Agent-based simulation for aircraft stand operations
to predict ground time using machine learning
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Abstract—Punctual and reliable aircraft ground handling
operations at the airports significantly contribute to efficient
traffic flows in the air traffic network. Any improved prediction
of aircraft ground times can help to reduce local delays and
delay propagation in the network by taking into account the
forecast of future operational states for adjusted planning and
delay mitigation strategies. In our work, we target to predict
aircraft ground times at their stands by machine learning
algorithms, where the complete turnaround sub-processes and
domain knowledge are input for the models. We develop two
types of models, the first type is regression-oriented that intends
to forecast the exact aircraft ground time. And the second one
is classification-oriented, which attempts to confirm aircraft off-
block time adherence. An agent-based approach is applied to
generate some synthetic data, besides, we also obtain an actual
aircraft ground handling dataset from a certain European airport
to validate our models. Finally, the interpretable method for
the machine learning models is used to analyse the feature
importances, and the feature affections on the prediction results.
The results show that our classification model is capable to
predict accurate aircraft off-block time adherence.

Index Terms—aircraft stand operations, airport collabora-
tive decision making, agent-based model, interpretable machine
learning, aircraft ground time prediction

I. INTRODUCTION

Efficient aircraft ground handling at airports is important
to ensure performance operations in the overall air traffic
network. Close cooperation between all involved stakeholders
(e.g., airport operators, airlines, ground handlers, air traffic
service providers) positively impacts the punctuality and pre-
dictability of the aircraft turnaround process. In the aviation
industry, it is consensus that each aircraft earns revenue only
when they are en-route [1]. The airlines thereby always expect
a maximum air time and minimal time for stand operations at
airports. A reliable turnaround process with a short duration
also assists the airports to arrange all the ground resources
smoothly.

Airport collaborative decision making (A-CDM) is a process
that consists of sharing information between stakeholders of
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the complex airport system to provide a common situational
awareness and to enable mutual strategies to solve operational
challenges. A-CDM was developed in establishing operational
milestones method for every joint arrival and departure aircraft
activity to improve the efficiency of airports and the air traffic
network [2]. With a focus on airports, A-CDM provides a
solution, which is generating cost reductions, environmental
benefits, capacity optimization, and efficiency improvements.
A performance-based airport environment enables to get full
A-CDM benefits (e.g. enhanced use of airport resources or
reliable scheduling) since airport stakeholders can collectively
work on (dynamically) the agreed performance targets during
the day of operations [3]. By giving airport stakeholders access
to data from different sources, airports are able to make
more accurate predictions about their operational progress
in the next planning horizon [4]. An integrated management
is embodied in an airport operations centre (APOC), where
all stakeholder operators co-ordinate tasks to monitor and
maintain the agreed performance targets in their respective
areas of responsibility [5].

The COVID-19 pandemic strongly influences the entire air
transportation industry. As the data collected by EUROCON-
TROL [6], yearly flights of 2020 fell 55% in comparison
to 2019. Meanwhile, the overall average delay per flight
decreased by 5.6 mins to 7.4 mins, where the reactionary
delay and primary delay per flight are 2.8 mins and 4.6
mins respectively. After the COVID-19 impacted aviation, the
unprecedented operational conditions appeared with the en-
route ATFM delays basically vanishing and COVID-19 related
delay causes becoming conspicuous. However, the abnormality
in air transportation is not durable and the aviation industry
is recovering from its former prosperity gradually. According
to the statistic of EUROCONTROL, it is estimated that 660
million euros are lost every year over their areas due to delays
generated by the turnaround.

The aircraft turnaround, as part of the aircraft trajectory
over the day of operations, has to be part of optimization



strategies for minimizing flight delays and ensuring flight
connection considering operational uncertainties. In this con-
text, reliable turnarounds depended on buffer time can absorb
inbound delays and could enhance slot adherence at airports or
mitigate problems of push-back scheduling [7]-[9]. Previous
research focuses on the critical path of the aircraft turnaround
and exhibits that both land- and airside processes can be
bottlenecks [10]. Whenever these processes are part of the
critical turnaround path, the effects could also propagate an
accumulating delay through the ATM network [11,12]. Investi-
gations on turnaround reliability show significant improvement
potentials in standardization, data quality and availability,
process design, integrated planning, and optimization, even
under COVID-restrictions [13]. The speed and extent, with
which data is shared, have massively increased over the
last years as well as the need for implementation of new
methods to evaluate this data that will further guarantee the
sustainability of the air traffic network. In the course of
increasing digitalization in almost all areas, airports are trying
to implement innovative approaches in their current operations
[14].

The paper is organized as follows. Section 2 provides insight
into the state-of-the-art and research objective, describing the
general aircraft stand operations and reviewing the previous
research. Section 3 explains the methodology used to realize
this research, introduces the available turnaround data and the
designed model in detail. In Section 4, the simulation results
and analysis are presented. Finally, Section 5 gives the main
conclusions and discusses potential future work on the subject,
as well as the utility of the study.

II. BACKGROUND AND MOTIVATION

The stand occupancy time of an aircraft is the duration
that the aircraft stops at its parking position, i.e., occupies
a remote apron position or a nearby gate at an airport. And
the turnaround time refers to the sum of all the activities of the
turnaround critical path and subjects to the ground handling
(GH) activities, which are recognized as the turnaround sub-
processes [15]. Turnaround is considered to finish when all
doors of the aircraft are closed, all ground support equipment
(GSE) is disconnected, the aircraft is ready to leave and the
chocks are removed [16].

A. Previous research

The critical path of the turnaround depicts the combina-
tion of all the sub-processes that determines the minimum
turnaround time. At tight flight schedules, where this ground
time is close to the minimal duration, mostly all processes
are parts of the aircraft turnaround which typically consists
of the parallel processes of cleaning, catering, fueling, and
the sequential processes of the passenger deplaning, boarding
as well as the baggage unloading and loading, as shown in
Fig. 1. Based on the structure of the turnaround critical path,
a model called GMAN (known as “Ground MANager”) was
proposed in [17] to obtain the total turnaround time. Monte

Carlo simulation was chosen to generate samples from the dis-
tributions of the stochastic turnaround sub-processes. A review
of the conducted studies on aircraft turnaround operations and
simulations was summarized in [18], which highlighted some
key challenges for the current aircraft operators, such as, the
airport capacity restrictions, the schedule interference, and the
increasing fee stress, and the corresponding solution attempts
were also introduced to improve the potential process.
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Fig. 1. Simple turnaround process.

The article [19] exhibited a multi-time scale ground han-
dling management structure for the automation of the aircraft
stand operations in order to improve the working efficiency
of the GSE. From the perspective of total airport management
(TAM), it provided two instructional heuristics of the GSE
assignment within the typical turnaround time. Another re-
search [20] built an agent-based model (ABM) to optimize
the number of GSE allocated for airport service planning.
In the real manufacturing environment, the multi-agent-based
approach can also set feasible working schedules using nego-
tiation/bidding mechanisms between agents [21,22].

At the current stage, data can be captured and analyzed from
many aspects of airport operations (i.e. weather impact [23])
which are used to monitor the system performance and to iden-
tify areas of improvement. It provides the opportunity to get
deeper insights into airport management by data analysis with
advanced machine learning methods. Some regression models
can estimate the turnaround duration, e.g., in [24] a flight
turnaround time prediction model was established based on
neural networks with these factors (including the aircraft stand,
the aircraft type, the domestic or international flight, airline
agent, the flight arrival time, the flight arrival and departure
passenger number) that quantitatively and qualitatively impact
the flight turnaround time, and the work [25] adopted support
vector machine regression to forecast the aircraft turnaround
time, which additionally considered the arrival delay and used
the Gaussian Radial Basis Function to select the optimal
parameters. Furthermore, a specific prediction model only
focusing on the turnaround sub-process, i.e., aircraft boarding
was implemented based on the Long Short-Term Memory
model. Since no operational data of the specific passenger



behavior is available, a reliable validated boarding simulation
environment was applied to provide data about the aircraft
boarding events [26]. With the interpretable Shapley values,
the full turnaround time prediction was able to be analyzed
on the importance of the available data, which would infer the
contribution of each sub-process to the total duration [27].

B. Research objectives

Actual A-CDM milestones do not provide any further
information about turnaround processes during the time be-
tween in-block and off-block, only the target off-block time
(TOBT) updating by the aircraft operator or the ground handler
until the final TOBT confirmation before the target start-
up approval time (TSAT) issue [2]. We target our research
on the prediction of aircraft ground times at their stands
using machine learning (ML) approaches, where the complete
turnaround sub-processes and some domain knowledge are the
model inputs. The final TOBT update indicates directly the
off-block time and its timestamp is ahead of the milestone
of passenger boarding so that if we can obtain the TOBT
adherence information at this time, it provides the notable time
horizon for the airports to improve the process management
on the operational/tactical level [3].

Many computer vision techniques have been used at air-
ports to monitor and collect information about the ongoing
turnarounds, which provides a huge convenience to all the
stakeholders on the airport real-time manual surveillance and
the collaborative decision making in APOC. Alternatively,
for the automatic turnaround sub-process identification, there
are still massive false detections and blank records made by
machines due to the nature of the computer vision techniques.
Thus, our research will firstly generate one synthetic dataset
by means of the generalized ABM for the aircraft’s ground
handling at their stand according to the actual data and the
domain knowledge. After that, we intend to develop and train
ML models for the prediction of the aircraft ground time using
the synthetic datasets and also validate the same ML models
against the actual turnaround data at one certain European air-
port. We only focus on the performance of the real dataset due
to data confidentiality. Finally, a TOBT adherence prediction
will be implemented with all the available information before
the A-CDM milestone of the final TOBT update.

III. RESEARCH DESIGN AND MODELING

In this section, the available turnaround data from a certain
European airport is introduced firstly. Then we generate the
comprehensive, synthetic duration data for the aircraft ground
handling activities by means of the ABM. In the following, the
used machine learning algorithms and the features importances
interpreting methods are described. Finally, the concrete model
building is shown.

A. Data structure

Nowadays, many airports have equipped the aircraft stand
monitoring system so that all the operations around the aircraft
can be supervised and recorded in APOC, which includes the

total ground handling activities. The actual dataset utilizing for
our research is collected between a busy time span of 2019.
It provides the normal operations data at a common airport
without the COVID-19 negative effects. We only focus on the
turnaround process, therefore, the data that presents the stand
occupancy overnight is omitted. Besides the actual turnaround
process records, the corresponding domain knowledge of each
aircraft is also included that differentiates between several
input factors, such as scheduled in-block and off-block time
(SIBT and SOBT), estimated in-block and off-block time
(EIBT and EOBT), TOBT, flight properties (e.g., the aircraft
type, the airline), arrival delay, or time conditions (e.g. time
of the day, month).

The actual available dataset collects 22,620 aircraft
turnaround processes, in which the sub-processes are formatted
to the start and end timestamps. Due to technical reasons, some
records are lacking. In Fig. 2, the nodes present the specific
number of each turnaround sub-process, and the edges describe
the connections between them, where one connection is built
when two sub-processes jointly belong to an exact turnaround
process. The strongest connections exist between deplaning
and boarding with 20,135 records. Contrarily, the 2,218 links
between unloading and catering are considered as the weakest
connections in this real dataset.
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Fig. 2. Actual available turnaround dataset.

B. Agent-based model

Even though the real dataset missed some records, it still
displayed the turnaround sub-processes distribution. Combin-
ing with the common structure of the turnaround, the agent
types within the proposed agent-based approach are designed
according to the GSE respective services. In this model, there
are seven types of agents that represent the seven recorded
sub-processes. They interact with each other under the fixed
sequence restrictions to rebuild the whole turnaround process
and generate the relative synthetic data.



The agent types and the reactive restrictions are presented
in Table I, which basically comply with the simple turnaround
process in Fig. 1. Two serial lines, which are from deplaning to
boarding and from unloading to loading, occur independently.
The total turnaround time 7" containing a set of GH activities
can be expressed as:

T = max (Ty, Tiz) + A, (1)

where T;; and T, are the operation time of the two serial
lines, start from deplaning and from unloading, respectively.
At represents the waiting time between the sub-processes due
to the increasing time available between the scheduled (actual)
operations, additional or idle processes can take place. The
detailed sub-process times are deriving from the available real
turnaround dataset, whose duration accords its own Normal
Distribution (u, o).

TABLE I
AGENT TYPES AND SEQUENCE RESTRICTIONS

Agent type Sequence restrictions

Deplaning agent (Ramp) Start after in-block time

Start after in-block time,

Unloading agent (Tractor) roughly parallel with deplaning

Cleaning agent (Cleaning vehicle) Start after deplaning

Start after deplaning,

Catering agent (Catering vehicle) almost parallel with cleaning

Start after deplaning,

Fuelling agent (Fuelling truck) almost parallel with cleaning

Loading agent (Tractor) Start after unloading independently

Start after the longest sub-process

Boarding agent (Ramp) (Catering, Cleaning, Fuelling)

C. Machine learning with interpretable methods

Thanks to the tremendous enhancement from the modern
hardware computing power, the machine learning algorithms
are applied to predict future data and behavior, though the
underlying mechanisms are not understood fully [28]. To
handle the stochastic turnaround process, three ML techniques
have been adopted and implemented in Python with the two
powerful machine learning libraries, scikit-learn [29] and XG-
Boost [30]. These three algorithms are all tree-liked models,
which are Decision Trees, Random Forests, and XGBoost.

A decision tree is a supervised learning method that tests
each attribute under a series of given conditions, shunts to
different branches, and finally shunts to the leaf nodes of the
decision tree to get the final result, whose basic process follows
the divide and conquer strategy [31]. Random forest is an
ensemble algorithm, which belongs to the Bagging type. By
combining multiple weak classifiers, the final result is voted
or averaged, so that the result of the overall model has higher
accuracy and generalization performance. It can achieve good
results mainly due to “random” and “forest”, one makes it
resistant to overfitting, and the other makes it more accurate
[32]. XGBoost (eXtreme Gradient Boosting) is an optimized
distributed gradient tree boosting system designed to be highly
efficient, flexible, and commodious. This gradient boosting

framework means multiple models are built sequentially that
each model tries to improve the performance of the previous
one [33].

The interpretable ML can prevent the model biases and
help the decision-makers understand how to use the model
correctly. In some rigorous scenarios, such as the aircraft
ground time prediction, the model needs to provide evidence
to prove how it works and avoid errors. The traditional feature
importances assessment only tells which feature is important,
but it does not show how the feature affects the prediction
result. Besides the feature importance assessment, we choose
the SHapley Additive exPlanations (SHAP) as the variable
evaluation method additionally in our research, whose biggest
advantage is that SHAP can have an influence on reflecting the
characteristics of each sample, and it also shows the positive
and negative characteristics of the influence [34].

D. Model description

In this paper, we build the prediction models in two types.
The first type is regression-oriented that intends to forecast
the aircraft ground time. And the second one is classification-
oriented, which attempts to confirm the TOBT adherence.
Table II summarizes the created six datasets for both regres-
sion and classification models, which comprise one synthetic
dataset and five real datasets.

1) Aircraft ground time prediction: In Table II, the first
four datasets are the synthetic dataset, Dataset 1, Dataset 2,
and Dataset 3 that will be the inputs of the regression models,
where the synthetic dataset has 30,000 groups of the gener-
ated turnaround data according to our designed agent-based
approach. Each turnaround data only contains the duration of
the sub-processes. The predicted off-block time (OBT) will
be compared with the synthetic OBT. Dataset 1 represents
the available actual turnaround records that have the same
input types as the synthetic dataset. Dataset 2 is Dataset 1
with the corresponding domain knowledge, i.e., airline, aircraft
type, scheduled stand occupancy, and arrival delay, where the
categorical data (airline and aircraft type) has been transferred
to the numerical data, the scheduled stand occupancy is known
as SOBT - SIBT, and the arrival delay can be obtained by
AIBT - SIBT, where AIBT is the actual in-block time. Due to
that the sub-process data in the first three datasets only presents
the duration values, it doesn’t provide any turnaround process
sequential information to the model. However, the relative start
and end of each sub-process can be calculated by choosing
AIBT as the starting point. Then these calculated data can
describe the sequential information of the turnaround process.
For example, in Dataset 3 the deplaning is not the duration
value anymore and it is divided into two values, which are the
“First PAX Off” and the ”Last PAX Off”.

In order to ensure the reasonable prediction based on the
aircraft stand operations as much as possible, we only add
these four domain data inputs from the real turnaround records,
which imply the OBT information rarely.

2) TOBT adherence confirmation: We target to forecast the
TOBT accuracy at the A-CDM milestone of the final TOBT



TABLE II
DATASETS OF THE MODELS

Datasets for aircraft ground time prediction Datasets for TOBT adherence confirmation

Feature variables Synthetic dataset!  Dataset 11  Dataset 2!  Dataset 32 Dataset 4! Dataset 52
Deplaning X X X X X X
Unloading X X X X X X
Cleaning X X X X X X
Catering X X X X X X
Fuelling X X X X X X
Loading X X X X X X

Boarding X X X X

Airline X X X X
Aircraft type X X X X
Scheduled stand occupancy X X X X
Arrival delay X X X X
Estimated arrival difference X X
Estimated stand occupancy X X
Daytime of AIBT X X
Absolute AIBT X X
Month X X

1 Un-sequential sub-processes; 2Sequential sub-processes.

update and any aircraft stand operations data obtained before
this final update can be set as the model inputs. In the A-CDM
implementation manual [2], this milestone is determined ahead
of the boarding starting and there are no concrete relations
with other turnaround sub-processes. Thus, at this milestone
except boarding, we consider other stand operations done.
Dataset 4 and Dataset 5 in Table II include all the feature
variables for the TOBT adherence confirmation. Currently, the
sub-process boarding is excluded because it occurs after this
moment, whereas all the domain information has been already
received at the TOBT update milestone. The estimated arrival
difference is calculated by AIBT - EIBT, and the estimated
stand occupancy means EOBT - AIBT. Furthermore, the AIBT
has changed into the accumulated value in minutes counting
from 0 o’clock. The daytime of AIBT represents the aircraft
landing in the early morning, morning, afternoon, evening, and
night of the day.

Dataset 4 and Dataset 5 are differentiated with the unse-
quential and sequential sub-processes, whose domain knowl-
edge is equal. The TOBT accuracy is obtained from TOBT -
AOBT, which we further split the values according to Table
III. Then the seven TOBT adherence levels are the designed
outputs for the classification models, in which the level interval
is 10 mins.

TABLE III
TOBT ADHERENCE LEVELS

TOBT adherence level | Value interval (min)

Ultra delay (—o0, -25]
High delay [-25, -15)
Low delay [-15, -5)

Good match [-5, 5)

Low forward [5, 15)

High forward [15, 25)

Ultra forward [25, +o0)

IV. SIMULATION RESULTS AND ANALYSIS

The simulation results of the regression and classification
models are discussed separately in this section. We always split
30% of the total dataset as the test data in every prediction,
therefore, the remaining 70% is the train data.

A. Results of the aircraft ground time prediction

In Fig. 3, we adopt the standard deviation to estimate the
aircraft ground prediction. It shows that the XGBoost based on
the four datasets always owns the minimal prediction standard
deviation. The data types of the synthetic dataset and Dataset 1
are the same, but the synthetic data performs much better. This
is because the synthetic data is more ordered, though there is
a similar data structure supporting the real stand operating
dataset, the realistic turnaround process is still stochastic that
is affected by many factors at the airport, such as weather or
limited service resources. After adding the domain knowledge
with the unsequential sub-process duration data in Dataset 2,
and then with the sequential turnaround data in Dataset 3,
the standard deviation value is decreasing from 7 min to a
minimum of nearly 4.5 min.

Table IV records the feature importances derived from
XGBoost concretely, which has the best prediction results in
regression. Comparing these values in these four datasets, we
discover that boarding is often weighted in the highest, and
loading also has the notable feature importance. Therefore,
it’s inferred that these last two sub-processes express more
information than others because they are commonly closed to
the end of the turnaround process. In Dataset 3, the feature
importance of the boarding end is 0.625, which can be under-
stood that this time point depicts the OBT basically so that the
prediction model relies on this data most. Besides boarding
and loading in Dataset 2, the scheduled stand occupancy
and arrival delay also impact the prediction strong, where
the sum of these two values is the available aircraft ground
time that sometimes the airport coordinators expect the actual



TABLE IV
FEATURE IMPORTANCES DERIVED FROM XGBOOST IN REGRESSION AND RANDOM FORESTS IN CLASSIFICATION

Importances from XGBoost regression Importances from random forests classification
Feature variables Synthetic dataset Dataset 1  Dataset 2 Dataset 3! Dataset 4 Dataset 5'
Deplaning 0.148 0.071 0.054 (0.012, 0.014) 0.059 (0.039, 0.042)
Unloading 0.133 0.062 0.036 (0.016, 0.013) 0.040 (0.030, 0.028)
Cleaning 0.068 0.094 0.052 (0.014, 0.014) 0.058 (0.029, 0.041)
Catering 0.069 0.113 0.032 (0.016, 0.018) 0.032 (0.019, 0.024)
Fuelling 0.073 0.118 0.057 (0.016, 0.023) 0.062 (0.033, 0.043)
Loading 0.118 0.213 0.169 (0.017, 0.080) 0.078 (0.055, 0.070)
Boarding 0.387 0.326 0.122 (0.032, 0.625)
Airline 0.072 0.023 0.035 0.028
Aircraft type 0.080 0.027 0.033 0.026
Scheduled stand occupancy 0.157 0.014 0.023 0.018
Arrival delay 0.164 0.018 0.134 0.112
Estimated arrival difference 0.067 0.049
Estimated stand occupancy 0.182 0.167
Daytime of AIBT 0.024 0.016
Absolute AIBT 0.105 0.076
Month 0.062 0.043

IIn Dataset 3 and Dataset 5, the two recorded feature importance values for the sub-processes are formatted by (process start, process end).
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Fig. 3. Standard deviations for the regression models.

turnaround duration able to match with this available value by
adjusting the airport resources.

B. Results of the TOBT adherence confirmation

As we designed, all the available data before the A-CDM
milestone of the TOBT final update is inputted to predict
the TOBT adherence, which results in the prediction model
absorbing the maximal accessible information. In Fig. 4, we
note that all the classification accuracy values are at least 83%.
The best accuracy based on the random forests method is
nearly 95%. The similar good results of Dataset 4 and Dataset
5 indicate that in the classification model the unsequential
or sequential sub-processes are not the critical input data.
Making a detailed review on the feature importances of the
best performed random forests model for both datasets in
Table IV, we observe that the important values about the
sub-processes are totally small. On the contrary, the available
time-related information shows high importance, which are the
arrival delay, the estimated stand occupancy, and the AIBT.
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Fig. 4. Accuracy for the classification models.

In addition, we analyze the SHAP values of the model
XGBoost based on Dataset 4. Fig. 5 visualizes the TOBT
adherence related to the total feature importances and feature
effects, and it exhibits the same results of the high importance
features as that shown in Table IV. But in the model, the
maximum mean SHAP value referring to the estimated stand
occupancy is at least two times bigger than the second value.
The following Fig. 6 plots the SHAP values only for the
category of Good match [-5, 5). In this SHAP summary plot,
the SHAP value of each feature for each sample is in a density
scatter graph, which can help to understand the overall pattern
and allow the discovery of the predicted outliers. The x-axis
is the SHAP value for every single feature, and the color
represents the characteristic value (red is high, and blue is
low). In this picture, we observe that the scheduled stand
occupancy is positively related to the TOBT good adherence.
When the scheduled time is loose, all the activities can follow
the operation process easily. However, the first three main
features are negatively related to this TOBT adherence. The
longer the estimated stand occupancy time is, the harder the



turnaround process finishes in time, which means that there
are too many operations needing to process, thus, it’s difficult
for the aircraft to take off as planned. The long arrival delay
refers to the short available ground handling time reflecting
that the operation schedule is too tight to follow. Big absolute
AIBT states that the plane arrives late in the time of day
when the airport crew is off work that there are not many
human resources serving. Last but not least, the turnaround
sub-process fuelling also shows the strict negative relationship,
because fuelling is normally part of the turnaround critical path
that the short fuelling duration always ensures efficient aircraft
stand operations.
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Fig. 5. Summarized mean absolute SHAP values on Dataset 4.
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Fig. 6. Density scatter plot of the SHAP values only for the category of good
TOBT adherence on Dataset 4.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we firstly implemented an agent-based ap-
proach to generate the comprehensive and synthetic ground
handling data that was used to predict the aircraft stand
time only based on the clean turnaround sub-processes du-
ration. Then the same machine learning regression models
were applied on the actual ground handling datasets with

the increasing information inputs. We saw that the prediction
results of the regression models also got better accordingly.
After that, a TOBT accuracy prediction model by means of
the classification methods was developed to confirm the TOBT
adherence at the A-CDM milestone of the final TOBT update,
which can achieve 95% prediction accuracy in the highest.
Meanwhile, the machine learning models were also interpreted
with SHAP values. It ensured the model transparency with
the available feature importances and the feature affections on
the prediction results. This model can be embedded into the
APOC so that all the stakeholders at airports are able to benefit
from the believable aircraft ground time prediction. And fluent
airport operations can also benefit the air traffic network.

The regression models in our research have some short-
comings. Many reasons can contribute to this, such as data
lacking, limitations of the models, etc. The issues will be
deeply researched in the future. Besides, at the current stage,
the generated synthetic dataset is only basically providing the
turnaround sub-processes data. We will focus on developing a
more efficient and realistic agent-based model to simulate the
complex turnaround process, which hopefully could facilitate
the total airport management as well.
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