

Faculty of Traffic Sciences Chair of Traffic Flow Science

Extending Periodic Event Scheduling by Decisional Flow Transportation Networks

Peter Großmann, Jens Opitz, Reyk Weiß, Michael Kümmling

peter.grossmann@tu-dresden.de

Glasgow, 07/14/2015

2 Periodic Event Scheduling

3 Flow Decision Periodic Event Scheduling

Outline

4 Periodic Rail Freight Planning

Introduction

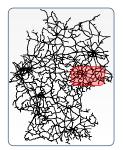
- timetabling of public transport railway networks (e. g., PESP) is difficult to be calculated automatically (*NP*-complete)
 - \rightarrow no existence of "default" software
- SAT solvers are universally applicable to real world problems
- best approach:

 $\mathsf{PESP} \text{ instance} \rightarrow \mathsf{PESP} \leq_p \mathsf{SAT} \rightarrow \mathsf{SAT} \text{ solver} \rightarrow \mathsf{SAT} \text{ solution} \rightarrow \mathsf{PESP} \text{ schedule}$

Problem Sizes with Same Computation Time

manual effort

previous state-of-the-art solver



new approach (SAT)

max: 20 nodes, 40 constraints

600 nodes, $3\,000$ constraints

 $15\,000$ nodes, $80\,000$ constraints (up to $1\,000\,000$ constraints)

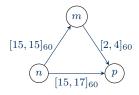
Possible Extensions

new approach (SAT)

15 000 nodes, 80 000 constraints (up to 1 000 000 constraints)

- extracting and resolving infeasible periodic event networks (local conflicts)
- flow and decision periodic event scheduling (FDPESP)
 - non-connected flow graphs (track allocation)
 - distinct chain paths (integration of routing and timetabling)
 - duplicated chain paths (periodic rail freight train paths)
- SAT-based optimization (e.g., MaxSAT, MCS)
 - minimization of weighted slacks
 - optimization in FDPESP

Periodic Event Networks Periodic Event Scheduling Problem (PESP)



- period T = 60
- (periodic) events (nodes) $n, m, p \in \mathcal{V}$
 - schedule $\Pi: \mathcal{V} \to [0, T-1] \subseteq \mathbb{N}$
 - potential $\Pi(n), \ \Pi(m), \ \Pi(p)$
- constraints resp. activities (edges) \mathcal{E}
- e.g., (n,m) with $[15,15]_{60}$
 - constraint holds iff $\Pi(m) \Pi(n) \in [15, 15]_{60}$
 - e.g., $\Pi(n)=2, \Pi(m)=17 \text{ or } \Pi(n)=50, \Pi(m)=5$
- tuple $\mathcal{N} = (\mathcal{V}, \mathcal{E}, T)$ is called periodic event network

• let $\mathcal{N} = (\mathcal{V}, \mathcal{E}, T)$ be a periodic event network

Definition (Valid Schedule)

A schedule Π is valid for \mathcal{N} , iff for all $e = (n, m) \in \mathcal{E}$ with $[l, u]_T$ it holds

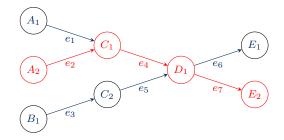
 $\Pi(m) - \Pi(n) \in [l, u]_T.$

Definition (Periodic Event Scheduling Problem (PESP))

Is the decision problem whether it exists a valid schedule for $\ensuremath{\mathcal{N}}.$

• PESP is *NP*-complete

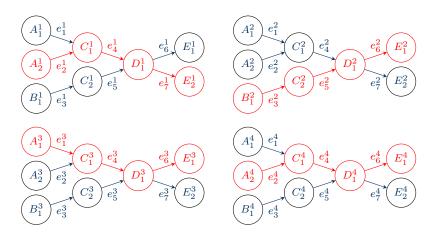
Flow Decision PESP Flow Graphs



- extending PESP by further structures:
 - decision nodes and decision edges
 - transport networks (flow graphs)
- goal: path of a source to a destination node maintaining feasibility

Flow Decision PESP

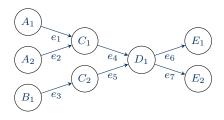
Duplicating Flow Graphs



Periodic Event Scheduling with Flows

Flow Decision PESP

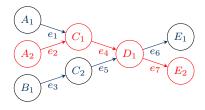
Flow Decision Periodic Event Network



- $\mathcal{N} = (\mathcal{V}, \mathcal{E}, T)$... periodic event network
- \mathcal{S} ... set of flow graphs
- \mathcal{H} ... set of decision nodes ($\mathcal{H} \subseteq \mathcal{V}$)
- bijective mapping of flow edges e_i $(i \in \{1, ..., 7\})$ and periodic events via label function $l(e_i) = n_i$ $(n_i \in \mathcal{H})$
- $\mathcal{D} = (\mathcal{V}, \mathcal{E}, T, \mathcal{H})$ is flow decision periodic event network for \mathcal{S}
- node, edge sets of $\mathcal S$ not necessarily disjoint (currently no application)

Flow Decision PESP

Flow Decision Periodic Event Network (2)



- $\mathcal{D} = (\mathcal{V}, \mathcal{E}, T, \mathcal{H}) \dots$ flow decision periodic event network for flow graph set \mathcal{S}
- \mathcal{V}' ... set of periodic events $(\mathcal{V}' \subseteq \mathcal{V})$, e. g., $\mathcal{V}' = \{n_2, n_4, n_7, n_8\}$
- Π ... schedule for \mathcal{V}'

Definition (Valid Schedule – extended)

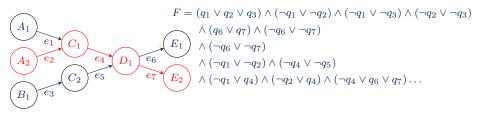
Π is valid for ${\mathcal D}$ under ${\mathcal S},$ iff

- exists exactly one path for all flow graphs in ${\cal S}$ via l^{-1} for nodes in ${\cal V}'$
- for all $e = (n,m) \in \mathcal{E}$: $n,m \in \mathcal{V}' \Rightarrow e$ holds under Π

$$F = \neg p \land (q \lor r)$$

- literal: L = p or $L = \neg p$ (variable or its negation), $p \in \mathcal{R}$
- clause c: disjunction of literals
- formula F in conjunctive normal form (CNF): conjunction of clauses
- interpretation $I : \mathcal{R} \to \{0, 1\}$
- F is satisfiable $(F^I = 1)$ iff for all clauses at least one literal $L^I = 1$
- e.g., $p^{I} = 0$, $q^{I} = 1$ and $r^{I} = 0$ implies $F^{I} = 1$
- F unsatisfiable if no such I exists

Encoding to SAT encoding flow graphs



- $q_i \dots$ propositional variable if flow edge (node) e_i is active (in path)
- exactly one source (at-least-one, at-most-one)
- exactly one destination (at-least-one, at-most-one)
- flow conservation
 - at-most-one outgoing flow edge per flow node
 - at-most-one incoming flow edge per flow node
 - at-least-one successor flow edge active if incoming active
- $q_2^I = 1, q_4^I = 1, q_7^I = 1$ (remaining = 0) \Rightarrow path (e_2, e_4, e_7)

- $\mathcal{D} = (\mathcal{V}, \mathcal{E}, T, \mathcal{H}) \dots$ flow decision periodic event network for flow graph set \mathcal{S}
- encode constraint (edge) $e = (n_i, n_j)$ for a periodic event network with mapping encodeEdge (developed in 2011)
- $M = \{q_k \in \mathcal{R} \mid k \in \{i, j\} : n_k \in \mathcal{H}\}$
- encoding for constraints

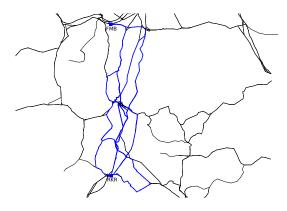
$$\mathrm{encodeEdge}_M(e) = \bigvee_{q \in M} (\neg q) \lor \mathrm{encodeEdge}(e)$$

final encoding:

- encode flow graphs
- encode periodic events
- encode constraints via $encodeEdge_M$

and connect all structures conjunctively

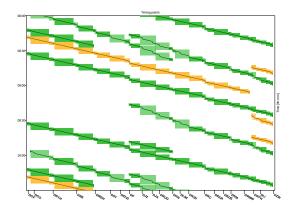
Periodic Rail Freight Planning Problem



- input data:
 - feasible periodic event network
 - relation of the to be inserted train paths (e.g., Mainz \rightarrow Karlsruhe, Germany)

Glasgow, 07/14/2015

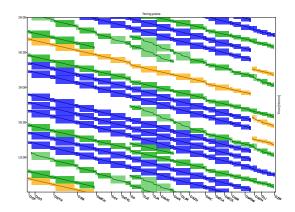
Periodic Rail Freight Planning Problem (2)



• goal: insertion (path+timetable) of rail freight train paths based on short sub paths (e.g., Gutenfürst → Zwickau, Germany)

Glasgow, 07/14/2015

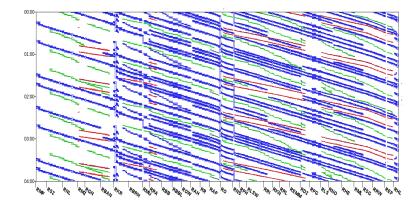
Periodic Rail Freight Planning Result



• newly inserted rail freight train paths (blue) on given relation (Gutenfürst \rightarrow Zwickau, Germany)

Glasgow, 07/14/2015 Periodic Event Scheduling with Flows

Periodic Rail Freight Planning Result (2)



- Mannheim (Germany) \rightarrow Basel (Switzerland)
- 200 flow edges per flow graph, 12 duplicated flow graphs

Glasgow, 07/14/2015

Periodic Event Scheduling with Flows

- automated timetabling of large and complex periodic event networks is possible
- reasonable extension of PESP by flow graphs:
 - track allocation
 - integration of routing and timetabling
 - periodic rail freight train paths
- outlook:
 - more efficient encoding for even better computational time
 - solver parallelization with appropriate preprocesses

- A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability. IOS Press, 2009.
- Peter Großmann, Steffen Hölldobler, Norbert Manthey, Karl Nachtigall, Jens Opitz, and Peter Steinke. Solving periodic event scheduling problems with SAT. In IEA/AIE, volume 7345 of LNAI, pages 166–175. Springer, 2012.
 - Karl Nachtigall. Periodic Network Optimization and Fixed Interval Timetable. Habilitation thesis, University Hildesheim, 1998.
- Paolo Serafini and Walter Ukovich. A mathematical model for periodic scheduling problems. SIAM J. Discrete Math., 2(4):550–581, 1989.
- Tomoya Tanjo, Naoyuki Tamura, and Mutsunori Banbara. A compact and efficient SAT-encoding of finite domain CSP. In SAT, pages 375–376, 2011.