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ABSTRACT: 

The 4D Trajectory Management, invented by the 
Single European Sky ATM Research program 
SESAR enables the possibility for airlines and air 
traffic control to increase the efficiency, although 
different air traffic stakeholders follow partly 
competitive target functions. Following time based 
operations airlines will be able to fly along 
optimized trajectories without waypoint constraints, 
as long as they reach certain predefined spatial 
coordinates at certain time stamps. This condition 
allows the air traffic control a precise air traffic flow 
management and therewith an increased air space 
and airport capacity. However, unknown weather 
conditions and uncertain weather predictions at 
flight level hinder airlines to precisely predict and 
calculate the optimized trajectory. In this study, the 
impact of uncertainties in wind direction and wind 
speed, as well as in air temperature on fuel burn, 
flight time, initial cruising altitude and on the lateral 
flight path of optimized trajectories is quantified 
with the help of the complex trajectory and air 
traffic flow management simulation environment 
TOMATO. Therefore, wind and temperature are 
varied within different ranges and the impact on 
the trajectory is analysed stochastically by 
analysing 1000 simulation runs per parameter 
setting. Significant differences from the optimized 
flight path under the original weather conditions 
are estimated for the optimized lateral flight path, 
which is very sensitive to changes in 
environmental conditions. However, by optimizing 
the trajectory under current weather conditions, 
airlines will still be able to come up with the 
constraints, given by air traffic control to increase 
the air space and airport capacity.  
 
 

1. INTRODUCTION 

Aviation is a strong and important global economic 
factor with promising potential regarding future 
developments, due to a growing global demand for 
air transport. In addition to the high expectation, 
this poses a challenge for all air traffic stakeholders 
to at least keep safety on the high level as it is, to 
increase the air transport efficiency and to deal 
with the growing public awareness of the aviation 
impact on climate change. Therefore, both, the US 
and Europe founded research initiatives and 
developed innovative applications for the air traffic 
future [1-3]. A promising solution strategy to adapt 
the air transport to future requirements has been 
identified and tested in the transformation of the 
today’s clearance based Air Traffic Control (ATC) 
operation to Trajectory Based Operations (TBO) 
and by considering optimized flight trajectories [3]. 
For example, EUROCONTROL established the 
basic concept for the design of the future Air Traffic 
Management (ATM) by ”Moving from Airspace to 
4D Trajectory Management” [3]. The first step 
towards this action is called the ”Time-based 
operations” and focuses on the deployment of 
airborne trajectories [4], which consider all 
constraints inflicted by the highly complex and 
dynamic environmental conditions [5]. This 
significant impact of atmospheric conditions on 
trajectory optimization and trajectory prediction will 
be analysed in this study.  
Free routing (freely planed routes between a 
defined entry point and a defined exit point) is 
aspired, to enable optimized trajectories [4] under 
real weather conditions. This so called 4D 
Trajectory Management contains two important 
features: On the one hand, the optimized and 
freely planned Reference Business Trajectory 
(RBT), which is agreed by both cost efficiency 
driven airlines and capacity and safety driven ATC 
[2, 6] must be developed for each flight. Due to the 
time-based operation of the RBT, the trajectory is 
defined not only by spatial coordinates, but also by 
time stamps. This allows airlines to operate with 
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non-constant and optimized speeds. The ATC, on 
the other hand, can increase the airspace and 
airport efficiency due to a reliable time of arrival at 
defined spatial coordinates, at least at the Initial 
Approach Fix (IAF) [6, 7]. This time constraint is 
usually defined with a precision of minus two and 
plus three minutes around a target time and may 
be decreased to plus/minus thirty seconds in case 
of the implementation of a Controlled Time of 
Arrival (CTA) [7]. This target poses a challenge for 
pilots and controllers, due to the requirement of a 
precise trajectory prediction with partly unknown 
input parameters, because the atmospheric 
situation (specifically pressure, wind direction and 
wind speed) is subject to unpredictable dynamic 
fluctuations. Therewith, both operators (pilots and 
controller) are faced with an increased workload, 
which quantification is under investigation [7, 8].  
For this purpose, the simulation environment 
TOMATO a TOolchain for Multicriteria Aircraft 
Trajectory Optimization has been developed [9, 
10], which includes both an aircraft type specific 
performance model COALA (Compromised Aircraft 
performance model with Limited Accuracy) and an 
Air Traffic Flow Management ATFM Tool for the 
demonstration and analysis of a large number of 
simulated optimized trajectories regarding air 
space capacity [13], air space density [14] and 
controller’s taskload [8].  
With TOMATO, the important impact of 
atmospheric input parameters on trajectory 
optimization has been identified [8–11,13–15] and 
significant differences in flight time, optimized 
speeds, cruising altitudes and fuel burn have been 
calculated considering real weather conditions. 
From this follows a difficulty to predict the required 
target times and therewith to come up with the 
conditions of a successful 4D Trajectory 
Management.  
Usually, air traffic simulations are developed to 
either focus on the trajectory level or for ATFM. 
Regarding ATFM, the commercial fast time air 
traffic simulator AirTOp [16] generates trajectories 
in a dynamic airspace structure and iteratively 
detects and solves conflicts [17–19]. Due to 
approximations in the aircraft performance 
modelling (BADA performance tables and the ISA 
Standard Atmosphere) and restrictions regarding 
the emission quantification, AirTOp is limited in 
trajectory optimization. Due to a large 
computational effort during conflict resolution, 
AirTOp is not able to implement optimized free 
routes with non-constant altitudes and speeds. The 
Test bench for Agent-based Air Traffic Simulation 
(TABATS) has been developed for the trajectory 
synchronization with uncertain arrivals under 
realistic weather conditions, but is specialized to 
airport slot allocation and to BADA performance 
tables [20–23]. The air Traffic Simulator BlueSky 
concentrates on ATFM without BADA for trajectory 
calculation [24] and the possibility of implementing 
externally generated trajectories is provided. 

However, stochastic input parameters are not 
useable.  
When performing trajectory optimization, most 
approaches focus on the cruise phase only [28] 
[29] [30]. Albeit the authors use BADA [30] [31], a 
realistic flight performance is often neglected, and 
too many static parameters are assumed, e.g., 
constant speed and altitude. Even if a 3D or 4D 
optimization approach is proposed, most work 
consider the ability of instant step climbs during 
cruise only [29] [30], but there is no detailed 
investigation in climb and descent phases when 
optimizing a full trajectory. Either the path finding 
algorithm A* as well as the more general Dijkstra 
algorithm for searching shortest paths in a graph 
are employed [29] [31] or a limited number of 
variables is optimized in an optimal control problem 
[32] [28] and [33], considering conflictive target 
functions and real weather conditions. In this case, 
the discrete input parameters must be 
approximated by analytically solvable functions. 
From this follows a restricted number of 
parameters and a restricted flight performance 
model. 
 
2. 4D TRAJECTORY PREDICTION WITH NON-

CONSTANT AND STOCHASTIC WEATHER 
PARAMETERS 

The impact of wind direction, wind speed and air 
temperature is accommodated optimizing an A320 
trajectory from Vaclav Havel Airport Prague 
(LKPR) to Tunis-Carthage International Airport 
(DTTA) on 17th of May, 2017 at 12 a.m.. The wind 
components 𝑢 and 𝑣 are taken as stochastic 
variables to stress the model regarding the optimal 
lateral flight path. Due to large expected 
differences in the lateral flight path, the 
optimization is carried out twice. First, the lateral 
path is optimized in each simulation to show the 
solution of the optimization and second, the lateral 
flight path is fixed to the optimum path considering 
the real weather data to show the solution space 
for trajectory prediction. Furthermore, the 
temperature 𝑇 [K] is varied, to investigate the 
optimum flight level prediction. The impact of the 
uncertainty in the atmospheric parameters on  
 
- time of flight 
- fuel burn 
- cruising altitude at top of climb 
- lateral deviation from the original trajectory 

 
is investigated. In this case study the A320 aircraft 
is loaded with 10000 kg payload. The required fuel 
load of approximately 3400 kg is estimated 
iteratively for each flight. The parameters are 
varied one by one assuming a Gaussian 
distribution of the uncertainties.  
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2.1. Stochastic variation and characteristics of 
weather Data 

The real weather conditions are provided as grib2 
data, modelled by the Global Forecast System 
(GFS) using a Global Spectral Model (GSM) with 
spherical harmonic basis functions [34]. The 
optimized trajectory with the real weather data is 
stated as original trajectory (Figure 7). 
Subsequent, after each (one second) wind and 
temperature data are multiplied with a newly 
generated random number (i.e., a normal variable, 
defined by different standard deviations). Wind 
data is given by two components 𝑢 and 𝑣 [ms−1] of 
the horizontal wind vector 𝑤. 𝑢 represents wind 
directions parallel to the axis between East and 
West with positive values for wind coming from 
West (270°). 𝑣 represents wind speeds parallel to 
the axis between North and South with positive 
values for wind coming from South (180°). The 
definition of the wind components is shown in 
Figure 1. The simulation is done for standard 
deviations of 𝜎!,!  =  1;  2;  3;  4;  5;  7 and 10 ms−1. 
Based on a mean horizontal wind speed of 𝑤 = 50 
ms−1 at cruising altitude a relative deviation of 
approximately 𝜎!,! = 2;  4;  6;  8;  10;  14 and 20 % 
from the original value is represented. 
 
 

 
Figure 1. 𝑢 and 𝑣 components of the wind vector 𝑤. 

 
Figure 2 indicates mean values of 𝑢 between −12 
and 21 ms-1 at FL 360 of the Global Ensemble 
Forecast System (GEFS) between Prague and 
Tunis on 17th of May, 2017 at 12 a.m.. GEFS is a 
weather forecast model considering 21 separate 
forecasts, provided by the GFS. Furthermore, 
along the path maximum differences of ∆𝑢 = 14 
ms-1 have been forecasted for that day.  
The weather data is provided at dedicated 
pressure levels 𝑝! [Pa]. For each pressure level the 
geopotential height (i.e. the gravity adjusted height 
considering the variation of gravity with latitude 
and elevation) is given. The flight performance 
characteristics lift 𝐹! [N] and drag 𝐹! [N] depend on 
the atmospheric density 𝜌 [kg m−3] [35] 
 

𝐹! =
𝜌
2
𝑣!"#!𝐴 𝑐! 

(Eq.1) 

  

𝐹! =
𝜌
2
𝑣!"#!𝐴 𝑐! (Eq.2) 

 
in Eq. (1) and (2) v!"#, A, c! and c! denote true air 
speed [m s−1], wing area [m2], lift coefficient [a.u.] 
and drag coefficient [a.u.], respectively. Hence, 
optimum cruising altitude and speed depend on 
atmospheric density ρ. According to the ideal gas 
law 
 

𝜌 =
𝑝
𝑅𝑇

 (Eq.3) 

 
ρ depends on pressure 𝑝 [Pa], temperature 𝑇 [K] 
and the specific gas constant for dry air 𝑅 =
278.058 J (kg K)−1. To simulate the uncertainty in 
the prediction of the density 𝜌, the temperature 𝑇 is 
varied with a proportional impact on the trajectory 
prediction. In this case study, the temperature is 
varied with standard deviations of 𝜎!"#$ =
1; 2; 3; 4; 5; 7; 10 and 12 K. According to the U.S. 
Standard Atmosphere, the temperature at cruising 
altitude (FL 360) at ℎ = 11000 m is approximately 
𝑇 =  216 K [36]. Hence, the chosen standard 
deviations correspond to relative deviations of 
𝜎!"#$ = 0.5; 1; 1.4; 1.8; 2.3; 3.2; 4.6 and 5.5 %. 
Following Eq. 3 and assuming 𝑝 =  22700 Pa and 
𝑇 =  216 K at cruising altitude, variations in 
temperature in the order of 10 K (approximately 
5%) cause variations in density in the order of 10−2 
kg m−3 (approximately 0.5%). Hence, differences in 
optimized cruising altitude are expected to be low. 
However, significantly larger variances in 
temperature are not realistic.  
 

 
Figure 2. Mean values (left) and maximum differences 

(right) of wind component 𝑢 between 21 weather 
forecasts (GEFS) along the path between Prague and 

Tunis on 17th of May, 2017 at 12 a.m.. 
 

The stochastic variation of the weather data per 
second imposes a significant and sudden change 
in weather data in space and time. This 
assumption is validated by ultra sonic anemometer 
measurements of temperature and wind 
components at the meteorological station 
Oberbärenburg in the Eastern Ore Mountains 
(Germany) in ℎ = 30 m height above ground. 
Although the measurements have been taken 
above a forest within the atmospheric boundary 
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layer and by far not at cruising altitude, the 
fluctuations in Fig.Figure 3 and Figure 4 give 
evidence for significant changes of wind speed and 
temperature over time. In Figure 3, half an hour 
(12 a.m.−12.30 a.m.) of high frequent 20 Hz data 
show fluctuations of ∆𝑇 = 4 K and ∆𝑣 = 8 m s−1. 
The data in Figure 4 have been taken over the 
whole day on 17th of May 2017 with a frequency of 
20 Hz. Afterwards the data are averaged to minute 
values.  

 
Figure 3. 20 Hz measurements of air temperature (left) 

and wind component 𝑢 (right) during 30 minutes in 30 m 
altitude over Germany. Short-term fluctuations around 

∆𝑇 = 4 K and ∆𝑢 = 8 m s−1 are realistic. 

 
Figure 4. Minute averaged 20 Hz measurements of air 
temperature (left) and wind component 𝑢 (right) during 
24 hours in 30 m over Germany. Even after smoothing 
the data typical short-term fluctuations around ∆𝑢 =3 m 

s−1 and ∆𝑇= 2 K in 30 m altitude are shown. 
 

2.2. Flight Performance Model COALA 

The Compromised Aircraft performance model with 
Limited Accuracy has been developed for a 
precise and physically realistic trajectory 
optimization considering multi-criteria conflicting 
goals after carefully evaluating the required input 
parameters with main impact on trajectory 
optimization. COALA combines the impact of 
aircraft specific aerodynamics and the important 
influence of 3D	weather information both affecting 
an optimized trajectory. COALA calculates 𝑣!"#, 
thrust 𝐹!, fuel flow 𝑚!, forces of acceleration 𝑎! 
and 𝑎!, flight path angle 𝛾 and total time of flight 
with a time resolution of ∆𝑡 =  1 s. Aircraft type 
specific aerodynamically parameters, such as wing 
area 𝐴, maximum Mach number 𝑀𝑀𝑂, number of 
engines, aircraft dynamic mass and the drag polar 
depending on flap handle position and Mach 
number are also respected [11]. Figure 5 shows the 
structure of COALA, specified for this case study. 
 

 
Figure 5. Sketch of workflow, input and output 

parameters of the flight performance model COALA. For 
more details of the model, compare [14]. 

 
For multi-objective optimization, COALA uses 
target functions for 𝑣!"#, flight path angle 𝛾 and 
cruising altitude. The target values are 
continuously calculated for each time step and 
used as controlled variable. The values are 
controlled using 𝑐! as regulating variable in a 
proportional-integral-derivate controller. Due to 
missing calibration data, Base of Aircraft DAta 
(BADA), provided by EUROCONTROL [37] [38] 
are used for the approximation of the drag polar, 
i.e. the functional relationship between 𝑐! and 𝑐!, 
maximum climb thrust 𝑀𝐶𝐿 and 𝑚!. 
Therefore, a limited accuracy is accepted. 
Regarding 𝑚!, errors of ”less than 5%” for BADA 3 
and ”well below 5%” for BADA 4 are considered 
[39]. If the aircraft type is available, BADA 4.1 will 
be used for the benefit of a higher accuracy.  
In this case study, 𝑣!"# for a maximum climb angle 
𝛾 [rad] up to the safety level of 10000 ft, where a 
maximum climb rate 𝑤 [ms−1] is aspired. In 
general, the climb profile is adapted to the aspired 
cost index with a speed adjustment factor α of the 
true air speed [12]. A deceleration of 𝑣!"# (i.e. 
𝛼 < 1) causes a steeper climb profile with a lower 
𝑣!"# at the top of climb (𝑇𝑂𝐶). A higher 𝑣!"# (α > 1) 
causes a shallower climb profile with a higher true 
air speed at 𝑇𝑂𝐶. During cruise, α directly 
manipulates the cost index 𝐶𝐼, which is iteratively 
achieved, after the assessment of the trajectory. 
During cruise, in the present case study, 𝑅!"#  
 

𝑅!"# =
𝑣!"#
𝑚!

 Eq.(4) 

 
is chosen as target function for 𝑣!"# and cruising 
altitude. Therewith, the ratio between true air 
speed and fuel flow is maximized. During 
continuous descent, a maximum lift/drag ratio 𝐸 
[a.u.] 

𝐸 =
𝐹!
𝐹!

 Eq.(5) 

is aspired.  
	
2.3. Simulation Environment TOMATO 

The architecture of the TOMATO simulation 
environment is very modular and described by 
Förster et al. [9]. TOMATO iteratively connects 
three optimization tools (sub modules) and 



 

 5 

assesses the trajectory. For complexity reasons, 
the overall optimization has been split into two 
modules. The first module is a lateral path 
optimization by employing the A* algorithm in the 
presence of winds and ice-supersaturated regions 
(this is important for contrail formation). The A* 
module uses ATC en-route charges, as well as 
prohibited or restricted areas to find the cheapest 
lateral path at a initially predefined altitude. Those 
path-influencing factors, which are not already 
available in form of fees or costs (e.g., the effect of 
winds), are transformed into cost values. The 
formation of condensation trails is also transformed 
into costs per time step depending on daytime and 
flight path [9, 14, 40].  
In the second step, COALA calculates and 
optimizes the vertical flight profile along the 
optimized lateral path. With the implemented 
engine model, detailed performance and emission 
data for each time step during the flight are 
determined and used for the assessment. 
Therewith, the optimization is done in a real 3D 
workspace. Figure 6 shows the optimization cycle 
and workflow of TOMATO. After the assessment 
(third module), the determined performance and 
cost data are available for the next iteration step 
with benefits especially for the lateral path 
calculation (e.g., by using a different cruising 
altitude or flying beyond ice-supersaturated 
regions to avoid contrail formation or looking for 
different flight levels with more suitable wind 
direction). TOMATO iteratively estimates the 
required fuel mass by considering the fuel burn of 
the last iteration step.  
TOMATO has been used for several post analyses 
to estimate the influence of the simulated 
trajectories on the ATFM (impact on air space 
capacity, number of separation infringements [14], 
characteristics and distribution of separation 
infringements [13] and controllers taskload [8]). 
Therewith, the criterion validity of TOMATO could 
be shown in various applications [8–14]. 
 

 
Figure 6. Workflow in TOMATO, simplified to the most 

important parameters and modules. 

3. IMPACT ON TRAJECTORY OPTIMIZATION  

As expected, large deviations of the input 
parameters cause the large deviations between 
the resultant trajectories. If the lateral path is 

optimized in each wind parameter variation, the 
impact on the lateral deviation will be large, 
compared to fuel burn 𝜎!"#$%"&', time of flight 
𝜎!"#$!!!"#$ and initial cruising altitude 𝜎!"#$#%&'. 
Temperature uncertainties are expected to 
influence the flight performance, i.e., 𝜎!"#!"#$% and 
𝜎!"#$#%&'. Furthermore, differences in flight time and 
fuel burn are relatively small, compared to 
differences in the input parameters. From this 
follows, pilots will be able to reach the time stamps 
at given spatial coordinates, as long as they can fly 
along optimized flight paths with optimized speeds. 
According to the ICAO Performance Based 
Navigation (PBN) concept [41], Along Track 
Tolerances (ATT) (i.e., the deviation from the 
planned trajectory along the flight path) are 
burdened with higher uncertainties than Cross 
Track Tolerances (CTT) (i.e., the lateral deviation 
from the planned trajectory). Hence, the on board 
flight management system (FMS) follows the 
planned track very precisely and adjusts the true 
air speed within the aircraft specific boundary 
conditions given by the 𝑀𝑀𝑂. Assuming an inflight 
trajectory optimization, the FMS must identify the 
wind and density optimized flight path, which will 
differ significantly from the planned one, depending 
on the precision of the weather forecast or the 
uncertainty of the pressure and temperature 
measurement. Figure 7 shows the optimized lateral 
path with wind speeds of the resultant wind vector 
𝑤 between 5 and 20 ms-1 along the path at FL 360.     
 

  
Figure 7. Optimized lateral flight path (black) between 

Prague and Tunis in the real weather scenario. Contours 
denote wind speeds [ms-1] at FL 360 of wind vector 𝒘.  

 
 
3.1.  Uncertainty of wind direction and wind 

speed 

The impact of the uncertainty of wind direction and 
wind speed on trajectory optimization is significant 
in the lateral path (Fig. 8 and 9).ss 
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Figure 8. Mean values and standard deviations of lateral 
deviations from the original flight path (left) and of initial 

cruising altitudes at TOC (right), as a result of 
fluctuations in wind speed in the lateral and vertical 

optimization with different relative standard deviations. 

 
Figure 9. Mean values and standard deviations of 
changes in Fuel burn and time of flight as result to 

fluctuating wind speed with different relative standard 
deviations. 

 
Here, differences between the original path, 
obtained by an optimization following the original 
Grib2 weather data exceed the Cross Track 
Tolerances of 𝐶𝑇𝑇 = 5 NM, when wind speed and 
direction are varied by at least 4 %. The impact of 
uncertainties in wind speed and direction on fuel 
burn, initial cruising altitude and time of flight are 
relatively small, because the trajectory has been 
successfully optimized for each run. Relative 
differences in the standard deviations (usually 
between 0.05% and 0.5%) of each resultant 
trajectory parameter (e.g., 𝜎!"#$!"#$, 𝜎!"#$#%&', 
𝜎!"#$!!!"#$) are far below the relative standard 
deviation of the varied wind speed (i.e., 𝜎!,! on the 
x-axis in Fig. 7 and 8). However, the large lateral 
deviations in 𝜎!"#$%"&', 𝜎!"#$#%&' and 𝜎!"#$!!!"#$ give 
evidence, that deviations in flight time, altitude and 
fuel burn will be significant, if the aircraft is forced 
to fly along the planned trajectory. Hence, inflight 
optimization is an important procedure for 
trajectory prediction to reach the planned time 
stamps and to assure a benefit for both, pilots and 
controllers. This effect is analysed in Section 4 
(Figure 10, Figure 11 and Figure 12), where the 
lateral path is fixed to the optimized one 
considering the original weather data.  

 
Figure 8. Impact of fluctuations in temperature on lateral 

deviations and optimum initial cruising altitudes. 

 
Figure 9. Mean values and standard deviations of 
changes in fuel burn and time of flight, caused by 

uncertainties in temperature measurements, expressed 
in relative standard deviations around a modelled 

temperature value. 

3.2. Impact of the accuracy in air temperature 
on the trajectory optimization 

An uncertainty in temperature measurement or 
forecast at flight level is expected to have a 
significant influence on the vertical path and 
therewith on fuel burn and initial cruising altitude. 
In fact, the relative standard deviations 𝜎!"#$%"&', 
𝜎!"#$#%&' and 𝜎!"#$!!!"#$ reach higher values, but are 
still below the expected model accuracy of the 
trajectory prediction (compare Figure 10 and 
Figure 11). Differences in fuel burn of 
approximately 𝜎!"#$%"&' = 1 % are simulated for a 
temperature fluctuation around 𝜎!"#$ = 2.5 %, 
compared to 𝜎!"#$%"&' = 0.05 % when wind speed 
is varied around 𝜎!,! = 2.5 %. Very small mean 
values of the lateral deviation of the trajectory from 
the original one (here, 𝐶𝑇𝑇 = 0.3 NM) cause 
relatively large relative standard deviations of 
𝜎!!" = 200 %. However, absolute values of 
𝜎!!" = 1 NM are negligible. As expected, 
significant fluctuations in the initial cruising altitude 
at FL 400 are simulated, which is above the 
vertical separation minimum and hence would 
influence the ATFM, when inflight optimization 
would be applied. 
	
4. IMPACT ON TRAJECTORY PREDICTION  

In the following, the impact of uncertain weather 
conditions will be analysed, if the lateral path is 
fixed. This assumption corresponds to the idea, 
that pilots are restricted to the filed trajectory in the 
lateral path and adaptions are only possible to 
speed and altitude.  
 
4.1. Uncertainty of wind components 𝒖 and 

𝒗 assuming a fixed lateral path 

 
Figure 10. Impact of uncertainties in wind component 𝑢 
and 𝑣 on fuel burn and flight time with assuming a fixed 

lateral path. 
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Figure 11. Deviations of the altitude at 𝑇𝑂𝐶, for different 
relative variations in wind component 𝑢 and 𝑣 (left) and 

temperature (right). The lateral path is constant.  

If the lateral flight path does not consequently 
follow the wind optimum solution and is fixed to a 
defined distance, fuel burn and time of flight will be 
higher (Figure 10) in a fluctuating wind field, 
compared to the optimum solution (Figure ) with a 
lower standard deviation due to the constant 
distance of the lateral path. This phenomenon 
shows the necessity of an in-flight trajectory 
optimization, as soon as weather updates are 
available. On average, 20 kg (0.7 %) fuel could be 
solved between Prague and Tunis. Despite a 
constantly changing wind situation, the altitude at 
the 𝑇𝑂𝐶 will be very stable at FL 426 (Figure 11), if 
the lateral path is fixed, because this metric is 
mainly driven by flight performance.  
 
   
4.2. Uncertainty of temperature assuming a 

fixed lateral path 

 
Figure 12. Impact of uncertainties in temperature on fuel 

burn (left) and time of flight (right) along a fixed lateral 
path. 

Large standard deviations in the altitude at 𝑇𝑂𝐶 
under uncertain temperature conditions of 8000 ft 
(18 %) (Figure 11) are combined with large 
differences in the climb profiles (i.e., rate of climb) 
and pose great challenges for ATFM. 
 
Due to not optimum lateral flight paths (as long as 
the lateral flight path is fixed during the trajectory 
optimization), fuel burn and time of flight increase 
with increasing uncertainty in the temperature  
(Figure 12) and are significantly higher than under 
optimum conditions (Figure 11). Differences of 
400 kg cause (14 %) an instable trajectory 
prediction, optimum speeds and altitudes strongly 
depend on the aircraft mass, which is, as a 
consequence difficult to predict. 
 
5. CONCLUSIONS 

In this paper, the impact of uncertainties in the 
prediction of wind speed, wind direction and air 
temperature on the trajectory prediction, i.e., the 

ability to reach certain spatial coordinates at 
certain time stamps is quantified and discussed. 
Thereby, the lateral path has been optimized in 
each simulation run (assuming an inflight trajectory 
optimization). This means, the aircraft is able to 
optimize its flight path, depending on current 
weather conditions. Thereby, an important impact 
of wind speed and temperature on the lateral flight 
path, as well as on the initial cruising altitude has 
been identified. Additionally, the lateral path has 
been fixed to the optimum solution for the real 
weather data (assuming a trajectory prediction). In 
this case, the trajectory is mainly impacted by large 
uncertainties in the climb profile (in case of 
temperature fluctuations). Surprisingly, fuel burn 
and time of flight are more stable (with higher 
mean values), when the flight path is fixed to a 
constant distance, although it does not follow 
optimum wind conditions any more.  
  
Considering the features of the 4D Trajectory 
Management, where aircraft should be allowed to 
follow their optimized trajectory, as long as they 
reach certain spatial coordinates at certain time 
stamps, the results of this study identify a conflict 
between both features, because aircraft will only 
be able to come up with the time constraints, when 
lateral deviations from the planned trajectory are 
allowed. This in turn causes a great challenge for 
the ATC, as far as weather prediction is burdened 
with uncertainties. On the other hand, this study 
could show that the optimization algorithm, 
implemented in TOMATO is able to come up with 
sudden fluctuations in the input parameters and 
finds optimum solutions, so that the aircraft will be 
able to reach at least the FAF at the given time, 
because the time of flight did not change 
significantly over all simulations. 
 
More work has to be done to identify other 
significant uncertainties in trajectory calculation. 
The stochastic variation of the wind components is 
not as realistic as possible. The 𝑢 component 
(between East and West with positive values for 
west winds) has to be varied stronger (up to values 
of 𝑢 = 200 ms−1) for simulating air currents like jet 
streams. Furthermore, the impact of the variation in 
the input parameters on flight time, fuel burn and 
cruising altitude will be estimated without a lateral 
trajectory optimization. After that, further aircraft 
specific input parameters like the aircraft mass and 
fuel flow will be burdened with uncertainties and 
their impact on the trajectory prediction will be 
estimated.  
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