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Abstract—With the aspiring development towards Trajectory-
based Operations, novel tools for robust trajectory prediction are 
necessary. For this, the impact of uncertain input variables to the 
trajectory prediction must be understood to permit higher 
automation with increasing look-ahead times. In this study, a 
neural network provides input probability density functions for 
the aircraft mass and speed intent (multiple phases with constant 
calibrated air speed or Mach number). With our flight 
performance model, 10,000 climb phases are predicted in a Monte-
Carlo simulation with a look-ahead time of 600 seconds for six 
different aircraft types. The resulting trajectory uncertainty is 
analyzed to prove that the stochastic characteristics of the input 
can be used to predict the arising uncertainties in future positions. 
Since the selected uncertainties are interdependent and time-
lagged, the normality of the input vanishes in the trajectory 
uncertainty. However, a Beta distribution provides a good fit for 
up to 90% of the cases. The findings are applicable to decision 
support tools if the expected uncertainty shall be included. 

Keywords—Trajectory Uncertainty; Trajectory Prediction; 
Climb Phase; Neural Network; Monte-Carlo Simulation 

I. INTRODUCTION

With the introduction of Trajectory-based Operations, all 
flights are represented by univocal, time-dependent trajectories. 
From the perspective of Air Traffic Management (ATM), a high 
level of predictability is required. Thus, the flights should adhere 
to their previously planned trajectories. From the operators' 
perspective, however, a certain level of flexibility is desired to 
react efficiently on uncertainties evolving during flight, e.g. due 
to imprecision in weather forecasts. Therefore, Trajectory 
Uncertainty must be included to provide a trade-off between 
these contrary interests. The Trajectory Uncertainty incorporates 
the likelihood for all deviations from the planned trajectory that 
may occur in the future. Thus, it is a stochastic extension to the 
well-known deterministic Trajectory Prediction (TP) process in 
ATM. 

A deeper understanding of the uncertainty sources allows 
modeling of the resulting Trajectory Uncertainty. If the 
uncertainty source is represented by a probability density 
function (input PDF), the output PDF of the resulting Trajectory 
Uncertainty is likely to depend on this input PDF [1]. Therefore, 

it is beneficial for the TP when the input PDF of the uncertainty 
source is inferred from observations [2]. As a flight progresses, 
the Trajectory Uncertainty must be updated continuously as an 
integral part of the TP based on the observed behavior. 
Therefore, the following basic steps are applied: 

1. Tracking of the flight (deterministic, e.g. current position);
2. Inference of unknown state variables (e.g. gross mass, speed

intent) as stochastic input to the TP;
3. Prediction of the future aircraft track based on the derived

state variables with re-assessment of the expected
Trajectory Uncertainty; and finally

4. Decision support to Air Traffic Controllers based on conflict
probabilities calculated from the Trajectory Uncertainty.

This study focuses on the third step, mainly on the prediction
of future Trajectory Uncertainty with a given uncertainty in the 
state variables. Therefore, the COmpromised Aircraft 
performance model with Limited Accuracy (COALA) [3] is 
extended to predict trajectories of climbing aircraft with a Look-
ahead Time (LAT) of 600 s. The predictions are based on real 
flight tracks provided by the OpenSky Network [4]. The gross 
mass and the speed intent during the climb (Calibrated Air 
Speed, CAS, and Mach number, altitude-dependent) are not 
included in the track data, so these values are inferred by a neural 
network as Gaussian input PDFs [2] to the TP. The procedure is 
called Cause-and-Effect Model and shown in Fig. 1. 

Fig. 1: Principle of the Cause-and-Effect Model, where probability density 
functions are provided for the uncertainty sources (left) to study the resulting 
Trajectory Uncertainty (right) after a given Look-ahead Time. 

Due to the non-linear interaction of the uncertainty sources, 
a Monte-Carlo simulation is selected. The output of the Monte-
Carlo simulation is analyzed with regard to three major areas: 
First, the correlation between the input PDFs and the resulting 
output PDFs is analyzed in order to understand the significance 
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of each uncertainty source to the resulting Trajectory 
Uncertainty (Cause-and-Effect Model). Second, the outcome of 
the TP is compared to the tracks of the real flight. Finally, the 
increase in Trajectory Uncertainty over the LAT is analyzed to 
understand the robustness of a stochastic TP. 

II. THEORETICAL BACKGROUND

A. Trajectory Prediction

The capabilities for TP have been a key feature for ATM
development for the past 25 years. The primary purpose of TP 
lies in predicting the future position of aircraft to provide 
assistance to the ATC controllers, e.g. for medium-term conflict 
detection or sequencing. In general, kinematic and kinetic TP 
are the two competing approaches [5]. Here, a kinetic TP is 
selected because it simulates the subjacent physical processes 
(in aviation: lift, drag, thrust force, and mass reduction due to 
fuel burn) and therefore allows to model uncertainties in the state 
variables that affect the physical aircraft behavior. For typical 
kinetic TP, the aircraft is simplified to a point mass model, 
commonly by using the required aircraft characteristics from the 
EUROCONTROL Base of Aircraft Data (BADA) [6]. 
Furthermore, a flight script must be provided to describe the 
flight intent (i.e. the sequence of planned maneuvers) to predict 
the speed and altitude profile [5]. Mondoloni et al. [7] provide 
various metrics to construe TP performance, analyzing input, 
output, outcome (output with a given input), and impact (false 
error vs. missed error rate). Typical Key Performance Areas 
include accuracy, confidence, stability, and reliability. In 
general, the prediction inaccuracy increases over time due to the 
accumulation of errors. 

B. Trajectory Uncertainty

Besides uncertainties in the atmospheric forecasts, the flight
intent and the state variables required for the kinetic TP are the 
main sources for prediction inaccuracies. The principle of 
Trajectory Uncertainty has been introduced to incorporate these 
inaccuracies in the TP. The Trajectory Uncertainty is divided 
into three Cartesian dimensions as the Along-Track Uncertainty 
(ATU), Vertical-Track Uncertainty (VTU), and Cross-Track 
Uncertainty (XTU) with reference to a certain point in time of 
the trajectory [1], [8]. Therefore, two different forms are used to 
characterize the Trajectory Uncertainty. On the one hand, the 
principle of Performance-Based Navigation [9] is applied by 
defining fixed bounds along the trajectory. Although these 
bounds are static values, they may be extended wherever higher 
uncertainties are expected, e.g. in the vicinity of the top of 
descent [10]. On the other hand, Trajectory Uncertainty is 
characterized stochastically, i.e. by representing each time step 
with a PDF [11]. The stochastic description requires additional 
data (e.g. type of PDF, shape parameters), but it also provides 
detailed insight into the likelihood of a particular position error. 
Furthermore, the stochastic description can be converted to fixed 
bounds easily by applying a bounding condition, e.g. ±2𝜎 for 
95.45% of a Normal-distributed Trajectory Uncertainty, if 
required for a particular application.  

For quantifying the Trajectory Uncertainty, various methods 
have been used. Rudnyk et al. [12] estimated prediction 
uncertainty for a LAT of 20 min with a Monte-Carlo simulation 

based on surveillance data sets (Automatic dependent 
surveillance-broadcast, ADS-B), where along-track errors of up 
to 18 NM and vertical-track errors up to 13,000 ft have been 
observed. Chatterji et al. [13] analyzed the impact of wind and 
temperature on the resulting Trajectory Uncertainty with Taylor 
Series expansions. Other model-based studies include Monte-
Carlo simulation [14], [15], Polynomial Chaos Expansions [16], 
[17] and Bayesian Network theory [18].

C. Uncertainty Sources

Uncertainty Sources are the factors that induce the
paramount part of the Trajectory Uncertainty. All state variables 
and other input to the TP are uncertainty sources if the exact 
value is not known. Typically, Uncertainty Sources are 
categorized as follows [19]: 

 Forecast uncertainty: Uncertainties in the atmospheric
modeling, especially wind speed and direction;

 Initial condition uncertainty: current state variables of the
aircraft, e.g. gross mass;

 Intent uncertainty: control paradigm of the aircraft, e.g.
intended cruise speed;

 Flight technical errors: inaccuracies in the flight control;
 Modeling errors, e.g. aircraft performance characteristics.

Understanding the stochastic characteristics of a certain
Uncertainty Source and the resulting impact on the TP is the key 
to model the Trajectory Uncertainty from the source perspective. 
When analyzing the Trajectory Uncertainty of climbing aircraft, 
the calculation of the rate of climb 𝑅𝑂𝐶 provides insight into the 
Uncertainty Sources in question. It contains the thrust force 𝑇, 
the drag force 𝐷, the 𝑇𝐴𝑆, the gross mass 𝑚, the gravitational 
acceleration 𝑔 and the change in 𝑇𝐴𝑆 depending on the altitude 
𝑑𝑇𝐴𝑆 𝑑ℎ⁄  [6]:  
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First, the gross mass 𝑚  is an Uncertainty Source that 
consists of the Actual Take-Off Mass uncertainty and fuel flow 
uncertainty (mass reduction during flight). The impact of the 
gross mass 𝑚 has been analyzed as a part of FDR analysis [20], 
analytically [21], and in simulation studies [1], [14], which 
overall highlights its significance for climbing aircraft. 
Furthermore, the actual gross mass 𝑚 remains an Uncertainty 
Source even if one would assume transmitting the mass via data 
link [22], since the actual take-off mass is never measured and 
therefore is only available as an estimate onboard.  

Second, the "speed intent" is an Uncertainty Source. It is 
complex to model since it cannot be assumed that an aircraft 
climbs with a constant 𝑇𝐴𝑆. Instead, aircraft climb either with a 
constant 𝐶𝐴𝑆  or constant Mach number 𝑀, depending on the 
current altitude and the local atmospheric conditions 
(temperature 𝑇  and, for 𝐶𝐴𝑆  only, air pressure 𝑝  and 
atmospheric density 𝜌) [6]: 

𝑇𝐴𝑆CAS = ቈ
ଶ

ఓ



ఘ
ቊ൬1 +

బ


ቀ1 +

ఓ

ଶ

ఘబ

బ
𝐶𝐴𝑆ଶቁ

ଵ ఓ⁄

− 1൨൰
ఓ

− 1ቋ

.ହ

with: 𝜇 = (𝜅 − 1)/𝜅 (2) 

𝑇𝐴𝑆Mach = 𝑀 ∙ √𝜅𝑅𝑇 (3)



 

 

The equivalent 𝑇𝐴𝑆 for constant 𝐶𝐴𝑆 (red) and constant 𝑀 
(blue) depending on the altitude are shown in Fig. 2. For the 
graph, the atmospheric conditions have been simplified to the 
International Standard Atmosphere (ISA), which assumes a 
linear decrease in temperature below the tropopause and, thus, 
suggest an almost-linear dependency between Mach number and 
equivalent 𝑇𝐴𝑆: 

 
Fig. 2: Equivalent True Air Speed for constant Calibrated Air Speed (CAS) 
from 250 kt to 350 kt (red) and constant Mach number from 0.6 to 0.8 (blue) 
depending on the altitude under ISA conditions. The cross-over altitude is 
located where the blue and red line of the selected speed intent intersect. The 
green line indicates a typical speed profile for a climbing aircraft. 

In consequence, the speed intent during the climb is 
segregated into two major phases: In the first phase with 
constant 𝐶𝐴𝑆, the aircraft accelerates continuously with respect 
to the equivalent 𝑇𝐴𝑆. In the second phase with constant 𝑀, the 
aircraft decelerates until it reaches the tropopause. The transition 
between acceleration and deceleration occurs at the cross-over 
altitude, where the selected 𝐶𝐴𝑆  and 𝑀 yield the same 
equivalent 𝑇𝐴𝑆. Thus, the cross-over altitude depends on the 
selected speed intent combination. These subjacent uncertainty 
sources result in an uncertainty in the cross-over altitude, which 
then increases the overall Trajectory Uncertainty due to the 
variety of observed speed intents.  

Third, the thrust intent impacts the actual thrust force 𝑇 and 
therewith the resulting rate of climb and the acceleration to the 
selected speed intent. Here, it is assumed that an aircraft uses its 
maximum climb thrust (MCMB) [6]; thus, no direct thrust intent 
uncertainty is considered. However, the resulting thrust is also 
influenced by the temperature, the air pressure, and the 𝑇𝐴𝑆. 

Finally, the drag force 𝐷 depends on the aircraft type, which 
is provided by BADA [6], and the 𝑇𝐴𝑆  of the aircraft. 
Uncertainties in the drag polar itself are not considered here. 
Likewise, the gravitation acceleration 𝑔 is constant, but the 
change due to the altitude is included in the geopotential altitude 
modeled by BADA. Intent Uncertainties other than the speed 
intent are excluded as well. It is assumed that a change in the 
lateral flight intent, whether it is desired by the flight crew, 
happens as a flight technical error or is instructed by the 
controller, will trigger a re-start of the TP. 

D. Inference of State Variables 

Since the discussed Uncertainty Sources, gross mass and 
speed intent, are not observed by the flight tracking, the actual 
value must be inferred. Reference [23] used an adaptive 
algorithm that adjusts a modeled mass in every successive TP 
based on the observed energy rate by reducing the difference to 

the modeled energy rate. This method was compared with a 
method, which estimates the mass by minimizing the quadratic 
error of the observed energy rate [24]. These analytical solutions 
reduce the TP error; however, do not provide an input PDF that 
could be used for a stochastic TP. Furthermore, most models 
estimate only one state variable because the number of unknown 
variables quickly increases when estimating multiple state 
variables, which requires more simplifying assumptions. 

To overcome these disadvantages, various machine learning 
methods have been applied to the inference of state variables. A 
Kalman filter has been used to determine the 𝑇𝐴𝑆 and the wind 
components based on the observed ground speed derived from 
radar data [25]. Various estimation methods for the initial mass 
have been combined by using Bayesian inference [26]. 
Reference [2] trained a neural network with ADS-B data of 
climbing aircraft, which then provides PDFs for the speed intent 
( 𝐶𝐴𝑆 1  below FL 100, 𝐶𝐴𝑆 2  until cross-over altitude and 
Mach number 𝑀) as well as for the equivalent mass 𝑚. In [27] 
the recursive Bayesian method called particle filtering is applied 
to estimate mass and thrust of climbing aircraft. Some machine 
learning methods, like the neural network, provide PDFs for the 
inferred state variables, which then are usable as input PDFs to 
a stochastic TP, as discussed in previous research [1]. Here, the 
work in [2] is used as input to our analysis. 

III. METHODOLOGY 

A. Trajectory Prediction with Stochastic Input Variables 

To analyze the resulting Trajectory Uncertainty to form a 
Cause-and-Effect model, a Monte-Carlo simulation is 
performed with COALA. It calculates predictions of climbing 
aircraft with 𝐿𝐴𝑇 = 600 s based on real flight data as well as 
inferred mass and speed intent PDFs provided by the neural 
network [2]. A non-disrupted climb is assumed, so the flight 
intent, other than the speed intent, is simplified to "continue 
climb". The simulation is conducted for six different aircraft 
types. For each aircraft type, the input data is segregated into 
segments of the same climb phase, which contain a varying 
number of prediction points with a temporal spacing of 15 s. For 
each of the prediction point, 𝑁 = 4,000 different values for the 
mass and speed are sampled to calculate a prediction set. 10,000 
prediction points per aircraft type, so 60,000 prediction points in 
total, each with 4,000 individual TPs are calculated. This data 
hierarchy is shown in Fig. 3: 

 
Fig. 3: Hierarchy of the data for the study, for each aircraft type multiple sets 
of segments i consist of j prediction points. A prediction set is calculated for 
each prediction point j with N = 4000 sampled aircraft states. 

The simulation of each prediction set (see Fig. 4) uses the 
deterministic aircraft state variables and parameters of the 
Normal-distributed input PDFs from the neural network. With 
sampled values from the input PDFs, a climb phase is calculated 
with COALA, where altitude, 𝑇𝐴𝑆  and still air distance are 
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logged every 15 s until LAT. These observations are collected 
for the entire prediction set for further analysis.  

 
Fig. 4: Principle of the simulation for a single prediction set: The neural 
network components (grey, see [2]) provides state variables and input PDFs to 
simulate a set of stochastic trajectories (prediction set). Using the prediction set, 
the Trajectory Uncertainty is calculated and evaluated. 

The assessment is done in stages starting with the analysis of 
all prediction sets of each aircraft type, for each segment, and 
finally for single prediction sets. Trial runs of several prediction 
sets have been conducted beforehand to determine the necessary 
number of predictions 𝑁 per prediction point. For increasing 𝑁, 
the mean values of the observed 𝑇𝐴𝑆 and altitude have been 
calculated. For 𝑁 ≥ 3000,  the mean values remain almost 
constant (cf. Fig. 5). Thus, the number of predictions per 
segment is set to 𝑁 = 4000. 

 
Fig. 5: Analysis of the observed mean True Air Speed and mean altitude 
depending on the number of predictions in the Monte-Carlo simulation, which 
converges to a constant value for more than 4000 runs. 

B. Modeling of the Uncertainty Sources 

The Uncertainty Sources modeled in this study are the mass 
and the speed intent using the output of a neural network. This 
neural network described in [2] models the conditional 
probability of the unknown state variables (𝑚, 𝐶𝐴𝑆 1, 𝐶𝐴𝑆 2 
and 𝑀) given the observed radar track of the considered flight. 
This information contains, for instance, the past points of the 
considered flight and forms the input of the neural network. Its 
output is the expected values 𝜇 and standard deviation 𝜎 of 𝑚, 
𝐶𝐴𝑆 1 , 𝐶𝐴𝑆 2,  and 𝑀 . These predicted 𝜇 and 𝜎  parameterize 
Normal distributions to model the uncertainty concerning these 
missing state variables. This neural network uses the trajectory 
data set described in [28]. It was trained on ten months of this 
data set and tested on two months. In this paper, using these two 
months of data, we compute the trajectory uncertainty using the 
mass and speed intent PDFs predicted by the neural network. 
These PDFs form the input of COALA.  

The mass PDF describes the initial mass 𝑚 at the beginning 
of the prediction point and is subject to mass reduction due to 
fuel burn. The speed intent is divided into 𝐶𝐴𝑆 1 and 𝐶𝐴𝑆 2 due 
to operational constraints, since the maximum speed is limited 
to 250 kt CAS below FL 100. Above the cross-over altitude, a 
third PDF for 𝑀describes the speed intent. As shown in Table 1, 

the initial state includes additional deterministic variables: the 
aircraft type, the current altitude, and 𝑇𝐴𝑆  of the aircraft. 
Furthermore, a temperature profile is required for the speed 
conversion (cf. Equations (2) and (3)) and the flight performance 
calculation. This is derived from the Global Forecasting System 
(GFS) and has been extracted and prepared for the Neural 
Network. Since a Normal distribution is unbounded, values may 
be sampled that exceed the aircraft's limitations (below 
operating empty mass OEM, above maximum take-off mass 
MTOM, above maximum operating speed VMO or above 
maximum operating Mach number MMO). COALA is designed 
to reject such input to remain within the boundaries of the 
polynomial functions provided by BADA. Therefore, the 
sampling is checked in the analysis to ensure correct input PDFs. 
New random numbers are generated until 𝑁 = 4000 acceptable 
samples are provided. 

TABLE 1: INPUT DATA PROVIDED FOR EACH PREDICTION SET 

Variable Type Source 

Aircraft Type deterministic ADS-B [4] 

Altitude deterministic ADS-B [4] 

Current 𝑇𝐴𝑆 deterministic ADS-B [4] 

Temperature Profile deterministic GFS 

Mass 𝒩(𝜇, 𝜎) Neural Network [2] 

Speed Intent 𝐶𝐴𝑆 1 𝒩(𝜇CAS1, 𝜎CAS1) Neural Network [2] 

Speed Intent 𝐶𝐴𝑆 2 𝒩(𝜇CAS2, 𝜎CAS2) Neural Network [2] 

Speed Intent Mach 𝒩(𝜇Mach, 𝜎Mach) Neural Network [2] 

For a given speed intent, the actual speed observed at a given 
time depends on 𝑚, because it affects the climb rate, which then 
has a direct impact on the time until a change in the speed occurs. 
Furthermore, the combination of 𝐶𝐴𝑆 2  and 𝑀 changes the 
cross-over altitude, which adds another uncertainty to the time 
for the second speed intent change besides 𝑚. With that in mind, 
these uncertainty sources are interdependent and time-lagged 
(cf. Fig. 6). Therefore, it is not reasonable to assess one 
uncertainty after another (i.e. local sensitivity analysis). Instead, 
a global sensitivity analysis is performed. 

 
Fig. 6: Example of five trajectories with an A320 (left), where the speed intent 
transitions from CAS 1 to CAS 2 and Mach are clearly visible (right). The pink 
trajectory has a higher CAS 2 and a lower Mach number, which leads to a 
shallower climb in the CAS 2 phase that is compensated with a steeper climb 
after the lower cross-over altitude and Mach number compared to the set.  

C. Flight Performance Model 

The flight performance model COALA [3] has been 
developed for multi-criteria trajectory optimization with 
numerous target functions, where it has been used for air traffic 



 

 

density assessment of freely optimized trajectories [29], flight 
planning [30] and inflight optimization [31], among others. It 
uses the BADA aircraft model files [6] (version 4 preferred, 
version 3 otherwise) for the calculation of drag, thrust, and fuel 
burn, but it facilitates a considerably extended approach using a 
proportional–integral–derivative (PID) controller to control 
acceleration and climb rate via the lift coefficient. For this study, 
COALA is extended to calculate trajectory segments for the TP 
with non-optimal target functions, e.g. constant 𝐶𝐴𝑆 or 𝑀. 

D. Analysis Methodology 

Before the resulting trajectory uncertainty, the probabilities 
of exceeding the aircraft limitations are assessed with the input 
PDFs for 𝐶𝐴𝑆 1 , 𝐶𝐴𝑆 2 , 𝑀 , and 𝑚  at each prediction point. 
This is an indicator of deviations from the intended normal 
distribution due to the aircraft limitation considered by COALA. 
For the resulting trajectory uncertainty, we first assume 
normality and apply the Shapiro-Wilk test [32] with a 
significance level 𝛼 = 0.05  to the observations of the VTU 
(altitude at LAT), ATU (still air distance at LAT), 𝑇𝐴𝑆 at LAT 
and the resulting cross-over altitude. Due to the non-linear 
dependencies, a total acceptance of the tests cannot be expected. 
Therefore, the analysis is then extended to Alpha, Beta, Chi and 
Gamma distributions. The Python library SciPy [33] is used to 
fit these PDF types with the Maximum Likelihood Estimate 
(MLE), while the best fit among the distributions is selected 
using the minimum Sum of Squared estimate of Errors (SSE). 
Furthermore, an assessment of all prediction points is conducted 
to understand the progression of the Trajectory Uncertainty over 
time. Here, some selected examples of significant prediction 
points are presented. Finally, the resulting Trajectory 
Uncertainty at LAT is compared to the actual altitude 𝑦 of the 
radar tracks. To understand the applicability of the Trajectory 
Uncertainty and to compare the performance of an entire 
prediction set the relative altitude error 𝑒ఙ,்  is calculated by 
normalizing the deviation of the radar track to the observed 
standard deviation 𝜎் of the VTU of each prediction point 

 𝑒ఙ,் = (𝑦 − 𝜇்) ∙ 𝜎்
ିଵ (4) 

IV. RESULTS 

A. Analysis of the Prediction Input 

First, 𝜇 and 𝜎 of the input PDFs are used to compute the 
probabilities for speed intents and masses that exceed the aircraft 
type's limitations. For 𝐶𝐴𝑆 1, the probability of exceeding VMO 
is very low for all aircraft types and prediction points, as shown 
in Fig. 7. This is in line with the speed limit of 250 kt CAS below 
FL 100, which is well below VMO and correctly recognized by 
the neural network. In Fig. 8 a slight increase in the probability 
is visible for 𝐶𝐴𝑆 2, which still remains below 0.5% for most 
prediction points. Fig. 9 shows another increase in the 
probabilities for invalid values of 𝑀, where 5% to 40% of the 
prediction points exceed MMO with more than 0.5% 
probability. For 𝑚, cf. Fig. 10, the probabilities to exceed the 
MTOM are more than one order of magnitude higher compared 
to all speed intents. Especially for A332, CRJ9, and E190, the 
probability to exceed the MTOM is above 25% for up to one-
third of the prediction points, reaching up to a 99% probability 
in some rare cases. 

 
Fig. 7: Probabilities for the Calibrated Air Speed below FL 100 (CAS 1) to 
exceed the maximum CAS for each prediction point by aircraft type. It is very 
unlikely to exceed the CAS 1 because of the speed limit of 250 kt CAS below 
FL 100, which is correctly detected by the neural network. 

 
Fig. 8: Probabilities for a Calibrated Air Speed above FL 100 (CAS 2) to exceed 
the maximum CAS for each prediction point by aircraft type. The probabilities 
slightly increase in comparison to CAS 1 in Fig. 7, but still remain below 0.5%. 

 
Fig. 9: Probabilities for a Mach number above the maximum Mach number for 
the aircraft type for each prediction point. Compared to the Calibrated Air 
Speed in Fig. 7 and Fig. 8, the probabilities are higher for the Mach number. 

 
Fig. 10: Probabilities for a mass above the maximum take-off mass for each 
prediction point by aircraft type. Compared to the other uncertain inputs, the 
mass has a high probability for values outside the aircraft limitations, especially 
for the aircraft types A332, CRJ9, and E190. 



 

 

Since COALA rejects any value above the limitation of the 
aircraft type, the normal distribution might be cut in the 
sampling for the Monte-Carlo simulation. Based on this 
analysis, the probability for cuts in the speed intents (𝐶𝐴𝑆 1, 
𝐶𝐴𝑆 2, and 𝑀) are very unlikely. For 𝑚, however, an impact of 
the cut input PDF must be expected. 

B. Analysis of the Trajectory Uncertainty 

To begin, the trajectory uncertainty is assumed to be 
normally distributed. In Table 2, the results of the Shapiro-Wilk 
tests on the output sampling are shown. The percentage differs 
from aircraft type to aircraft type. For instance, the A332 has the 
second-lowest count of accepted VTU samples, but a high 
number of accepted ATU samples. This is correlated to the 
higher probability of masses above MTOM (see Fig. 10), which 
affects the VTU stronger than the ATU. Despite the two to three 
changes in the speed intent, 6% to 22.5% of the flights show a 
Normal-distributed 𝑇𝐴𝑆 at 𝐿𝐴𝑇 = 600 s. Moreover, the cross-
over altitude passes often, which is an indicator for the 
correlation between 𝐶𝐴𝑆 2 and 𝑀. 

TABLE 2: RESULTS OF THE SHAPIRO-WILK TEST FOR THE OUTPUT PDFS' 
SAMPLING FOR 10,000 PREDICTION SETS PER AIRCRAFT TYPE 

Aircraft 
Type 

Percentage of Normal-distributed Observations 

ATU VTU TAS Cross-over 

A319 8.0% 32.8% 14.5% 61.8% 
A320 5.1% 31.4% 6.0% 48.8% 
A332 31.3% 8.3% 14.3% 48.1% 
B738 0.7% 39.8% 17.9% 57.9% 
CRJ9 15.6% 13.0% 22.5% 50.4% 
E190 12.2% 13.0% 20.0% 53.4% 

The initial assumption of normally distributed output PDFs 
is then extended to a fitting for various other PDFs. Here, the 
Alpha, Beta, Chi, and Gamma distributions are selected based 
on the average shape of the output. Due to the high amount of 
data, the fitting is done automatically with SciPy [33] using 
MLE for the fitting itself and the minimum SSE for selecting the 
best fit among the distributions. For symmetrical samples, as 
shown in Fig. 11 for the ATU of a CRJ9, all selected PDFs 
provide a similar fit, with the Beta distribution being slightly 
better in this particular case. 

 
Fig. 11: Along-Track Uncertainty (ATU, still air distance in [NM]) for a CRJ9 
at 𝐿𝐴𝑇 = 600 s. In this case, the Beta distribution (orange, 𝛼 = 83.9 and 𝛽 =
38.7) provides only a slightly better fit than the other functions. 

As identified in the input PDF analysis, the A332 has a 
higher probability for masses above the MTOM. Especially for 
heavy aircraft like the A332, de-rated thrust is frequently used 
during climb when the aircraft load is low compared to the 
MTOM. With the initial assumption of MCMB, the neural 
network overestimates the real aircraft mass in consequence. 
This leads to a cut sampling of 𝑚 due to the aircraft limitations 
considered by COALA. Since 𝑚 has a significant impact on the 
climb rate, the VTU distribution is affected accordingly. Fig. 12 
shows the VTU for one of these cases, where a Gamma 
distribution provides a significantly better fit due to the positive 
skew of the samples. 

 
Fig. 12: Vertical-Track Uncertainty (VTU in [m]) of an A332 with high 
probabilities for masses above the aircraft limitation, where a significantly 
better fit is accomplished with the Gamma distribution (red, 𝛼 = 4.1) due to 
the positive skew of the samples. 

The overall results for the fitting obviously differ depending 
on the type of Trajectory Uncertainty but also depending on the 
aircraft type. For the ATU, the vast majority of prediction sets 
yields similar results for all aircraft types. Approximately 90% 
of the ATU at 𝐿𝐴𝑇 = 600 s  can be fitted with a Beta 
distribution. Unlike the ATU, the VTU does not provide a clear 
result, because it has to account for both skewed and symmetric 
cases. Between 40% (B738) and 60% (A320) of the VTU fit best 
to the Beta distribution, while Alpha, Gamma, and Normal 
distribution yield similar fits of approximately 10% of the 
prediction points per aircraft type. Only the Chi distribution 
seldom fits in less than 3% of the cases. For the TAS at 𝐿𝐴𝑇 =
600 s, the Beta distribution provides the best fit again for 58% 
to 76% of the prediction points for each aircraft type. 

As expected and shown in Fig. 18, Trajectory Uncertainty 
increases with LAT. For convenience, this study focusses on 
𝐿𝐴𝑇 = 600 s. 

C. Detail Analysis of Prediction Sets 

1) Case 1: A319 with normally distributed trajectory 
uncertainty 

This is a case of a prediction set with the aircraft type A319, 
where all Shapiro-Wilk tests on the output samples are accepted. 
As shown in Fig. 13 and Fig. 14, the ATU, VTU, cross-over 
altitude, and 𝑇𝐴𝑆 are all Normal-distributed. In addition, with 
Fig. 15, the input mass is correlated with the output altitude. 
With Fig. 16, the air distance is correlated with 𝐶𝐴𝑆 2. These 
correlations are in line with the intuition; a high mass means the 
aircraft climbs slower, and a high speed intent means the aircraft 
flies faster. However, as we perform a global sensitivity analysis 



 

 

(i.e. the other input variables are not constant), this shows that 
the randomness of the other input PDFs does not severely affect 
these expected correlations. 

 
Fig. 13: Frequencies for Vertical-Track Uncertainty (VTU [FL], left), and 
Along-Track Uncertainty (ATU [NM], right) for an A319 after 600 s LAT that 
passed the Shapiro-Wilk test for normality. 

 
Fig. 14: Frequencies for the resulting cross-over altitude (left, [FL]), and the 
True Air Speed at LAT = 600 s (right, [m/s]) for an A319 that passed the 
Shapiro-Wilk test for normality. 

 
Fig. 15: Observed altitude (left) and still air distance (right) depending on the 
sampled mass for the A319 after 600 s LAT. A Correlation between altitude 
and mass is clearly visible, whereas the flown air distance does not depend on 
mass. 

 
Fig. 16: Observed altitude (left) and still air distance (right) depending on the 
sampled speed intent CAS 2 for the A319 after 600 s LAT. As expected, a 
regression between air distance and speed can be detected, whereas altitude 
does not depend on speed. 

2) Case 2: A332 with a high probability above MTOM 

For the aircraft type A332, the analysis of the input PDFs 
showed a comparatively high probability of masses above the 
MTOM, which results in an asymmetrical sampling (left side of 
Fig. 17). The over-estimation in the mass is due to assuming 
MCMB, which is the highest thrust setting during the climb. 
Especially large aircraft, such as the A332, may use de-rated 
thrust instead.  

 
Fig. 17: Sampled masses from the input PDFs for the mass of the A332. On the 
left side, the input PDF has a high probability for masses above MTOM=242 
tons, so those values are refused by COALA. Accordingly, the Shapiro-Wilk 
test fails; the samples are not Normal-distributed. The right side shows a passed 
test of another prediction point for comparison. 

With the right tail missing in the mass distribution (left side 
in Fig. 17), one expects that the predicted trajectory uncertainty 
would over-estimate the rate of climb, leading to a steeper 
prediction compared to the actual radar track. In fact, the 
predicted VTU is shallower than the radar track, because the 
speed intent is over-estimated as well (cf. Fig. 18). 

 
Fig. 18: Altitude profile (left) and change in TAS (right) of the predicted 
Trajectory Uncertainty (pink) compared to the actual radar track (blue) for the 
prediction point of the asymmetrically sampled mass of the A332 in Fig. 17. 

3) Case 3: B738 with two modes in ATU 

The aircraft type B738 has the lowest count of passed 
Shapiro-Wilk tests for the ATU of only 0.7% (cf. Table 2). 
Further analysis of prediction points where all other tests have 
been passed revealed that the ATU histogram contains a second 
mode, as shown in Fig. 19. Therefore, the hypothesis of a 
Normal-distributed ATU is rejected. 𝐶𝐴𝑆 1 is usually smaller 
than 𝐶𝐴𝑆 2 and the equivalent 𝑇𝐴𝑆 of 𝑀 is usually smaller than 
the 𝑇𝐴𝑆 matching 𝐶𝐴𝑆 2. Thus, prediction points that fly a large 
part of the distance with 𝐶𝐴𝑆 2 will fly a greater overall distance 
than prediction points that fly mostly with 𝐶𝐴𝑆 1 or 𝑀. In this 
case, the Beta distribution provides a relatively better fit (orange 
line in Fig. 19). 



 

 

 
Fig. 19: Observed still air distance of the B738 at 𝐿𝐴𝑇 = 600 s for a prediction 
point where the Shapiro-Wilk test failed, with fitting for other probability 
density functions. The best fit for this Along-Track Uncertainty is the Beta 
distribution (orange, with 𝛼 = 695.97 and 𝛽 = 9.25). 

D. Comparison of the Trajectory Uncertainty with the Radar 
Tracks 

For comparing the radar tracks with the predicted 
uncertainty, the relative altitude error for all prediction points 
has been computed according to Equation (4). Fig. 20 shows the 
relative altitude error with respect to the observed standard 
deviation of the VTU for all aircraft types and all prediction 
points. The red line indicates the Required Navigation 
Performance (RNP) of 95% ≅ 2𝜎 [8], [9]. With regard to the 
VTU, most actual trajectories remain inside the assumed RNP 
boundary of the Trajectory Uncertainty. However, some flights 
exceed the boundary with significantly high values of up to 
10𝜎். 

 
Fig. 20: Relative altitude error of the radar data at 𝐿𝐴𝑇 = 600 s compared to 
the predicted Vertical Track Uncertainty relative to the observed standard 
deviation σ for all prediction sets of each aircraft type, with the RNP boundary 
of 95% ≅ 2𝜎 in red. 

V. CONCLUSION AND OUTLOOK  

This study showed that, in principle, the input PDFs can be 
used to predict the resulting output PDF of the Trajectory 
Uncertainty. However, a simple approach using Normal 
distribution to model the output PDF cannot be used since 
almost 80% of the Trajectory Uncertainty is not Normal-
distributed despite the moderate LAT of 600 s. Instead, a fitting 
with a Beta distribution is more suitable, since it accounts for 
possible skewness in the resulting Trajectory Uncertainty. 
Additionally, the assessment highlighted the sensitivity of the 
input PDFs. If the PDFs have a high probability for values 
outside the aircraft type's limitations and therewith outside of the 
polynomial functions provided by BADA, the resulting 
Trajectory Uncertainty is impaired as well. This is the case 

especially for the mass, which is based on the assumption of 
MCMB for the thrust.  

Finally, we have to note that wind uncertainty was not 
considered in this study. However, all predictions refer to the 
aerodynamic coordination system, see Equation (1). Therefore, 
altitude and 𝑇𝐴𝑆 profiles calculate here can be applied to the 
wind information. Furthermore, COALA is able to run the TP 
with GRIB2 weather data, if provided. 
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