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Abstract We describe the Periodic Event Scheduling Problem (PESP) based on pe-
riodic event networks and extend it by symmetry constraints. The modeling power of
the PESP is discussed for automatic calculation of feasible periodic railway timeta-
bles. Including the described extensions, complete modeling of integrated regular-
interval timetables is possible. Encoding PESP to propositional logic enables the us-
age of efficient SAT solvers for solving PESP. However optimizing timetables by
linear programming is possible too. As almost all real-world timetable problems are
heavily overconstrained, methods for automatic resolving of conflicts are described.
Since there is still a lack of efficient conflict resolving algorithms for large-scale in-
termeshed railway networks, we introduce several strategies for efficiently resolving
conflicts and intelligently decomposing timetable problems and discuss the trade-off
between computation time and reduction of the solution space. These strategies allow
quick adaption to small changes as well. The described methods are implemented in
the software system TAKT. We apply the enhanced TAKT to a timetabling study and
present some key figures and results.
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M. Kümmling · P. Großmann · K. Nachtigall · J. Opitz · R. Weiß
Institute of Logistics and Aviation, Technische Universität Dresden, 01062 Dresden, Germany
E-mail: michael.kuemmling@tu-dresden.de

P. Großmann
E-mail: peter.grossmann@tu-dresden.de

K. Nachtigall
E-mail: karl.nachtigall@tu-dresden.de

J. Opitz
E-mail: jens.opitz@tu-dresden.de

R. Weiß
E-mail: reyk.weiss@tu-dresden.de
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1 Introduction

Today, planning and disposition of railway transport in Germany is often manual
labor – computers only hold, manage and visualize data. These labor-intensive pro-
cesses lead to mostly evolutionary timetabling, such that every year only the nec-
essary changes are done to fit the timetable to changed infrastructure or a changed
network. Using state-of-the-art techniques, it is nearly impossible to build only one
fully optimized railway timetable from scratch for large and intermeshed railway net-
works like the German one. As this obviously does not tap the railway’s full potential,
diverse high-quality timetable variants have also a key role in design of tomorrow’s
railway infrastructure and in reliable stability and capacity analysis leading to effi-
cient and sound railway networks.

Since railways are a quite long-standing business, they have grown large bundles
of complicated operational rules and versatile constraints. Hence, a model is needed
which covers a wide range of possible constraints.

At the Chair of Traffic Flow Sciences at TU Dresden, the software system TAKT
has been developed for several years in close collaboration with DB Netz AG. It
tackles exactly these kinds of issues and solves them by state-of-the-art operations re-
search techniques. The connection and interaction between the different approaches
will be subject of this work. The specific use case TAKT was developed for is long-
term timetabling studies. The scope of these studies is to evaluate both different op-
erational concepts (different routes, stopping patterns, vehicles and so on) and dif-
ferent infrastructure states. Even at this long-ranging sight, infrastructure operators,
transport companies, regional and national authorities impose many requirements re-
sulting in a high number of constraints. Therefore, conflict resolution plays a major
role. Timetable optimization based on predicted passenger demand is a possible post
process following conflict resolution.

In Section 2 we give the preliminaries for periodic event scheduling. After show-
ing the possibilities for solving timetabling instances in Section 3, we introduce in
Section 4 the state-of-the-art conflict resolving of infeasible instances. After present-
ing our computational results in Section 5, we conclude the work in Section 6 and
give a further scientific outlook.

2 Periodic Event Scheduling Problem

In the last 15 years, the Periodic Event Scheduling Problem (PESP) has been estab-
lished as one of the most suitable problem formulations for periodic timetabling. It is
introduced by Serafini and Ukovich [16]. The related periodic event network (PEN)
permits flexible representation of almost all periodic timetable’s constraints. For in-
stance, PESP and its application to railway timetabling are discussed in detail by
Nachtigall and Opitz [13,14].

The train network, which is the base of the timetabling problem, contains periodic
trains L running on a railway network with stations S . Each train L ∈ L serves
a specified sequence of Stations S ∈S . All constraints are modeled into a PEN. Its
nodes v∈V represent arrival events (L,arr,S)∈V and departure events (L,dep,S)∈
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V . The timetable T ∈ Z|V | assigns to every event v ∈ V a potential Tv ∈ Z, 0≤ Tv <
tT . In a periodic timetable with period tT ∈ N+ the event happens periodically at all
times Tv + ztT , z ∈ Z.

The network’s arcs a ∈ A : i→ j are basically time consuming processes. All
arcs’ processing times are constrained by lower bounds tmin,a and upper bounds tmax,a.
This range is also written as [tmin,a, tmax,a]tT . A timetable T is considered valid if and
only if

∀a ∈A : ∃za ∈ Z : tmin,a ≤ Tj−Ti− zatT ≤ tmax,a. (1)

The lower slack ya is the deviance of the actual processing time from the lower bound
such that

0≤ ya = Tj−Ti− zatT − tmin,a < tT . (2)

The PESP is the decision problem, whether there exists any valid timetable for a
given PEN N = (V ,A , tT ). For feasible problems, a timetable can be calculated.

This universal problem allows the modeling of running times, dwell times, head-
ways and transfer times. For instance, trains are encoded as alternating sequences of
running activities (L,dep,S)→ (L,arr,S′) and stops (L,arr,S)→ (L,dep,S). Head-
ways between different trains include both safe headways representing the permit-
ted minimum headway and also evenly distributed intervals between different trains
running partly on the same railway line. Transfer times include several of different
requirements: vehicle transfers, staff transfers and passenger transfers.

1,dep,A
running time

1,arr,B
dwell time

1,dep,B
running time

1,arr,C

2,arr,A
running time

2,dep,B
dwell time

2,arr,B
running time

2,dep,C

symmetry
constraintheadway

headway
symmetry
constraint

Fig. 1 An event network of two trains on a single track line with stations A, B and C

Likewise, symmetry is a common requirement in periodic timetabling [17]. A
train and its associated returning train are considered to be symmetric, if their ar-
rival and departure times are aligned symmetrically along symmetry axis in time
(see Eq. (3)), which is called symmetry minute s and is equal in the whole network.
Hence, the trains meet each other at point of time s. The symmetric timetables’ ad-
vantage is the satisfied symmetric property of transfers. Thus, all transfers automati-
cally are fulfilled in both directions. Previous works like [10] and [14] only consider
ideal symmetry without any deviation. In practical applications, this is hardly ever
accomplishable as even running times are often asymmetric due to slopes or direc-
tion dependent maximum speeds. So we introduce a symmetry deviation to model
this requirement.

This constraint is special, as it cannot be modeled by Eq. (1) (even without sym-
metry deviation) as it was proven by Liebchen [10]. Subsequently, the problem has
to be extended by additional constraints a ∈AS : i→ j, where i is the arrival event of
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one train and j the departure event of the associated returning train. A certain max-
imum absolute deviation from symmetry da ∈ N is permitted. The actual symmetry
deviation is denoted as symmetry slack ya ∈ Z. Applying the permitted slack (5) to
formulation of symmetry axis (3) results in an inequation (6) quite similar to (1).

Tj− (s+ ya)− zatT = (s+ ya)−Ti (3)
Ti +Tj− zatT = 2s+2ya (4)
−da ≤ ya ≤ da (5)

2s−2da ≤ Ti +Tj− zatT ≤ 2s+2da (6)

Thus, in extension of requirement (1) a timetable is only considered valid if it
holds as well:

∀a ∈AS : ∃za ∈ Z : 2s−2da ≤ Ti +Tj− zatT ≤ 2s+2da (7)

The PESP extended by symmetry constraints allows fully modeling Integrated
regular-interval timetables (IRIT) [14]. IRIT is a ideal concept of timetabling (refer
to [9]) established in Germany and several other European countries. Figure 1 shows
a simple exemplifying PESP network with symmetry constraints.

3 Solving PESP in TAKT

PESP is proven to be NP-complete [16]. Hence, solving real-world PESP instances
is a challenging task [14]. The currently most efficient approach solving PESP is
conducted by using state-of-the-art SAT solvers [4]. SAT is the boolean satisfiability
problem determining if there exists any interpretation satisfying a given propositional
formula. SAT is likewise NP-complete [3], yet, for SAT very efficient solvers exist
[11]. It was shown that SAT solvers outperform all previously known approaches
for solving PESP despite the additional time needed for encoding and decoding SAT
instances [6].

Propositional logic uses boolean variables q ∈R. Literals L are either variables q
or their negation ¬q. Clauses are disjunctions of literals c =

∨
i Li. Propositional for-

mulas in conjunctive normal form (CNF) are conjunctions of clauses F =
∧

j c j. An
interpretation J assigns to every variable either the value true or false, denoted as t
or f , respectively. A formula F is satisfiable (F J = t) if and only if there exists a J
such that all clauses contain at least one literal assigned to t under J. An interpreta-
tion J is called model (denoted J |= F ), if and only if F J = t.

The PEN’s constraints are encoded to propositional formulas using order encod-
ing which is introduced for general finite ordered domains [18]. All potentials Tv
are encoded to tT − 1 boolean variables qn,i, whereas qv,i = t represents Tv ≤ i and
thus, qv,i = f represents Tv > i. The function enc maps the set of events V to a propo-
sitional formula in CNF, such that this ordering holds:

enc(v) = (¬qv,−1∧qv,tT−1)
∧

i∈[0,tT−1]

(¬qv,i−1∨qv,i) (8)
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This encoding for variables of finite ordered domains is discussed in details by [18].
In order to encode all events’ potentials, which will be the decoded schedule after-
wards, we define

ΩN :=
∧

v∈V
enc(v). (9)

After a model J has been found for this formula, extracting the value of the event v
by J is done by the function ξv(J), where ξv(J) = k such that J 6|= qv,k−1, J |= qv,k and
k ∈ [0, tT −1]. ξn is well-defined and ensures extracting exactly one value due to the
following lemma. For detailed consequent proofs we refer to the literature [4,6].

Lemma 1 Let N = (V ,A , tT ) be a PEN, n∈V be an event and J an interpretation.
Then

(i) J |= enc(v)⇔∃!k ∈ [0, tT −1] : ∀i ∈ [−1,k−1] : J 6|= qv,i,

(ii) ∀ j ∈ [k, tT −1] : J |= qv, j.

Proof (sketch) “⇒”: Let J |= enc(n). To show:

∃k ∈ [l,u] : ∀i ∈ [l,k−1] : J 6|= qv,i,∀ j ∈ [k,u−1] : J |= qv, j ∧ (10)
@h ∈ [l,u],h 6= k : ∀i ∈ [l,h−1] : J 6|= qn,i,∀ j ∈ [h,u−1] : I |= qv, j (11)

Equation (10) is simply shown with mathematical induction.
Equation (11) is simply shown without loss of generality h > k implies qJ

v,k = f ,
which is in contradiction to (10).
“⇐”: can be simply shown with mathematical induction as in “⇒”.

Extracting the schedule T can be done on a per-element basis from a model J
with

∀v ∈ V : Tv = ξn(J). (12)

Subsequently, all constraints can easily be encoded to clauses by excluding for
each constraint all invalid combinations of values (Ti,Tj). Excluding each single pair
would result in a quadratic number of clauses such that each constraint is encoded
soundly [4]. Hence, it would be more efficient to encode not just a single pair but a
larger set of pairs which will be rectangles. This approach is described in the follow-
ing. Figure 2 shows the feasible and infeasible regions for the constraint [3,5]10 and
all pairs of a particular rectangle, that shall be excluded for event i ∈ V and j ∈ V .
We can exclude all infeasible pairs of a rectangle [i1, i2]× [ j1, j2] that is a subset of
the infeasible region by a single clause:

enc rec([i1, i2]× [ j1, j2]) = ¬qi,i2 ∨qi,i1−1∨¬q j, j2 ∨q j, j1−1 (13)

The following lemma ensures that each pair of the encoded rectangle is not satis-
fiable with respect to the encoded formula and thus, not part of a feasible schedule.

Lemma 2 Let r = ([i1, i2]× [ j1, j2]) be a rectangle in the infeasible region of the
constraint (i, j) ∈A . Then

J |= enc rec(r)⇔ (ξi(J),ξ j(J)) /∈ r

with J being an interpretation.



6 Michael Kümmling et al.

Ti

Tj

4 7

3

6

0

3

5

9

5 7 9

Fig. 2 Feasible (striped) and infeasible (white) regions for constraint [3,5]10 between events i ∈ V and
j ∈ V . The gridded square shows an infeasible rectangle.

Proof “⇒”:

J |= enc rec(r)⇒ (¬qi,i2 ∨qi,i1−1∨¬q j, j2 ∨q j, j1−1)
J = t (14)

Proof by contradiction: assume (ξi(J),ξ j(J)) ∈ r = ([i1, i2]× [ j1, j2]). Then

i1 ≤ ξi(J)∧ i2 ≥ ξi(J)∧ j1 ≤ ξ j(J)∧ j2 ≥ ξ j(J)

which results in

qJ
i,i2 = t ∧qJ

i,i1−1 = f ∧¬qJ
j, j2 = t ∧qJ

j, j1−1 = f

⇒ (¬qi,i2 ∨qi,i1−1∨¬q j, j2 ∨q j, j1−1)
J = f

This is a contradiction to (14). Hence,

(ξi(J),ξ j(J)) /∈ r

“⇐”: analogous to “⇒”.

Excluding all infeasible rectangles of a given constraint a with the given encod-
ing enc rec as of (13) results in the complete and sound encoding for a. Applying
this to all constraints in the set of edges A and connecting this with the encoded
nodes ΩN conjunctively results in the to be encoded propositional formula in CNF.
Lemma 1 ensures that we can extract exactly one point in time for each event. Ex-
trapolating Lemma 2 to each constraint ensures the sound and complete encoding for
a PEN.

This results in the equivalence of searching for an interpretation J satisfying F
and searching for a valid timetable T for PEN N . For further reading on encoding
PESP to SAT we refer to the literature [6].

An interpretation J satisfying F can be easily decoded to a timetable T by
reversing the described encoding. Solving PESP by this approach results in one
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valid timetable, since it is a decision problem. Global timetable optimization can
be achieved by minimizing the weighted sum of slacks using integer linear program-
ming (ILP). Lots of different objectives can be modeled by weighting factors, for
example sum of journey time for all passengers or the number of needed train sets
[10,14]. Yet most implementations of passenger flow based timetable optimization
lack proper assignment of passenger flows as described in [7]: Large and complex
railway networks require sophisticated traffic assignment methods to achieve a reli-
able prognosis of traffic streams within the network on the one hand. On the other
hand, traffic assignment and timetable optimization are heavily interdepent. This is
especially a problem in regional and long-distance train networks with large intervals
(120 minutes) between trains. Yet no methods are known to conduct timetable opti-
mization and a sound traffic assignment simultaneously. For a comprehensive survey
on further methods for timetable optimization and a wide variety of problem formu-
lations and objectives we refer to [2,19]

4 Resolving Conflicts

Although, solving PESP is a challenging task, usually only solving the initially for-
mulated timetable problem is not the scope of work as almost all real timetable prob-
lems initially are not satisfiable. This is reasoned by the fact that at first the constraints
are arranged idealistically tight, for example dwell times are set to the minimum pos-
sible dwell time as this would result in minimal journey times if satisfiable. Therefore,
the real task is the identification and resolving of conflicts resulting in a minimally
relaxed yet valid timetable.

Let N = (V ,A , tT ) be a PEN. A conflict C = (V ,Z ,T) with Z ⊆A is called
local conflict for N if and only if C is infeasible and C gets feasible by removing
any constraint in Z . A simple example conflict is outlined in Figure 3. As the event
network’s constraints are encoded to separate clauses, local conflicts have a coun-
terpart in SAT: A formula M in CNF is called minimally unsatisfiable subformula
(MUS) if and only if M is unsatisfiable and M becomes satisfiable by removing any
clause c ∈M . Likewise, there are highly efficient extractors for finding MUS [15].
Once a MUS is found, it can be decoded back to local conflicts [5].

Fig. 3 Local conflict within a quite small sample event network

Constraints in Z are relaxed by increasing the upper bound tmax,a (a ∈ Z ),
whereas symmetry constraints are relaxed by increasing maximum symmetry de-
viation da. Several constraints, especially safety headway constraints, but also other



8 Michael Kümmling et al.

constraints by user’s request, are prohibited to be relaxed at all. In real world railway
PEN, the majority of constraints are unrelaxable headway constraints. Consequently,
every conflict at first has to be checked on whether any relaxation of the relaxable
arcs could solve the conflict. This is done by removing all relaxable arcs from the
network and solving the remaining network. Remaining conflicts are intrinsic con-
flicts of the railway network’s infrastructure and its operating program and thus, have
to be manually resolved by modifying the operating program or the infrastructure.
The extraction of local conflicts offers a detailed analysis of the bottlenecks [14].

Resolving conflicts involves two steps: Firstly, the network is resolved by a quick
heuristic, resulting in far too high relaxations. The simplest heuristic relaxes evenly
all relaxable constraints by the same slack until the network is feasible. Afterwards,
the relaxations are minimized under preservation of the network’s feasibility. Min-
imization is done by either iterative usage of SAT solvers or direct usage of ILP
solvers. The iterative process does not achieve the global minimum, but features much
lower calculation times, whereas ILP solvers enable the use of more advanced objec-
tive functions.

Despite the impressive speedup achieved by using SAT solvers [6], a lot of time-
tabling problems are still too vast to be resolved directly in one piece in reasonable
time. Therefore, strategies for an intelligent decomposition of the timetabling prob-
lem is a necessity. We present two approaches for this problem:

On the one hand, in hierarchical planning, the train network is sub-classified
in several levels, for instance long-distance trains, local trains and freight trains as
shown in Figure 4. The trains of the highest level are scheduled first and then are left
fixed, then the next level is scheduled which is iteratively proceeded. This approach
represents the current manual timetabling processes well and easily fits to established
paradigms. It reduces calculation time vastly, but it also cuts down the solution space
remarkably.

long distance trains only + local trains + freight trains

Fig. 4 Example for hierarchical planning

On the other hand, a new method does not influence the solution space and also re-
sults in a considerable reduction of computation time: Some infeasible parts of the
timetable network are extracted and resolved separately. Afterwards, all found out
relaxations are adopted into the full network, which is then resolved again. Two au-
tomatic algorithms for determination of such network parts were developed: local
conflict search, as described above and corridor analysis. Corridor analysis extracts
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the nodes and arcs of a train and its returning train and adds a defined amount of
neighboring nodes and arcs. Far more sophisticated algorithms and combined strate-
gies are currently under intensive research. Manual extraction of few heavily crowded
and closely intertwined urban networks out of regional or national networks deliver
effective results as well.

Both methods allow an intelligent and quick way of incremental scheduling, as
they enable to fit small changes into existing timetables easily. Whereas solving
whole networks takes hours, it is only a matter of minutes to include changes and
to generate valid timetables again. Furthermore, it is possible to evaluate different
operating programs and infrastructural states quickly.

5 Application and Results

As described in the beginning, the presented algorithms are implemented in the mod-
ular timetabling software system TAKT of the Chair of Traffic Flow Science at
TU Dresden. The PEN is generated automatically from given input data. This is nec-
essary, as large timetabling problems can consist of up to one million arcs and ten
thousands of nodes, which cannot be calculated manually. The program assigns the
optimal route on the track layout for each train automatically and calculates the run-
ning times within seconds. All minimum headways are calculated individually based
on microscopic infrastructure data and the previously calculated running times.

After running time calculation, all running times are considered constant. This is a
requirement because the minimum safe headways depend linear but discontinuously
on running times [8] and PESP does not allow for dependencies between different
arcs. This enables us to reduce PEN size as well by removing arrival arcs and uniting
stopping arcs with neighboring arcs (condensation, see [14]). For calculating head-
ways we use commonly established methods. We refer to [12] for a comprehensive
overview and to [13] for application in PESP.

This PEN is the universal interface to different PESP solvers, allowing the usage
of different solvers like the presented SAT-based approach, but also for instance LP-
based solvers. The SAT-based PESP solver uses external SAT solvers. So far, the best
overall performance was reached with the Glucose SAT solver [1].

The presented methods are applied to a case study of the German long-distance
passenger railway network and the regional trains within the German region south-
east (Saxony, Thuringia and Saxony-Anhalt). Firstly, the two networks were solved
separately. As the network of regional trains is denser, a particular complex part
(Leipzig region) was extracted and the relaxations needed for this part were calcu-
lated beforehand. Table 1 shows key figures of these instances.

Calculating a completely conflict-free timetable for the long-distance network
takes about 2.5 hours. Determining a valid timetable for the regional trains in the
described two iterations took approximately 2 hours each. In the joint network of
both long-distance and regional trains, the long-distance trains were fixed to the de-
termined timetable, whereas the regional trains were not fixed, but the relaxations
computed before adopted to the event network. Solving the joint network took about
30 minutes. Providing fully correct input data, the program does not need any assis-
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event network
all regional routes

event network:
fixed and feasible long-distance routes + regional routes

feasible event network

timetable

operating program

event network
some regional routes

event network
all regional routes

relaxations

conflict resolving

feasible event network
long-distance routes

conflict resolving

timetable
long-distance routes

event network
long-distance routes

relaxations

conflict resolving

conflict resolving

Fig. 5 Example of hierarchical planning sequence

Table 1 Key figures of sample instance

part trains stations nodes arcs

long-distance network 178 198 1850 14285
Leipzig region 72 126 742 6337
all regional trains 426 1143 4506 21461
whole network 604 1329 5564 31765

tance to calculate applicable timetables. Having large amounts of input data, flaws
like wrong train routes, missing stops, bogus connections are common. Thanks to
the relaxation handling described before, the flaws can be detected and removed it-
eratively without calculating the timetable from scratch over and over again. The
computations were conducted on an Intel Xeon CPU X5450 based server with 16 GB
RAM, but used not more than one core and 500 MB RAM. The SAT instances are
solved by the SAT solver Glucose version 2.31.

Based on PESP a more advanced model for completely automatic calculation of
freight train paths along corridors is developed, that allows dynamic track allocations
and dynamic selection of suitable speed profiles for freight trains. It outperforms the
work of experienced experts even on highly crowded lines by far – the same number
of or even more train paths with a better quality are achieved in much lower time [14,
20].

1 http://www.labri.fr/perso/lsimon/glucose/
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Fig. 6 Screenshot of timetable visualization in TAKT

Additionally, TAKT features several visualization tools for evaluation of the re-
sulting timetables, one example is displayed in Figure 6.

6 Conclusion

As it was shown in this work, SAT-based PESP solving and local conflict search
provide a powerful base for fully automatic timetabling. The usage of SAT allows
solving larger networks which could not be solved before. Intelligent problem reduc-
tion and partition algorithms allow further increments in network size and reductions
in calculation time respectively. These improvements permit additional extensions to
the PESP model as well. For instance, dynamic track allocation for passenger trains
will rise the flexibility of PESP in practical applications further.

The described management of relaxations offers an easy and efficient way for
evolving timetables from scratch, which was successfully field-tested on large-scale
railway networks. The possibility of fast rescheduling and the variety of realizable
constraints opens periodic event scheduling for new fields like capacity research of
several infrastructure states or railway traffic management in a completely new man-
ner.
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