with the sphere of security, i.e. in particular 

preventing the deliberate misuses of drones. Going further, there is also the possibility of 

people feeling annoyed by flying devices when on the street or in the countryside (e.g. 

impairment of their enjoyment of the great outdoors). The adverse external effects are 

subsumed here under the heading "privacy and security". Similarly, aspects of nature 

conservation (e.g. interference with animals) should be considered.   

                                                        

29The initial assessment of the air risk class is based on a determination of the airspace that the envisaged 
operation will use. This makes it possible to determine the risk of collision with manned aircraft. The 
classification into 12 airspace categories in accordance with SORA is thus significantly more granular than 
differentiation based on ICAO airspace categories A-G. 
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There has so far not been any specific procedure for taking account of privacy in SORA, even 

though its inclusion would appear to be basically possible as a further risk category. Taking 

privacy into account should have no impact on the logic for determining the ground and air 

risk class, as there is no direct connection with operational safety (of course it is assumed 

that persons are present in the first place). However, a link can be established with the 

operational scenarios (density of persons, airspace class).  

Consideration should be given to the formulation of separate risk barriers within the 

framework of SORA with regard to security, too. A frequently mentioned security risk is the 

unauthorized takeover of the control of a drone. This can happen either by interference with 

the signals of a GNSS or the command and control (C2) link of the drone or by sensing 

spoofed signals. In particular, the unencrypted civil signals of the Global Positioning System 

(GPS) that are used in non-military drones are vulnerable to spoofing, as a result of which 

the drone gets out of control for as long as the flight controller uses these signals for flight 

attitude control. As a result, there is a need for methods/algorithms to be developed that 

reliably prevent interference with the GPS signal by spoofing (cyber security). The actual 

shape of tolerable residual risks regarding the invasion of privacy and security in an evolved 

SORA should be fleshed out and implemented.  

Once a specific operational scenario has been fixed, it would be basically conceivable to 

internalize privacy costs for the operation of zones in densely populated areas and at a low 

altitude by requiring operators to obtain overflight rights. Various procedures for awarding 

such overflight rights are conceivable, ranging from highly regulated solutions based on 

current plan approval procedures to solutions close to the market. The former entail the risk 

of protracted approval processes, but on the other hand also the chance that flight routes 

will actually be implemented. Solutions close to the market create scope for innovations, but 

entail the risk of business models and thus specific flight routes being blocked by individual 

players and thus prevented. Another conceivable option for the latter case would be to 

widen the Land Register Code (GBO) by including three-dimensional land register entries 

under section 13 ff, which assign an upper airspace limit to the individual property/plot of 

land. Overflight rights for "sought-after" (because located between relevant origins and 

destinations) airspace could be reviewed and, if appropriate, approved by the person in 
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possession of the land, who in the case of residential areas may also be the home owner, in 

order to internalize negative effects resulting from overflights with transaction costs that are 

as low as possible. However, such an approach also entails the risk of flight routes not 

materializing because individual players do not give their consent to an overflight. In the 

case of rented housing, there is the additional problem that the rights of tenants may be 

infringed by agreements concluded by the homeowner. What is definitely needed is 

regulation of the clearance of flight routes, times and altitudes, which would then have to be 

laid down in the Rules of the Air Regulations (LuftVO, current version from 2015) on the 

basis of the Regulations Governing the Operation of Unmanned Aircraft (as at 2017). 

Another possibility would be to regulate the logic behind the use of airspace over densely 

populated areas, especially those with a high proportion of tenancies, at the local authority 

level in the regional development plans. They would codify airspace use rights for drones by 

various categories (e.g. types of drone and operational purposes, especially no-drone zones. 

In this case, too, the legal basis would have to be created by the Federal Government in 

accordance with the EU Regulation. Since many of the aforementioned negative external 

effects do not become virulent until there is a sizeable number of drones, rules can also aim 

to restrict access by drones, thereby limiting the number of drone flights over an area in a 

period of time (in turn, and if appropriate, establishment of capacity benchmarks, such as 

those established for airports, differentiated by type of drone, operational purpose, etc.). 

However, it would then be necessary to establish how such "drone slots" (by analogy with 

the term "existing airport slots") of which a shortage had been created by regulation were to 

be allocated to the various interested users. Appropriate ways could be price setting or 

auctions, for which the Federal Government would likewise have to create the legal 

framework. 

Seen as a whole – and taking into account the requirement mentioned in section 4.4 for a 

centralized control institution and its funding – it is thus quite possible that the drone sector 

will be the first network sector in which the costs of the control level exceed those of the 

fixed infrastructure. Because the fixed infrastructure for drones, which will consist merely of 
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landing and unloading sites, will probably involve relatively low costs (especially sunk costs) 

per device or flight (for instance compared with rail-based transport systems).30 This fact has 

an impact on the current need for regulatory action. Because drones can manage without 

heavy infrastructure investment, the risk of serious inappropriate investment is relative low, 

especially in the initial stage of the market.31 This means that it will also be easier to push 

drones out of certain operational zones by means of later regulatory interventions if the 

people in these zones perceive them as being a nuisance or a danger. This fundamental 

technological flexibility will permit evolutionary and flexible access to the regulation of 

drones. It would thus be premature to enact highly detailed rules governing the operation of 

drones at the present time. It will not be possible to conduct a meaningful political 

discussion on the social acceptance until the population have experienced drones 

themselves. This should be done by monitoring with subsequent evaluations. Thus, the areas 

of application and number of drones on the one hand and restrictive rules on the other hand 

will undoubtedly develop in parallel, hand in hand. Because the drone industry is keen to see 

a good uptake of its products and will therefore not oppose efforts to prevent excrescences 

and dangers. 

5.3 Safety risks for people on the ground  

In addition to the analysis of risks to persons and buildings directly actively involved in the 

flight operations (of drones), there are also genuine safety risks to third parties on the 

ground. Especially in the case of autonomous approaches to air transport such as drones, 

special importance attaches to this aspect, because the only human factor remaining is on 

the ground. These risks are summarized under the term "societal risks" or "external/third 

party risks". The current ground risk classes (safety) have, as already described, been defined 

in very rough manner and only quantitatively with regard to the assumed density of persons. 

Taking the Federal Immission Control Act as a starting point, which is already to be applied 

                                                        

30The costs of both the fixed infrastructure and the control systems will depend heavily on the safety and 
security requirements and the technologies required to meet them.  
31

Nor is it likely in the long run that drones could significantly "cannibalize" demand for other means of 
transport so that there was the risk of seriously incorrect decisions leading to the dismantling of this 
infrastructure. 
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mutatis mutandis today in accordance with the ICAO recommendation (Annex 14) to 

commercial aviation in the vicinity of installations requiring protection, there are detailed 

risk models that make it possible to quantitatively identify area-related individual and group 

risks. It is recommended that such societal risk models also be used for UTM within the 

scope of safety assessments in order to transparently quantify individual and group risks for 

people on the ground resulting from drone accidents and to take them into account, for 

instance within the scope of urban planning. The individual risk provides information about 

how high the probability is of a person who is permanently in one location (plot of land, grid, 

see below) dying from the consequences of a flight accident. Group risk is defined as the 

probability of n and more persons (group) dying from the consequences of a flight accident 

(in this case a drone crash). The group risk, and thus the totality of all possible affected 

parties, refers to the entire study site, in this case in accordance with the operational 

scenario. If there is nobody in the area in question, the group risk there is by definition zero, 

The following Figure 5 shows typical evaluations for individual and group risk (including 

boundary value information as a dashed line) for manned aviation: 

         

Figure 5 Group (accumulated, on the left) /individual risk (by plot of land, on the right) posed by flight 
operations in the area around request stops, City of Freiburg [Fricke, 2018] 
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6 Opportunities for and risks posed by drones in passenger 

transport 

From a transport planning perspective, drones that carry passengers or goods are a means of 

transport. As a traffic route, they use the airspace and require designated landing sites. The 

benefit of a means of transport is derived primarily from the time required for and the costs 

of carriage and the fundamental accessibility of the destination. The time required depends 

on the time required to travel to and from the landing sites, the flight speed and the transfer 

times at the landing sites. To obtain an initial idea of the journey time advantages offered by 

an air taxi, a model calculation is performed comparing the journey times and costs of a 

future air taxi (drone of the certified type) with those of the passenger car and public 

transport. This calculation is performed for passenger transport, but can also be applied to 

freight transport.  

Figure 6 shows estimates of door-to-door journey times in passenger transport for the 

passenger car (good, fair and poor link quality), public transport (good link quality)32 and air 

taxi. In the case of the air taxi, a flight speed of 100 km/h is assumed, which is certainly still 

optimistic at the present time. The transfer times for check-in and check-out at the two 

landing sites total 15 minutes (see Figure 7). The journey times of a change in location by air 

taxi are significantly influenced by the times required to travel to and from the landing sites. 

In the case of one landing site per 100 km2, which corresponds roughly to the area of a city, 

the time required at both ends of the journey is around 15 minutes in each case. This 

requirement would drop to around 5 minutes if the density of the landing sites were one 

landing site per square kilometre, which corresponds to the typical density of rapid transit 

railway stations. In this case, travellers could walk to the landing site. The journey time 

differences between an air taxi and a passenger car depicted in Figure 7 show that air taxis 

offer an advantage in regional transport (journey length of 20 to 100 km) only if the density 

                                                        

32 The journey times for the quality levels are derived from the Guidelines for Integrated Network Design (RIN 
2008) published by the Road and Transport Research Association. The RIN contain “levels of service quality” 
(LSQs) for the direct travel speed of passenger cars and public transport, from which typical journey times for 
different quality levels can be derived. 
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is at least one landing site per 10 km2. For short-distance changes in location, a density of 

one landing site per 1 km2 is required.  

In Figure 8, the journey time advantages of an air taxi are converted into maximum prices 

that a journey by air taxi may cost. The maximum price is estimated in a very simplified 

manner. The price advantage of the value of time assumptions is added to the price of a 

passenger car journey. In road transport, the value of time is around €5 to 10/h33. However, 

it may be much higher in the case of well-off individuals or business trips. For normal 

travellers with a value of time of €10/h, an air taxi would be attractive from a price of 

€0.5/km. For travellers with a value of time of €100/h34 who use a private car, a fare of 

around €2.0/km would be competitive. Users of a taxi costing around €2.0/km would also 

pay a higher fare of around €4.0/km. By way of comparison: a helicopter flight carrying four 

passengers currently costs around €20/km per person35. Over longer distances, the 

kilometre prices would have to drop or the flight speed of the air taxi would have to 

increase, because the journey time advantage of an air taxi decreases at 100 km/h.  

The estimates show that, in an initial phase, air taxis – like present-day helicopters – would 

be attractive primarily to travellers who are willing and able to pay higher fares. To this end, 

the landing sites would have to be in the vicinity of the destinations. In a city with a 

population of 500,000, and with an air taxi capacity of 5 seats, around 1,000 flights per day 

with 2,000 take-offs and landing could be expected. With 10 landing sites, this would be 

around 200 flight movements per landing site and day and up to 20 flight movements per 

hour. This is of the same order of magnitude as operations at a medium-sized aerodrome.  

                                                        
33 Axhausen, Ehreke, Glemser, Hess, Jödden, Nagel, Sauer Weis (2014). Ermittlung von Bewertungsansätzen für 
Reisezeiten und Zuverlässigkeit auf der Basis eines Modells für modale Verlagerungen im nicht-gewerblichen 
und gewerblichen Personenverkehr für die Bundesverkehrswegeplanung. ETH Zürich. 
34The value of time at around €100/h can be illustrated using the example of a person travelling from an airport 
into a city who chooses to take a taxi (around €55, journey time 30 minutes) rather than using public transport 
around €5, journey time 60 minutes).  
35

 See for instance. http://www.helikopterfliegen.de/fliegen/preise.html: Price of a helicopter flight with 4 
passengers – €1,200/h.  

http://www.helikopterfliegen.de/fliegen/preise.html


 

51 

 

If fares were lower, there would be a significant increase in demand for air taxis, which 

means that around 5,000 flights per day in a large city would appear realistic. A city dweller 

will then always see around 1 to 5 air taxis in the air at the same time. 

 

Figure 6 Comparison of door-to-door journey times in passenger transport for the passenger car (good, fair 
and poor link quality), public transport (good link quality) and air taxis (check-in und check-out-time15 
minutes) with different densities of landing sites and flight speeds, assuming constant speed 

  

Figure 7 Journey time advantages for an air taxi at a flight speed of 100 km/h with check-in and check-out 
time of 15 minutes, compared with a passenger car with a fair service quality typical of urban conurbations 
in peak traffic hours.  
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Figure 8 Estimate of maximum acceptable fares per kilometre for an air taxi at a flight speed of 100 km/h. 

Three cases are shown:  

(1) Travellers using a taxi (€2.0/km) and with a very high value of time (€100/h).  

(2) Travellers using an executive vehicle (€ 0.5/km) and with a very high value of time (€100/h).  

(3) Travellers using a taxi (€ 0.3/km) and with a customary value of time (€ 10/h). 

Other assumptions: Journey time difference for the case of fair passenger car quality, check-in and check-out 

time 15 minutes and one landing site per km2. 
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7 Conclusions and recommendations  

There is indisputably an enormous innovation portal in drones for the transport and logistics 

sector as well as the leisure sector. Within the years ahead, the business ideas in the 

aforementioned sectors will multiply with significant economic output. From this are derived 

socially comprehensive regulatory tasks on the issues of safety (and thus also capacity), 

security and privacy, because on the one hand the number of aerial vehicles will grow 

enormously and on the other hand numerous third parties may consider themselves 

disturbed (in some cases massively) or their rights to be infringed by these vehicles. Thus, 

the recast by the EU of the Basic Regulation on the certification of drones was a step in the 

right direction. All drones, irrespective of their size and other properties, are now subject to 

the competence of EASA and this follow a uniform European standard. Notwithstanding this, 

numerous details regarding the development and operation of drones have yet to be 

resolved. Resolving them in a targeted manner is essential in order to support the 

dynamically developing urban air mobility schemes in European cities with various synergies, 

including for technological development in the sphere of automated driving in land-based 

transport. The international activities in this sphere should thus be supported by the Federal 

Minister as follows: 

1. What is necessary is targeted, clearly visible commitment by the Federal Ministry of 

Transport and Digital Infrastructure at the European Aviation Safety Agency (EASA) in the 

ongoing process of transposing the new EU Basic Regulation. This will make it possible, 

for “small drones”(open and specific categories), to provide the right impetus in the 

advancing fleshing-out of the technical and operational parameters (compliance with 

safety objectives such as maximum kinetic energy per operation category) and, for 

“large” drones (certified category), to intensively involve the certification process – still 

at the development stage – (development of a certification specification, CS for Drones) 

and the implementation of the UAS Traffic Management System (UTM). The way in 

which this is fleshed out will be instrumental in determining the market launch 

framework for air taxis, among other things. 
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2. For small drones in particular, the current classification basis is to be verified with regard 

to the risk posed to third parties, and current threshold values for maximum take-off 

mass (MTOM) and operating speed (to derive maximum kinetic energies) plus type of 

propulsion (electric only) are to be reviewed to determine whether they are appropriate 

(in both a conservative and optimistic scenario). As yet, there are no socially accepted 

safety target values for the risk-based certification process proclaimed by EASA (when is 

objectively safe also subjectively safe?) Sociological studies are required for this. With 

the adoption of the new EU Basic Regulation, updating the German Drone Regulations 

that have just entered into force may become obsolete. The advantages and 

disadvantages of national guidelines should be discussed and weighed against each 

other. 

3. For the foreseeable future, drones will not operate autonomously but will be remotely 

piloted. This means that pilot competence has an important role to play. The 

competence requirements and testing system, including auditing (procedures for 

checking the skills of a pilot, aka refresher/recurrent checks) require clear and precise 

fleshing-out and verification vis-à-vis the objectives set in safety (flight procedures, 

operating processes), security (background check) and privacy (respecting provisions 

governing the protection of privacy and even nature conservation). 

4. Drones are primarily small flying objects and thus difficult to locate. In the spheres of 

security, privacy and the protection of the public realm, this poses an enormous 

challenge, which has so far mainly been addressed with the help of geofencing of/for 

drones. Under EU law, the airspaces to be protected must be determined at national 

level, i.e. In Germany at federal level, and should be published via web-based platforms 

or apps. In this context, feedback for the certification of drones is an important pillar of 

the establishment of geofencing systems in order to ensure a reliable upload of the 

corresponding protected areas (prohibited and restricted areas) in the on-board 

navigation systems. To this end, it is necessary to create uniform standards, chart 

systems and databases so that manufacturers can implement the geofences in the 

drones' flight controllers. 

5. To guarantee security and privacy in the operation of drones, the envisaged registration 

requirement for operators and drones with a take-off mass of currently 250 g or more is 
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a step in the right direction. To this end, however, it is necessary to implement the 

electronic identification system (e-ID) in an efficient and fraud-proof manner if it is to be 

effective in prosecuting cases involving the deliberate misuse of drones.  

6. Special importance attaches to the regulation of overflight rights, because it creates 

planning certainty for the providers of the new business models while at the same time 

ensuring the protection of the privacy rights of third parties and limiting externalities. 

Here, the advantages and disadvantages of different options are to be carefully weighed 

against each other. Highly regulated procedures for the issuing of over-flight rights along 

the lines off the established plan approval procedures involve the risk of protracted 

approval processes. On the other hand, they also involve a chance that flight routes will 

actually be implemented. Solutions close to the market create scope for innovations, but 

entail the risk of business models and flight routes being blocked by individual players 

and thus prevented. What is definitely needed is regulation of the clearance of flight 

routes, times and altitudes, which would then have to be laid down in the Rules of the 

Air Regulations (LuftVO, current version from 2015). 

7. The Specific Operations Risk Assessment (SORA) introduced by EASA is to be evolved by 

fleshing out the safety target values to be achieved. Major causes of risks are to be 

parameterized (weather, visibility, humidity, outside temperature, etc.). Here, it must 

not be forgotten that the present-day ATM system only contains sketchy target levels of 

safety, which moreover are already so “high” that proving compliance with them 

requires a lot of effort36. It is a question of being actively involved in standardizing ATM 

security calculations, thereby being able to reliably estimate the risks for users and 

developers of investing in new business models and drones. Target levels of safety 

influence what is procedurally feasible in the quality and capacity of a transport system. 

The safety assessment as such should also differentiate in the light of the planned area of 

operation, ranging from rural areas through suburban to conurbations/mega airports, 

with regard to traffic density and heterogeneity and the resultant impact both in the air 

(other, conventional aircraft) and on the ground in the form of risks posed to third 

                                                        

36
One example is the permissibly rate of fatal accidents on the final approach of a precision instrument landing 

approach (1 to 10 million approaches) or that during taxiing on runways and taxiways at highly modern major 
airports (1 to 100 million operations). 
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parties (societal risks for local residents). For such external risks, too, it is absolutely 

essential that there be resilient target values and calculation standards. 

8. SORA takes into account neither security nor privacy risks. It is recommended that these 

aspects be included through an enlarged list of risks, in order to base the potential 

approval of a specific business case on a holistic assessment pattern. 

9. Monitoring of both the approval aspects (mission approval) and the operational 

implementation of drone monitoring should – along the lines of present-day control of 

instrument flight rules traffic (IFR) – be conceived and implemented via a central 

competence with a correspondingly high level of automation. This is the only way in 

which it will be possible to safely manage the high levels of traffic expected. Alongside 

the institutions established in Germany, there are also UTM service providers with 

sufficient experience in remote monitoring. Under the EU Regulation on the provision of 

air navigation services, the (German) applicants must exhibit European competitiveness. 

In addition, the centralized airspace management should be based on determined 

operating areas per drone category (altitude-range graph), which are to be reliably 

assured by the manufacturers. Compliance with these operational limitations fixed in this 

manner is imperative, especially in a complex urban operating area. The operation of a 

drone outside its operating area should be considered a serious incident and thus be 

reflected accordingly in the legal bases.  

10. Especially in urban areas, satellite shadowing, non-line of sight reception, signal 

diffraction or multipath effects may cause positioning errors that are relevant in 

positioning. Based on a 3D model of the buildings and vegetation in the operating area, a 

GNSS geometric chart should thus be prepared and integrated into the flight planning 

process. This will make it possible to already avoid degraded GNSS environments during 

the planning process. The challenge is thus to ensure continuously good geo-referencing 

irrespective of the size of sensor that can be installed. 

11. For efficient UAS traffic management (UTM), there is a need for action in the adaptation 

of the airspace structure in the typical operating area of drones, VLL airspace (< 150 

above ground level), which, over conurbations, has so far been either uncontrolled 

airspace (ICAO type G) or – but usually only very partially – has fallen within a control 

zone (ICAO type D) of an airport near or in a city. 
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12. To make the construction and approval processes of drones profitable for businesses and 

more efficient in terms of time, the establishment of combined test/construction and 

approval centres, preferably under the responsibility of the Federal Aviation Office (LBA), 

is recommended. The “drone pole” concept developed in Switzerland, in which these 

various players can operate “under one roof”, could serve as a model for this. This task, 

which is relevant in particular to the specific and certified categories, should be a federal 

responsibility in order to ensure that that it is fleshed out uniformly throughout 

Germany. These centres should have coordinated certification catalogues for as long as 

no certification specifications (CS) for drones are available.  

13. The regional development planning by the federal states, in consultation with the lower-

level planning levels, should adopt a far-sighted approach and consider the 

establishment of drone take-off/landing sites in order to facilitate business models in the 

sphere of urban mobility. Appropriately supporting technical planning standards should 

be developed by the Federal Minister within the scope of panel activities at EASA and 

ICAO and implemented in the near future (along the lines of EASA CS, ADR-DSN or ICAO 

Annex 14 on “Heliports”). 

14. It is recommended that the activities to update the parameters in air and ground 

transport be dovetailed in order to exhaust the potential for synergies between a higher 

level of automation in all modes of transport, which also includes the adaptable fleshing 

out of the 4G/5G networks, and ensure that the industry has a reliable framework for the 

development of technologies and business models. The Board believes that societal 

acceptance will follow the current trend in automated driving on the ground. In the next 

ten years, we will see highly and fully automated driving (SAE Levels 4 and 5), at least 

sporadically, so that the conditions in principle for the unpiloted flying of cargo using 

present-day large conventional aerial vehicles could also be met societally. It is 

absolutely essential that these medium to long-term aspects be taken into account today 

in the aforementioned CS and the further development of GM (guidance material) and 

AMC (acceptable means of compliance) to enable the developing companies to reliably 

estimate approval risks. Here, appropriate commitment in the work of international 

commissions is imperative. 
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15. Pilot projects in German towns and cities such as those of the EU UAM initiative should 

be conducted in the light of the aforementioned recommendations. This comprises the 

multimodal integration of drones into urban traffic, the creation of appropriate 

transport, communications and monitoring infrastructure (multimodal capture of objects 

by every airspace user), addressing overflight rights, etc. Even though the remotely 

piloted or fully automated transport of persons by air is only likely in the longer term, 

relevant approval and design features should, for the same reason, be intensively co-

developed and supported nationally at EASA. This category of aircraft user will, alongside 

autonomy in driving, follow the trend of electric mobility in terms of energy as well, at 

least partially. Thus, the Board advocates the development of supplementary specific 

requirements for batteries, the type of propulsion plus the vertical and lateral operating 

areas of air taxis (airspace infrastructure). These requirements are to de differentiated 

depending on the proof of knowledge furnished by any given user, from the pilot with a 

reduced field of responsibility to the human monitor of a fully automated flight control 

system. This is designed to give the European, and specially also the German, developers 

of flight and business models the possibility of developing and testing their models here 

in Germany, so that they do not have to rely on outsourcing these developments to 

countries such as New Zealand or the United Arab Emirates, as can currently be 

observed. This should involve promoting all operational purposes, including the 

transport of passengers in the form of air taxis, in order to create maximum scope for 

innovation at this early stage of the development of drones. 
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Abbreviations 

 

ACI Airports Council International 

AIP Aeronautical Information Publication 

AIS Aeronautical Information Service 

AMC Acceptable Means of Compliance (part of the CS) 

ANSP Air Navigation Service Provider 

ATM Air Traffic Management 

BAF Federal Supervisory Authority for Air Navigation Services 

BDSG Federal Data Protection Act 

BFU Federal Bureau of Aircraft Accident Investigation 

BImSchG Federal Immission Control Act 

BVLOS  Beyond Visual Line of Sight 

CEP Courier, Express and Parcel Services 

CVFR Controlled Visual Flight Rules 

DAA  Detect and Avoid 

DFS German Air Navigation Services 

DLR German Aerospace Centre 

Drones Unmanned Aircraft Systems (UAS) 



  

60 

 

EASA European Aviation Safety Agency 

ELOS Equivalent Level of Safety 

FAA Federal Aviation Administration 

FlUUG Air Accident Investigation Act 

GBO Land Register Code 

GCS Ground Control Station 

GfR German Society for Space Applications 

GM  Guidance Material (Part of the CS, explanatory document on CS 

implementation) 

GND Integrated Authority File 

GNSS Global Navigation Satellite Systems (GPS, Galileo, GLONASS, …) 

ICAO International Civil Aviation Organization  

IFR Instrument Flight Rules 

JARUS Joint Authorities for Rulemaking on Unmanned Systems 

LBA Federal Aviation Office 

LEP Federal Stat Regional Development Plan 

LFZ Aircraft 

LOS Line of sight 

LUC/CUC Light/Certified UA Operator Certificate 

LuftVO Rules of the Air Regulations 
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MEMS Micro Electro Mechanical System 

MTOM Maximum Take-Off Mass  

NOTAM Notices to Airmen (reports published by DFS) 

NPA Notice of Proposed Amendment 

OEM Original Equipment Manufacturer 

RBO Risk-based oversight 

RMZ Radio Mandatory Zone 

RPA Remotely Piloted Aircraft 

RPAS Remotely Piloted Aircraft System 

RPASP Remotely Piloted Aircraft Systems Panel 

RTK Real-Time Kinematics 

SAIL Specific Assurance and Integrity Level 

SARP Standards and Recommended Practices 

SESAR Single European Sky ATM Research Programme 

SIGMET Significant Meteorological Phenomena 

TCAS Traffic Collision Avoidance System  

TLS  Target Level of Safety 

UAV Unmanned Aerial Vehicle 

UHF Ultra High Frequency (300 MHz to 3 GHz) 
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UTM UAS Traffic Management System 

VDA Association of the German Automobile Industry 

VFR Visual Flight Rules 

VHF Very High Frequency 

VLL Very Low Level Airspace, < 150 m 
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