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Abstract—When planning and predicting a flight trajectory,
uncertainties are inherent both in the current values of various
influencing factors and in their evolution. These uncertainties
can turn initially “optimized” trajectories into impossible or at
least less attractive solutions later when it is executed. In order
to support a more robust trajectory planning for Continuous
Descent Operations (CDO), this paper investigates how variations
of those influencing factors impact the trajectory optimization
fidelity. For this purpose, a set of optimal trajectories are
generated for each of the variations and their sensitivities
are analyzed. The trajectory optimization is formalized as a
multi-phase optimal control problem and is numerically solved
with the Legendre-Gauss Pseudospectral Method (LGPM). An
iterative process is proposed to determine the required number
of collocation points to grant a pre-set level of convergence. Case
studies are carried out for International Standard Atmosphere
(ISA) baseline conditions as well as for wind and temperature
variations as relevant representatives of the weather prediction
uncertainties. The numerical simulation results show shifts from
the reference trajectory depending on wind and temperature
variation. Uncertain wind speed caused a larger solution space
and more variation in fuel burn than temperature errors. The
designed solution spaces, especially the earliest and latest ToD
locations, give pilots and air traffic controllers a good reference
where their aircraft is expected to match best CDO goals under
the individually prevailing uncertainties. We believe that such
additional flight envelope information should complement current
vertical path displays in glass cockpits to foster robust flight
planning and execution.

Keywords—Continuous Descent Operations, Trajectory opti-
mization, Expected solution space, Multi-phase optimal control

NOMENCLATURE

t Time
V Airspeed
s Along-track distance
h Altitude
m Gross mass
FT Thrust
γ Flight path angle
δSB Speed brake
x State vector
u Control vector
()0 Initial value
()f Final value

()(c) Value in the cruise phase
()(d) Value in the descent phase
J Objective functional
T Temperature
L Lift
D Drag
CD Drag coefficient
Uw Longitudinal wind speed
FC Fuel consumption
CI Cost index
Cf Fuel price per unit mass
Ct Time-related costs per unit flight time
N Number of collocation points
N∗ Optimal number of collocation points
Nk Num. of collocation points in the k-th iteration
∆N Increment of N between iterations
ε Tolerance of objective function for termination
εpatientt Time limit to judge the iteration converges

I. INTRODUCTION

Continuous Descent Operations (CDO) is a descent proce-
dure that enables a flight profile with low thrust settings and
a low drag configuration, taking the form of a continuously
descending path with respect to the aerodynamic glide number,
with a minimum of level flight segments [1]. CDO has
potential to reduce fuel burn and noise during descent and has
been tested at various airports worldwide [2], supported by
variety of proposed methods for CDO trajectory optimization
and prediction [3]–[6]. Ex-post analyses at airports offering
CDO however show that the executed flight profiles were
only rarely optimal and that relevant capacity shortages re-
sulted [3]. This was mainly due to wrong assumptions, which
then prevented Air Traffic COntrollers (ATCOs) from clearing
and pilots from executing the optimized trajectory. It was
further found, that different categories of uncertainties impact
the trajectory prediction process, such as poorly predicted
weather, flight performance modeling error or atypical human
behavior. Dedicated efforts have been made to characterize
these categories of uncertainty [7] and to find the best or robust
trajectory [8] considering the whole possible scenarios.

Trajectory planning is usually carried out assuming cer-
tain reference conditions. These include available weather
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report, point mass dynamics representing the aircraft’s perfor-
mance [4], [5], [9] and no latency in human behavior. The gap
between the reference and the “true” conditions that the air-
craft will experience brings offsets from the initially calculated
optimum. In an extreme situation, the difference might lead to
an infeasible trajectory out of the prescribed flight envelope
or a less optimal trajectory. The optimal trajectory under the
true conditions can only be obtained by post-flight calculation
when all the true conditions become known. When planning
a CDO trajectory, it is thus helpful to create and know a so-
called solution space for a given CDO that grants robustness
against a minimum quality, which is made by accumulating
optimized trajectories that correspond to each varied condition.
With the solution space, ranging from the expected earliest to
the latest Top of Descent (ToD), pilots and ATCOs can plan
an alternative trajectory, preparing for the case where it is
found inappropriate to follow the reference trajectory for any
reason. Especially, investigation of the “second best” solution
(or more generally speaking of a sub-optimal solution still
satisfying a pre-set quality index) allows for quick and robust
in-flight adaptations prior to reaching the ToD.

This paper calculates and discusses how altering environ-
mental conditions can affect the optimized trajectory and the
corresponding costs, taking weather deviation (wind and tem-
perature) from the International Standard Atmosphere (ISA)
into account as examples. Based on the analysis, the solution
space is modeled. The trajectory optimization problem is
formalized with optimal control to search the optimal way
to control the dynamical system (aircraft) and is numerically
solved using the pseudo-spectral method, which represents a
trajectory with discrete variables.

II. STATE OF THE ART

Benefits of CDO compared to the conventional step descent
have been intensively evaluated in terms of fuel savings,
emission and noise through simulation [10]–[12], data analy-
sis [13], [14] as well as flight tests [15]. Despite these attractive
benefits, CDO’s limited predictability for ATCO makes it not
easy to be implemented in the daily operations. Fricke et al.
analyzed operational data and the optimal CDO trajectories [3]
based on their detailed flight performance models and on
ground-based flight performance charts [16]. They found that
the analyzed flight did not necessarily adhere to the ICAO
designed CDO corridor and that the poor execution of CDO
was found to degrade its potential of fuel savings.

Variety of methods have been proposed and tested to opti-
mize CDO trajectories and enhance the predictability. Park
et al. focused on optimizing a vertical CDO trajectory to
minimize flight time and fuel and compared the results to the
reference VNAV CDO trajectory [4]. They also proposed a
sub-optimal CDO trajectory to significantly reduce calculation
time, which is one of the well-known pitfalls of optimal
control [17]. De Jong proposed an operational procedure and
trajectory re-planning strategy for CDO named Time and
Energy Management Operations (TEMO) [5]. The concept
aimed at finding an optimal trajectory in terms of kinetic and

potential energy management, and also aimed at being robust
under trajectory prediction errors. Performance of TEMO was
further studied by Dalmau et al. [18] and it was found to
be capable of dealing with required time of arrival (RTA)
and wind uncertainty. Stell developed a method to accurately
predict spatial location of ToD on a mathematical model ba-
sis [6]. Simplified flight dynamics were used and the location
was predicted using polynomial approximation with different
complexity levels. The model was compared with experimental
flight data and the simple polynomial approximation was
found to be sufficient.

Trajectory optimization is often formalized as an optimal
control problem. Soler proposed a general framework for
how to apply (multi-phase mixed-integer) optimal control to
trajectory optimization and solved wide range of scenarios
and problem settings [19]. González-Arribas et al. expanded
the deterministic framework to stochastic optimization and
proposed a robust trajectory planning algorithm, which tries
to find the time series of control inputs to minimize overall
possible situations. The enhanced system was tested in a
scenario where weather prediction has uncertainties (e.g. on
wind) [8]. Dalmau et al. optimized vertical trajectory for the
entire flight and compared continuous operations to conven-
tional procedures, both of which were formalized using multi-
phase optimal control [9]. Park et al. [4], [17] and De Jong [5]
also applied optimal control to do vertical trajectory planning.

Thanks to the intensive effort on optimizing and analyzing
CDO trajectories, optimal CDO trajectory determination has
become possible. However, application of optimal control to
trajectory calculation is still limited to relatively simple for-
malizations that assume smoothness and weak non-linearity of
their solution functions, since the problem becomes too com-
plex to solve computationally otherwise. Solving an optimal
control problem that is formalized more closely to practical
operations and real flight performance is still challenging.

Another challenge is a variety of uncertainties that affect
trajectory prediction. According to Casado et al., the major
uncertainty sources include modeling errors, initial condi-
tions, intent uncertainties, flight technical errors and weather
forecasts [20]. Among them, weather forecast errors, as an
external disturbance on an aircraft, have particular impact and
especially wind, pressure and temperature errors affect along-
track and vertical trajectory, which are crucial to to predict
descent trajectory (Mondoloni [21]).

As one of the external disturbances, Park et al. put wind
variation in optimal-control based CDO trajectory optimization
and analyzed sensitivity of trajectory prediction to wind varia-
tion [4]. They reported variation of ToD location up to about 6
NM affected by head wind and tail wind up to 10 m/s (19.4 kt).
De Jong evaluated their TEMO guidance strategy under wind
estimation errors up to 5 kt and found achieved compensation
of the effect [22]. Verhoeben et al. and Dalmau et al. did
further studies that analyzed the effect of wind prediction error
on TEMO constrained by RTA [18], [23].

Based on the literature review, CDO trajectory as an optimal
descent was found to have been intensively studied and im-



plemented. However, relevant uncertainties have not so widely
considered in optimal CDO trajectory planning. Especially
the expected solution space, an area where the aircraft will
be expected to fly considering the anticipated uncertainties,
facilitates the CDO trajectory prediction for both pilots and
ATCOs and it should be more deeply studied. This paper
takes variations in weather prediction and evaluate how they
affect the shape of the solution space and the key performance
indices.

III. PROBLEM FORMALIZATION

A. Fundamental perspective for trajectory optimization

This section explains the fundamental viewpoint we have
when we formalize the trajectory optimization problem based
on the optimal control theory.

This study considers the flight state vector

x(t) = {V (t), s(t), h(t),m(t)} ∈ R4 (1)

containing airspeed V , along-track position s, altitude h and
total mass m, and the control input vector

u(t) = {FT (t), γ(t), δSB(t)} ∈ R3 (2)

containing thrust FT , flight path angle γ and speed brake
δSB , as fundamental variables describing an aircraft trajectory
in 4D, and regards the trajectory optimization problem as a
problem to determine these variables as functions of time, or
time histories. All the other physical quantities are derived
from the state and control variables as shown later in this
section. In this paper, the term variable only refers to those
forming the state and control vectors. The other static quanti-
ties, as specified in Section V-A, are called parameters. The
following formalization is derived in terms of the state and
control variables and the models are written as functions of
these variables.

This study assumes the situation, where pilots intend to
complete the cruise phase and to plan their CDO trajectory
especially the ToD location. The flight trajectory that the
aircraft has already experienced is fixed. Therefore the flight
states at the moment of trajectory planning (the “current”
moment) are also fixed and known. Theoretically, they are
the initial conditions of our trajectory optimization problem.
As the already fixed trajectory before the current state is out
of interest for the study, the time and the along-track position
are initialized at the moment (t = 0, s = 0). The final cruise
segment is required to allow us to compare different profiles
in terms of ToD location.

We build the trajectory down to the Final Approach Fix
(FAF). This study assumes the FAF to be fixed and published
(therefore pre-known). Consequently, the along-track position
s and altitude h that the trajectory must satisfy when passing
the FAF is assumed to be known. A descending aircraft is op-
erationally required to reduce the airspeed along the segment
(from fixed cruise Mach number typically down to minimum
clean speed). The study sets the speed that the aircraft must
meet at the FAF (t = tf ) to model this operational constraint.

These are described as final conditions. The aircraft gross mass
m at FAF is however not previously known nor the state and
control variables in between the initial and final moment. The
summary of the above discussion is:
Known: V, s, h,m at t = 0 and V, s, h at t = tf
Unknown: m at t = tf , x(t),u(t) at ∀t ∈ (0, tf ) and tf

Consequently, we aim to determine the unknown time
histories of the state and control variables, or in other words
their mathematical representation as functions of time. The
optimized function values at each t are searched within reason-
able boundaries called path constraints. A so called free-time
fixed-endpoint optimal control problem [24] fits these problem
settings, which aims by optimally transferring a dynamical
system (aircraft states in this case) from the initial to a final
condition, as shown below. In the following formalization, the
international system of units (SI units) is assumed unless a
specific unit is mentioned in the description.

B. Flight dynamics (equations of motion)

The following longitudinal point mass equations of motion
are used in this study, referring to an aerodynamic coordinate
system for (3), respectively geodetic coordinates system (4)
and (5) according to DIN 9300 or ISO 1151-2:1985.

mV̇ = FT −mg sin γ −D (3)
ṡ = V cos γ + Uw (4)
ḣ = V sin γ (5)
ṁ = −FC (6)

The aircraft is assumed to track a pre-defined horizontal path
and thus horizontal movement is neglected. As change of the
flight path angle is small (γ̇ ≈ 0), vertical equilibrium (L ≈
mg in the vertical equation of motion γ̇ = L −mg cos γ) is
also assumed. In terms of wind, steady wind is assumed and
thus the wind acceleration U̇w in (3) is neglected. Positive Uw

refers to horizontal tail wind and negative sign means head
wind. Mathematical derivation of the wind effect on the flight
dynamics is discussed for example in [4].

Phase-specific assumptions are introduced as follows to
characterize each flight phase.

Cruise phase
In the cruise phase, steady level flight, or constant airspeed and
altitude, is assumed to model operational limitations. Aircraft
are basically supposed to keep certain airspeed and altitude
which are agreed between the pilots and ATCOs in order
to keep required separation in traffic. These limitations are
physically described by V̇ = 0 and ḣ = 0 and the latter leads
to γ = 0 therefore sin γ = 0 and cos γ = 1. These assumption
bring longitudinal balance thrust FT = D. Therefore, FT

and γ are not needed to be searched in the optimization and
h is no longer dominated by the dynamics. That means the
three variables and the corresponding dynamics (3) and (5)
can be excluded from the optimization. Also, speed brake
use is forbidden in this phase (δSB = 0). As a result, the



state vector is simplified as x(c) = {s,m} ∈ R2, whereas
the control vector has no component u(c) = 0. Although the
control vector is a zero vector in this phase, the state vector
still has components and their equations (4), (6) are one of
the constraints in our trajectory optimization as we see at the
end of this section. Therefore, the cruise phase, an interval
between the aircraft’s initial position and the ToD location,
certainly affects optimization results.

Descent phase
Idle thrust descent is assumed in this study, which means thrust
FT in (3) is always zero. Unlike the cruise phase, the flight
path angle γ is not restricted to a fixed value. The state and
control vectors for the descent phase are therefore simplified
as x(d) = {V, s, h,m} ∈ R4, u(d) = {γ, δSB} ∈ R2.

C. Flight performance model

Aircraft gross mass is modeled as a sum of operational
empty weight moew, payload mp and fuel mass mf (all in
[kg]).

m = moew +mp +mf (7)

moew and mp are assumed to be constant and thus ṁ = ṁf

in (6), i.e. the fuel consumption FC in [kg/s].
In terms of drag coefficient and FC, models described

in BADA4 [25] (direct thrust parameter input) are used.
There, FC is modeled as a non-linear function of thrust,
Mach number, pressure and temperature. This study assumes
international standard atmosphere (ISA), so speed of sound,
pressure and temperature are known functions of altitude.
Therefore, fuel consumption in this study is a function of
airspeed V , altitude h and thrust FT . FC is defined positive
at all time.

FC(V, h, FT ) > 0 (8)

Parasite drag is calculated through the drag coefficient CD.

D (V, h, mt, δSB) =
1

2
ρ V 2 S CD (9)

where ρ and S denote atmospheric pressure and the aircraft’s
reference wing area, respectively. CD, as modeled in BADA4,
consists of terms corresponding to clean and non-clean aircraft
configurations. The clean drag coefficient is a function of lift
coefficient CL and Mach number. Considering the assumption
that the lift is balanced the weight, CD is a function of V ,
h and mt. Speed brake effect is considered as the non-clean
drag configuration.

CD(V, h,mt, δSB) = Cclean
D + 0.03 δSB (10)

Important to note is that δSB is defined as a linear function
between 0 and 1 though BADA4 only allows binary settings
with δSB = 0 or 1. This linear interpolation is motivated to
express intermediate level of speed brake deployment between
none and fully deployed, as given for typical commercial
aircraft such as the Airbus A320.

D. Objective functional

The objective functional J in [BC] considers time and fuel
costs, corresponding to the first and second terms of (11),
respectively.

J
(
V, h, FT ; t

(d)
f

)
= Ctt

(d)
f + Cf

∫ t
(d)
f

t
(c)
0

FCdt

= Cf

(
CIt

(d)
f +

∫ t
(d)
f

0

FCdt

)
(11)

Time costs are defined as the costs [BC] charged for the flight
time [s] of the considered flight phases from the aircraft’s
initial position to the target FAF, which is represented by t

(d)
f

in our formalization. Linear relationship is assumed between
the time costs and t

(d)
f through a coefficient Ct [BC/s]. The

coefficient is modeled with so-called cost index CI [kg/s]
implemented in current Flight Management Systems (FMS).
By transforming its definition CI = Ct

Cf
, the coefficient is

obtained as Ct = CfCI . As for the fuel costs, they are defined
as costs [BC] charged for the fuel burn [kg] in the considered
flight phases. The costs are assumed to be proportional to the
burned fuel and the coefficient Cf is a fuel price [BC/kg].

As we can see in the formalization, the time costs are
directly dependent on the total flight time t

(d)
f and the fuel

costs on V, h, FT through FC. The variables are a part of
the decision variables in our trajectory optimization. In this
research, CI is set by the user when creating a scenario and
is then kept constant for the scenario.

E. Constraints

Path constraints
Since the order of the two phases that the descent phase comes
after the cruise phase is fixed, the times at the phase edges have
the following relationships:

t
(c)
0 < t

(c)
f = t

(d)
0 < t

(d)
f (12)

Here, important note is that the final time at cruise and the
initial time at descent t(c)f = t

(d)
0 are equivalent to the time at

ToD.
Upper and lower limits for state and control variables are

imposed to prevent the optimizer from searching in the outside
the problem domain.

x
(phase)
min ≤ x(phase) ≤ x(phase)

max (13)

u
(phase)
min ≤ u(phase) ≤ u(phase)

max (14)

The optimizer consequently searches the optimal solution x,u

within these constraints. Specific values for x(phase)
min , x(phase)

max ,
u
(phase)
min and u

(phase)
max are presented and discussed in section

V-A.

Conditions for initial and final states
Initial and final values of the state variables are defined as
initial and final constraints. The optimizer searches the control



inputs u that optimally transfers the state vector x from the
initial to the final states.

x
(
t
(c)
0

)
= x0 (15)

x
(
t
(d)
f

)
= xf (16)

It is important to note that optimal control allows to leave the
final condition “free” for some of the variables. For example,
it is unrealistic to require mt to have a certain exact value at
FAF and thus any value within the path constraint can be taken.
Specific values for x0 and xf are presented and discussed in
section V-A.

Phase link conditions
In order to guarantee continuous connection between the cruise
and descent phases, we need to have the following phase link
conditions

x
(
t
(c)
f

)
= x

(
t
(d)
0

)
(17)

where all the aircraft states at t
(c)
f = t

(d)
0 (at the ToD) are

equal in both the phases.

To summarize the above discussion, the target optimal
control problem can be described as:

Determine

States x(c)(t) = {s(t),m(t)}
x(d)(t) = {V (t), s(t), h(t),m(t)}

Controls u(d)(t) = {γ(t), δSB(t)}
Final times t

(c)
f , t

(d)
f

to minimize

Objective functional (11)

under the constraints of

Aircraft’s dynamics (3)-(6)
Path constraints (12)-(14)
Initial and final conditions (15) (16)
Phase link conditions (17).

The initial times t
(c)
0 , t

(d)
0 are excluded from the optimization

since the former was assumed to be zero in Section III-A and
the latter is constrained by the path constraints (12). Another
note is that the final time for the cruise phase t

(c)
f is equivalent

to the time at ToD.

IV. SOLUTION METHODOLOGY OF THE PROBLEM

A. Pseudo-spectral method

Generally speaking, optimal control problems rarely have
closed-form (or analytic) solutions, except for few known
special cases (e.g. linear quadratic optimal control) [26].
Numerical methods are thus usually required to solve them.
Solution methodologies for optimal control are mainly divided
into two categories: direct methods and indirect methods [27].

In the past, the indirect methods were widely researched on
because of their high accuracy and the assurance that the
solution satisfies the first-order optimality conditions [28].
However, several critical computational disadvantages were
found in the indirect methods and as a result the researchers’
attentions have shifted to direct methods [27]. Among several
variations of the direct methods, we chose the Legendre-Gauss
pseudo-spectral method (LGPM). It was proved that LGPM’s
(discretized) solution satisfies the optimality conditions, which
eliminates one of the common disadvantages of the direct
methods [29].

LGPM discretizes the continuous time, state and control
variables into so called collocation points. The flight dynamics
and the objective functional are approximated using the vari-
ables at the collocation points and the constraints are imposed
on each of them. Through this discretization, the original
continuous optimal control problem is transcribed into a Non-
Linear Programming (NLP) problem. In this study, the result-
ing NLP problem is solved by the Sequential Least SQuare
Programming (SLSQP) method implemented in SciPy. When
the optimal solution for the NLP problem is obtained, the
solution for the original continuous optimal control problem
is approximated by polynomials that interpolate the discrete
solution.

An important feature of LGPM is that the collocation points,
which are specified by the roots of the Legendre polynomials,
are not placed at the edges of each phase corresponding
to t

(phase)
0 and t

(phase)
f (LG points in Fig. 2-4 in [29]). In

order to consider the initial and final conditions, we add the
missing phase edges to the collocation points only for the
state variables. These points are not a root of the Legendre
polynomials (Chapter 3 in [29]). The set of the overall points
(collocation points and the phase edges) are called nodes.
If the state variables in a phase have N (phase) collocation
points and 2 phase edges, they totally have N (phase) + 2
nodes in a phase. On the other hand, the control variables
in a phase only have N (phase) collocation points. In this
study, we have 2 state and 0 control variables and 1 final
time for the cruise phase, and 4 state and 2 control variables
and 1 final time for the descent phase. Therefore, totally(
2(N (c) + 2) + 0N (c) + 1

)
+
(
4(N (d) + 2) + 2N (d) + 1

)
,

equaling to

2N (c) + 6N (d) + 14 (18)

variables are eventually decided in NLP. The number of
collocation points are determined by the iterative process
described in section IV-C.

B. Initial Guess

The pseudo-spectral method (or resulting NLP) requires an
initial guess, from which the calculation is initiated. In general,
a non-convex optimization reaches a local optimum, or in other
word a feasible solution in the vicinity of the given initial
guess that satisfy all the constraints. Inappropriate initial guess
selection often makes the optimization process converge into a
poor local optimum or even sometimes prevents the optimizer



Fig. 1. Flow to determine the optimal number of collocation points.

from converging. An initial guess is to be chosen so that it
satisfies all the equations of motion and the constraints. In this
study, steady deceleration with steady path angle (γ = −3◦in
the geodetic coordinates system) is adopted in the descent
phase, which is shown in Fig. 2.

C. Iterative solution process

The numbers of collocation points N (c), N (d) (therefore the
total number of considered collocation points N (c) + N (d))
have a strong impact on both calculation accuracy and time.
In this study, an iterative algorithm is introduced to determine
the optimal numbers N (c)∗, N (d)∗ as shown in Fig. 1. The col-
location point location with respect to t for each phase is auto-
matically specified with a given N (phase), which corresponds
to the roots of N (phase)-th order of Legendre polynomials.
The same number of collocation points are assumed in this
study for both the cruise and descent phases (N (c) = N (d))
to simplify this solution process.

As shown in Fig. 1, the first iteration starts with a fairly
small N

(phase)
0 . Trajectory optimization is carried out, or in

other words LGPM solves the optimal control problem, with
the given numbers of collocation points. We set a patient
limit for the iterative calculation (εpatientt = 300 s). If the
optimization does not converge within the time limit, a new
optimization starts. It goes with N

(phase)
1 −1 collocation points

for each phase. The initial guess is also re-calculated with the
new collocation points. When convergence is reached and the
optimized trajectory is obtained (with tolerance for termination
ftol = 10−6), the first iteration ends and the resulting N

(phase)
1

is expressed as N
(phase)∗
1 . The second iteration starts with

N
(phase)
2 = N

(phase)∗
1 +∆N (phase) collocation points. In this

study, we set ∆N (c) = ∆N (d) = 5. If the absolute error of
objective functional value gets smaller than a pre-set tolerance

Fig. 2. Change of the objective functional Jopt (for the reference ISA case)
optimized with different number of collocation points. The red triangles show
how Jk changes in each iteration step in the proposed solution process.

ε = 1.54 BC, corresponding to the fuel price for 1 kg of fuel
burn, the iterative algorithm is terminated and the optimal
numbers of collocation points N (c)∗, N (d)∗ (therefore totally
N (c)∗ +N (d)∗) are finally determined.

The change of optimized objective functional Jopt with
N

(c)
k + N

(d)
k in each iteration is shown in Fig. 2 (for the

reference case discussed in the next section). In the reference
case, calculations in every k-th iteration terminated within
εpatientt so the reduction N

(phase)
k did not occur. We started

the iterative process with N
(phase)
0 = 5 and the process

terminated with N (phase)∗ = 50. Therefore, optimal number
of collocation points was determined as N (c)∗+N (d)∗ = 100.
In the graph, some more results, represented with black dots,
are also depicted to show the overall shape of J . The plot
shows that a large transition happens when 68 ≤ N ≤ 82.
This jump is caused because the optimizer converged to a
local minimum different from the finally obtained optimal
trajectory, which can be seen also in Fig. 3 (case 70). We
believe the above determined number of collocation points is
reasonable as the change of J stays within a range of ε even
with more collocation points up to 140 total collocation points
(see Figs. 2 and 3). With the optimized number of collocation
points, the following NLP problem totally has 414 decision
variables according to (18).

One can understand from Fig. 2 that the iterative algorithm
terminates with a different number of points if different adjust-
ment method ∆N (phase) is applied. When ∆N (phase) = 2 for
example, it finishes the process with 72 points and convergence
is judged to the other local optimum around 400 BC, giving us
an inadequate result. The output of the iterative process was
therefore confirmed by testing with different initial guess or
by applying more strict value of ε.

Fig. 3 shows how the optimized airspeed and altitude time
histories converge with an increasing number of collocation
points starting from the initial guess. The blue thick line shows
the initial guess. The trajectories corresponding to 90 and 100
collocation points are overlapped since they are converged.



Fig. 3. Trajectories optimized with different number of collocation points in
the proposed reference case. They show how the trajectory converges from
the initial guess to the finally optimized solution as the number of collocation
points increases.

V. NUMERICAL SIMULATION

A. Scenario

The study considers Airbus A320, whose total mass is
63700 kg, flying at cruise altitude (35000 ft) with a cruise
airspeed (460 kt equivalent to Mach number 0.8 in the ISA
conditions). The aircraft is going to descend down to the FAF
located 165 NM away from the initial position (along-track
distance) and at 5000 ft above the ground. With this distance
to the FAF, the trajectory has both cruise and descent phases.
The fuel cost Cf is assumed to be 0.61 BC/kg. The parameter
values were obtained from BADA4 [25] except for what is
mentioned below.

Objective functional
In this case study, we focus on the minimum fuel CDO, thus
CI = 0 in (11), and therefore only fuel burn is considered in
the objective functional.

Initial and final states
Initial and final conditions for the state variables are specified
in Table I. The initial conditions for V, h,m come from the
assumed scenario described above. As discussed in Section
III-A, s is initialized at the initial point. The final conditions
for s and h are determined by the FAF location defined above.
Final condition is not imposed on m and thus it is allowed to
have any value within its path constraints.

Path constraints
Specific values for the minimum and maximum path con-
straints, listed in Table I, define the area of interest in which the
optimal variable histories are searched. Note that constraints
for V, h, γ are imposed only in the descent phase, since they
are excluded from the optimization for the cruise phase (see
Section III-B). The maximum airspeed is determined by Mach
number 0.82 at the initial altitude, whereas the minimum
corresponds to the stall speed. Constraints for s and h mean
altitudes above the cruise altitude and below the FAF altitude
are not allowed.

Fig. 4. V and h time histories (reference ISA case).

Fig. 5. FT and γ time histories (reference ISA case).

For the control variables, maximum thrust of A320 is
obtained from the aircraft performance model COALA, which
the Institute of Aviation and Logistics at TU Dresden has
been developing [30]. The altitude effect on the maximum
thrust is neglected for simplification. Zero thrust is assumed
for minimum (idle) thrust and the BADA4 fuel consumption
models correctly consider remaining fuel flow also in that
context. As for the descent angle, the maximum is γ = 0.0 ◦,
which means that horizontal flight segments are also allowed
during descent, thus reflecting typical current CDO operational
operations and in-line with [1]. The minimum path angle
γ = −5.0 ◦covers typical descent angle (about -3.0 ◦) and
also allows expedite descent if required.

TABLE I
INITIAL AND FINAL CONDITIONS AND PATH CONSTRAINTS

Variable Init Fin Min Max
V [kt] 460 250 119 472.6
s [NM] 0 165 0 500
h [ft] 35000 5000 5000 35000
m [kg] 63700 Free 54200 63700
FT [N] - - 0 123440
γ [◦] - - -5.0 0.0

δSB [-] - - 0 1

B. Simulation Results - reference scenario

First, trajectory calculated under ISA condition is presented
as a reference to discuss fundamental features of the opti-
mization described in this paper. Time histories of V and
h are shown in Fig. 4 and of FT and γ in Fig. 5 with
black dots representing the collocation points. The red and
blue horizontal lines show the minimum and maximum path
constraints, and the red diamonds in Fig. 4 indicate the initial
and final conditions. The graphs clearly shows the solution



was found within the path constraints and satisfies the initial
and final conditions. The gray vertical dashed lines indicate
where the phase transition from cruise to descent occurred.
The optimized trajectory for this case does not use speed
brake.

In this study, the aircraft is regarded as going into descent
phase when γ < −0.1◦for the first time and the corresponding
collocation point location is seen as ToD location. From the
h plot in Fig. 4, one can understand that the phase transition
(gray vertical dashed line) does not match the ToD location.
Early in the descent phase （440 s ≤ t ≤ 490 s), the
aircraft decelerates with idle thrust while keeping the cruise
altitude. The similar speed trend can also be found in [19].
This deceleration in cruise comes because the optimal descent
speed at the cruise altitude has a gap from the given cruise
speed and thus the optimizer tried to reduce it while keeping
the cruise altitude. The considered flight dynamics allows
such flight as the simplified cruise dynamics is a subset of
the descent dynamics except for the thrust settings (section
III-B). Therefore the flight being possible in the cruise is also
possible in the descent as long as it is feasible while idle
thrust is applied. ToD is located at t = 484 s. The fuel costs
J finally become 307 BC equivalent to 501 kg fuel burn. The
final time tf is 1723 s. The airspeed curve in Fig. 4 has
a bound or a phase transition during descent (from around
620 s to 1400 s). This can be explained by the observation
that idle and general fuel consumption models in BADA4
FC = max(FCidle, FCgen) swap. This study adopts the two
models but the bounds disappears if only one of them is used.

C. Simulation results - Wind variation

A given wind prediction is assumed to have uncertainties
around the reference scenario, which is up to 50 kt of both
horizontal head and tail wind. The wind speed variation is
assumed to be fixed in the entire descent. Figs. 6 and 7 show
changes of CDO trajectory and the corresponding fuel burn
respectively with the expected wind variation.

Fig. 6 shows stronger head wind causes longer cruise
(therefore later ToD location) and steeper descent path angle,
whereas stronger tail wind leads to shorter cruise (earlier ToD)
and shallower descent. The resulting ToD location is shifted
18 s or 17.5 NM before and 208 s or 16.9 NM after the
reference at most. As for the fuel costs J , stronger head
wind requires more fuel per ground distance and stronger tail
wind requires less (Fig. 7), ranging from -117 kg to +140 kg
compared to the reference. This variance can be explained
mostly by different lengths of the cruise phase with regard to
the ground.

Expected solution space is defined as the area consisting of
the varied trajectories in the Figs. 6 and 7. If uncertainty range
related to wind is somehow quantified to range from 50 kt head
to 50 kt tail wind, we can show pilots how the uncertainty
changes their CDO trajectory and fuel burn using the solution
space. The edge of it presents trajectories in extreme cases
where 50 kt head or tail wind blows all the time. Pilots can
expect that they will actually fly somewhere in this space.

Fig. 6. Change of V and h time histories with wind variation.

Fig. 7. Change of fuel burn time history with wind variation.

Deviation from this solution space motivates them to conduct
additional path planning or trajectory re-optimization.

D. Simulation results - Temperature variation

Temperature prediction uncertainty by 10 K higher and
lower than ISA is assumed in this study, and change of other
atmospheric variables such as air density and pressure due to
the temperature change is ignored.

Fig 8 shows not as large difference in V and h with
the temperature variation as seen in the windy cases. Lower
temperature caused later ToD. In the lowest temperature case
(-10 K), ToD is located 8.0 s or 0.9 NM later than that for the
reference case whereas 4.0 s or 0.4 NM later in the highest
temperature (+10 K) case. On the other hand, fuel burn has
clearer difference (Fig. 9). According to the figure, the aircraft
needs more fuel in a lower temperature case, ranging from -
8.8 kg (+10K case) to +25.4 kg (-10 K case) compared to
the reference ISA case. This is because larger required thrust
is necessary to balance with larger drag caused by lower
temperature. It increases the Mach number M = V/

√
κRT

with the assumed constant cruise airspeed (see Section III), as
shown in Fig. 10. As the CD model in BADA4 has polynomial
forms and each term contains 1−M2 to an integer power in
denominators. Therefore, the increased Mach number results
in higher drag coefficient and the higher balanced cruise thrust
(Fig. 10), which leads to more fuel burn.

Figs. 6 and 8 show that pilots need to expect a smaller
solution space with temperature variation than with the wind
variation.



Fig. 8. Change of V and h time histories with temperature variation.

Fig. 9. Change of fuel burn time history with temperature variation.

VI. CONCLUSION AND FUTURE WORKS

This study established a way of designing and evaluating
a CDO solution space with given types of prediction un-
certainties. The solution space consisted of optimized CDO
trajectories corresponding to varied prediction errors. The
trajectory optimization problem was formalized as a multi-
phase optimal control problem and solved with the Legendre-
Gauss pseudo-spectral method (LGPM). The trajectory was
optimized through iterative solution process, which determines
the optimal number of collocation points.

Numerical results showed that the wind speed variation
up to 50 kt had larger expected solution space than the
temperature deviation up to 10 K. The maximum head wind
caused approximately 208 s or16.9 NM later ToD and the
maximum head wind caused 17.5 NM or 17.9 s earlier ToD,
requiring +140 kg and -117 kg fuel burn to the reference case.
As for the temperature deviation, 8.0 s or 0.9 NM at most
later ToD was calculated in the lowest temperature case. Early

Fig. 10. Change of Mach number and FT time histories with temperature
variation.

ToD was not obtained. Even though the ToD location did not
have significant difference, the temperature variations certainly
affected the amount of fuel burn, ranging from -8.8 kg (+10 K
case) to +25.4 kg (-10 K case) to the reference.

If uncertainty range is somehow quantified, we can show pi-
lots and ATCOs how uncertainties change the CDO trajectory
and fuel burn using the proposed solution space. Deviation
from this solution space motivates them to conduct additional
path planning or trajectory re-optimization. We believe these
designed solution spaces and quantified ToD locations can
support them by giving them a good reference when they
robustly plan and execute continuous descent operations and
thus also can improve the throughput on runways.

The next step of this research would be to design a metrics
to determine the second best solution located in the solution
space. For this purpose, change of the objective functional
J depending on the change of the discretized NLP decision
variables (Jacobian) will be investigated. Aspects of time will
be introduced, such as required time of arrival in the final
conditions and different CI in the objective functional to con-
sider time costs. After designing the metrics, the deterministic
problem setting will be expended to stochastic by introducing
uncertainties modeled with probability density functions. In
terms of improving the numerical computation, selection of
an initial guess with good quality will be further investigated
to avoid stacking a bad local optimum. From a more practical
viewpoint, study on multiple aircraft (at least two successive
aircraft) would be an interesting application of the proposed
method to analyze how uncertainties propagate in the traffic
flow.
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