TRAVEL BEHAVIOUR SURVEY AND MODAL SPLIT ANALYSIS

CITY OF UHERSKÉ HRADIŠTĚ

More sustainable transport in Central European cities through improved integrated bicycle promotion and international networking
TRAVEL BEHAVIOUR SURVEY AND MODAL SPLIT ANALYSIS – CITY OF UHERSKÉ HRADIŠTĚ

This survey was implemented as Output 3.1.8 of the European project “Central MeetBike – More sustainable transport in Central European cities through improved integrated bicycle promotion and international networking”. This project is implemented through the CENTRAL EUROPE programme and co-financed by ERDF.

Output: 3.1.8

Prepared by:
Technische Universität Dresden
Chair of Transport and Infrastructure Planning
Prof. Dr.-Ing. Gerd-Axel Ahrens

Author:
Jan Schubert

Contribution:
Ute Kabitzke, Kevin Vincent, Stefan Hubrich, Dr. Frank Ließke

www.centralmeetbike.eu
List of figures .. 6
List of tables ... 7
1. Introduction .. 8
2. Basic information about the survey .. 10
 2.1 Focus of survey .. 10
 2.2 Definitions .. 11
 2.2.1 Trip/movement .. 11
 2.2.2 Purpose of trips ... 12
 2.2.3 Means of transport ... 14
 2.2.4 Statistical expressions ... 15
 2.3 Survey period and test days ... 16
 2.4 Recorded characteristics and questionnaire ... 16
 2.4.1 Household characteristics .. 16
 2.4.2 Characteristics of persons ... 17
 2.4.3 Trip characteristics .. 18
 2.4.4 Questionnaire .. 18
 2.5 Further interview materials .. 19
 2.5.1 Announcement letter .. 19
 2.5.2 Memory jogger .. 20
3. Implementation of the survey ... 22
 3.1 Sample characteristics and drawing of sample ... 22
 3.1.1 Basics .. 22
 3.1.2 Drawing from register of residents ... 24
 3.1.3 Drawing from register of addresses .. 25
 3.1.4 Drawing by “Random Route Method” ... 26
3.2 Implementation of interviews

3.2.1 Overview

3.2.2 Mailing of survey documents

3.2.3 Training of interviewers

3.2.4 Face-to-face survey

3.2.5 Monitoring of field time

3.2.6 Computer data input

3.2.7 Reminder activities

3.2.8 Information, accompanying public relations

3.3 Data analysis

3.3.1 Data preparation

3.3.2 Weighting of data

4 RESULTS IN TABLES AND DIAGRAMS

4.1 CHARACTERISTICS OF THE SURVEY IMPLEMENTATION AND THE SAMPLE

4.1.1 Parameters of the survey

4.1.2 Sample structure according to age and sex

4.1.3 Sample structure according to occupation and sex

4.1.4 Sample structure according to household size

4.2 HOUSEHOLD AND VEHICLE-SPECIFIC PARAMETERS

4.2.1 Household-specific parameters

4.2.2 Parameters describing use of vehicles

4.3 MOBILITY RELATED FACTS ABOUT PERSONS

4.4 CHARACTERISTICS OF TRIPS

4.4.1 Modal split by inhabitants

4.4.2 Purpose of trips

5. Sources
6. Abbreviations... 57

7. Appendices... 58
LIST OF FIGURES

Figure 1: Surveyed cities in Central MeetBike ... 9
Figure 2: Spatial distribution of trips in relation to city boundaries............................... 11
Figure 3: Example of an announcement letter (Pardubice) ... 20
Figure 4: First page of Memory Jogger (Czech version) ... 21
Figure 5: Motorisation with cars of households ... 40
Figure 6: Walking time to public transport stop that is closest one from household......... 42
Figure 7: Space for parking vehicles at place of residence .. 43
Figure 8: Number of trips per day in German cities and Central MeetBike cities 45
Figure 9: Availability of car on test day - method 1 .. 46
Figure 10: Availability of a car on test day - method 2 ... 47
Figure 11: Possession of drivers' licence according to age and sex 47
Figure 12: Motorisation of inhabitants with cars and bicycles .. 48
Figure 13: Motorisation of inhabitants with cars and bicycles in CMB and SrV cities 49
Figure 14: Modal split of all trips by inhabitants .. 50
Figure 15: Modal split of inhabitants in CMB and SrV cities ... 52
Figure 16: Modal split of trips within the city by inhabitants ... 52
Figure 17: Modal split based on trip length ... 53
Figure 18: Purpose of trips ... 54
Figure 19: Modal split by purpose of trips ... 55
LIST OF TABLES

Table 1: Main Purpose of trips and corresponding categories from “Mobility in towns” 13
Table 2: Main modes of transport and corresponding categories at questionnaire............... 14
Table 3: Method of drawing the sample in each city ... 23
Table 4: Example how to identify 3 persons in a population of 10 persons with method 1 ... 24
Table 5: Parameters of the survey implementation .. 36
Table 6: Sample structure according to age and sex ... 37
Table 7: Sample structure according to occupation and sex .. 38
Table 8: Sample structure according to household size .. 39
Table 9: Motorisation of households and household income ... 41
Table 10: Basic parameters of vehicle use ... 42
Table 11: Basic parameters of mobility behaviour of inhabitants 44
Table 12: Duration and length of trips by inhabitants ... 50
1. INTRODUCTION

The European project Central MeetBike (More sustainable transport in Central European cities through improved integrated bicycle promotion and international networking) promotes sustainable transport policy and planning according to the state of the art. Important is the integration and preferred use of public transport, walking, cycling and new mobility services (e.g. car sharing, bicycle rental schemes). In this context Central MeetBike focusses on the questions of how to create better conditions for cycling in Central European countries and thus how to promote sustainable transport in general. The project concentrates on exchange of knowledge and experiences among the project partners and to estimate effects of different measures.

Studies about the current situation of bicycle transport in Central MeetBike partner countries Czech Republic, Slovakia and Poland showed that there is a general lack of knowledge about mobility behaviour in these countries. This often goes along with little expertise in implementing surveys that provide users with reliable results. Therefore the surveys are an important element of the project in order to provide partner cities with comparable findings about mobility behaviour of the inhabitants. At the same time this report is intended to give an insight for planners from municipalities on how to implement a survey that allows obtaining reliable and comparable results.

This report provides the reader with results of the household survey conducted in the Czech city Uherské Hradiště. The survey was also implemented in the cities of Žilina, Prešov, Pardubice, Gdańsk and Tczew (figure 1).

The survey provides the cities with statistics about e.g. number of trips, use of means of transport (modal split), kilometres travelled and access to vehicles. These numbers serve:

- for transport policy and internal administrative work (benchmarking)

Further information: www.centralmeetbike.eu

These studies were implemented in the course of Central MeetBike. Reports can be found at www.centralmeetbike.eu.
Repeating the survey (e.g. every 5 years) is recommended in order to observe the development of mobility behaviour and its critical parameters.

The method “Mobility in Towns”\(^3\) (SrV – System of representative surveys on mobility behaviour) that was established at the TU Dresden, served as the model\(^4\). In the framework of the Central MeetBike survey, TU Dresden (Chair of Transport and Infrastructure Planning) developed the method’s adjustments for the city of Prešov, served as an advisor before and during the field time and did the evaluation of the data. The implementation of the survey was supervised in situ by members of the city of Uherské Hradiště.

Since the same survey method is used for each partner city of Central MeetBike, there are not only specific results for each city, but also results that arise by comparing the cities amongst each other and with results from last German survey from 2008\(^5\).

\(^3\) Ahrens et al., 2009

\(^4\) “Mobility in towns” (SrV) is a travel behaviour survey that is regularly conducted in Germany. It was first implemented in 1972 in cities of the former German Democratic Republic. It has taken place eight more times: in 1977, 1982, 1987, 1991, 1994, 1998, 2003 and 2008.

\(^5\) The next SrV-survey for 2013 is in progress. Results will be available in autumn 2014.
2. BASIC INFORMATION ABOUT THE SURVEY

2.1 FOCUS OF SURVEY

The focus of the survey is the mobility behaviour of inhabitants in each city. During interviews each person in a randomly selected household is asked numerous questions. The questionnaire is divided into three parts (see also Chapter 2.4): questions about household and vehicles, questions about every person registered in household, questions about every trip taken by every person. Thus the results are structured in a similar way:

- data about household- and vehicle-specific parameters (e.g. number of cars in household, annual vehicle kilometres driven)
- data about persons with parameters about sociodemographic and transport related aspects (e.g. drivers licence, education level)
- data about trips taken per person (e.g. number of trips, trip length, means of transport)

Population and surveyed trips

The survey population is comprised of all inhabitants of the city without any limitation of age, sex, nationality and primary or secondary place of residence. Mobility behaviour is surveyed for one particular test day (Tuesday – Thursday). These days represent a normal working day. All trips (definition of trip in chapter 2.2.1) for each person in the household are recorded without any limitation.

The survey analyses all trips taken by city inhabitants regardless where they originated or terminated. All trips done by persons that are not inhabitants of the particular city and trips of commercial traffic (e.g. freight delivery, craftsmen driving to customers) were not surveyed with the method used.
Since only inhabitants of the particular city were questioned, most trips that originate and terminate outside the municipality and through trips as well as commercial trips cannot be surveyed with the method (figure 2). Of all the trips in, to and from a city, results of this survey only include trips made by residents of the city. This is indicated in the following report and in diagrams and tables with the expression “all trips of inhabitants”.

![Figure 2: Spatial distribution of trips in relation to city boundaries](image)

2.2 DEFINITIONS

2.2.1 Trip/movement

For the purposes of this survey a trip is defined as a person’s change in location with an origin and/or destination, which lies beyond the property on which the participating person lives.

One trip is defined exactly by one purpose (see chapter 2.2.2) and two locations (origin, destination). One trip may include different stages with different means of transport (e.g. by bike to tram stop and by tram to workplace). As long as the purpose does not change the combi-

Ahrens et al., 2009, S.6. Translated into English
nation of these stages is regarded as one trip\(^7\). The survey does not record different trip stages. The mode of one trip with several stages is assigned to the mode of the longest stage under consideration of a predefined decision hierarchy (see chapter 2.2.3). Also short trips (e.g. to put a letter in a mailbox) are likewise independent trips and have to be explicitly recorded.

Roundtrips (e.g. taking a walk), where the origin and destination are identical, are counted as two separate trips. Length and distance of the originally-specified trip are divided in half.

2.2.2 Purpose of trips

In general the purpose of a trip is defined by the activity at the destination. In the course of this survey the purpose of a trip is characterised with the type of the destination. Therefore trips home are assigned to the purpose “Home” which is not in accordance with the definition of trip purpose in the literature an of some other surveys. However, this approach makes it easier to use the results for modelling the great number of home trips in traffic models more accurately.

As part of this study, participants were questioned in detail about 17 purposes which were combined into six main purpose groups. The following table shows the classifications used.

\(^7\) The purpose of the trip is changing when the person interviewed e.g. does some shopping on the way home from work. These are two trips: one for shopping and one back home.
Table 1: Main Purpose of trips and corresponding categories from “Mobility in towns”

In case the person interviewed had numerous work trips (e.g. as a craftsman), he/she was asked to only report the first and the last work trip of the day.
2.2.3 Means of transport

For analysing modal split the various means of transport had to be aggregated. The attribution of means of transport to four groups of main transport modes is given in table 2.

<table>
<thead>
<tr>
<th>Main modes of transport</th>
<th>Private car use</th>
<th>Public Transport</th>
<th>Bicycle</th>
<th>Walking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver in car from household</td>
<td>Long-distance train</td>
<td>Bicycle</td>
<td>Walking</td>
<td></td>
</tr>
<tr>
<td>Driver in other car</td>
<td>Regional train</td>
<td></td>
<td>Other (e.g. skateboard, inline skates)</td>
<td></td>
</tr>
<tr>
<td>Passenger in car from household</td>
<td>S-Bahn (local train)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passenger in other car</td>
<td>Underground train</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorcycle</td>
<td>Tram</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Others (e.g. airplane, taxi, ferry)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Main modes of transport and corresponding categories at questionnaire

To determine the travel mode of a trip, the persons interviewed could choose from the categories shown above. When more than one means was used during one trip, a main means of transport with the largest stage length (distance) was assigned. The order of priority given below shows, to which means of transport usually the longest stage of a trip is assigned:

1. Long-distance train
2. Regional train
3. S-Bahn (local train)
4. Underground train
5. Tram
6. Bus
7. Passenger in other car
8. Passenger in car belonging to own household
9. Driver in other car
10. Driver in car belonging to own household
11. Motorcycle
12. Bicycle
13. Walking

In case the person interviewed answered with “other means of transport” for his/her trip the assignment of the main means of transport was done manually for this trip8.

2.2.4 Statistical expressions

This chapter includes definitions of expressions from statistics that will be used in the following document.

Gross sample

The gross sample (n_{Gross}) describes the number of persons or households that have to be drawn at the very beginning of the survey. The gross sample size has to be big enough to ensure a defined net sample under the conditions of non-response and not usable interviews.

Net sample

The net sample (n_{Net}) of a survey is the amount of answers collected in the final interview database. Only those datasets will be used for analysis. This sample will differ from the gross sample due to incomplete or implausible datasets or non-response. Since the goal was to achieve a net sample size of about 1,000 interviews in this survey, the gross sample had to be larger9.

8 During interview the persons could specify their “other means of transport” in a free text field. When “other means of transport” could be categorised as a public means of transport (e.g. airplane, taxi, ferry…) this “other means of transport” was chosen as main means of transport. If “other means of transport” was specified as being an unmotorised means of transport (e.g. skateboard, inline skates …) this “other means of transport” was identified as having lowest priority.

9 The factor to calculate the gross sample depends on the estimated response rate, average number of persons per household and a security factor (about 1.2).
Response rate

Response rate is defined as the proportion of usable interviews for the final analysis (net sample) to the sample size drawn at the beginning of the sample (gross sample). The response rate is often seen as an indicator for the quality of a survey\(^\text{10}\).

2.3 SURVEY PERIOD AND TEST DAYS

The survey was originally supposed to take place in all cities of the Central MeetBike project simultaneously. Due to delays in drawing the sample as well as organisational and financing problems in several cities it was decided to use different survey periods. The comparability of the periods was maintained. Each of the survey periods was chosen such that the period closely represents the average annual values. In the case of the city of Uherské Hradiště the survey took place from April 4\(^{th}\) to May 31\(^{st}\) 2012. The survey was conducted on workdays in the middle of the week, on Tuesdays, Wednesdays and Thursdays. Days, which fell or bordered on holidays, were excluded.

2.4 RECORDED CHARACTERISTICS AND QUESTIONNAIRE

The survey was conducted as a household survey. Next to household and individual characteristics all members of randomly chosen households were questioned about their trips on test days. The collected characteristics can be accordingly divided into three categories.

2.4.1 Household characteristics

Household characteristics describe the situational conditions of those living in the household and help to classify the household according to transport-related factors. Therefore the following characteristics were collected for each household:

- number of persons in household
- number of vehicles in household

\(^{10}\) A low response rate can correspond with a low reliability of the data, when the persons not responding are having different mobility behaviour. One can analyse the relationship between non-response and the accuracy of the survey statistic. Due to low budget for the surveys in the CMB project this was not done in the course of this survey.
annual vehicle kilometres travelled for the most-used car and bicycle
parking place for the most-used car and bicycle
availability and amount of transferable public transport (PT) season passes in household
walking time to the next PT stop
monthly household net income

2.4.2 Characteristics of persons

Descriptive characteristics (e.g. a person’s stage in life) of the persons surveyed are a necessary requirement for the causal analysis of mobility behaviour. Therefore the following individual characteristics of all persons in the household were collected as differentiated as possible:

- age
- sex
- occupation and type of profession
- professional training
- possession of drivers license
- availability of household vehicle on test day
- normalcy of test day
- predominate-ly used public transport ticket
- walking time to most-used PT stations
- potential mobility limitations

In addition general characteristics regarding mobility on the test day were collected for each person in the household. Specifically this concerns the following:

- weather on test day
- person’s presence in the city
• whether the place of residence was left
• if applicable the reason for non-mobility
• if applicable the type and place of departure of the first trip

2.4.3 Trip characteristics

The specific values regarding the mobility behaviour of a person can be determined through the sequence and manner of all trips (changes of location). For this reason the following characteristics were gathered for each person and each trip:

• time of trip start
• trip purpose and destination
• mode of transport used (can be more than one)
• number of accompanying persons (from household and other persons)
• number of people in vehicle
• location and type of destination
• arrival time
• trip length

2.4.4 Questionnaire

Particulars regarding the questions and requirements for answers along with the layout of the written survey can be found in appendix 1.
2.5 FURTHER INTERVIEW MATERIALS

In all cities of the Central MeetBike survey – except Prešov – each household received a letter in preparation for the interview. It includes the following parts:

- Announcement letter (figure 3)
- Memory jogger (figure 4)

In Prešov, where there was no preliminary mailing of survey information, the survey was announced to residents through posters and informational pieces on the radio. So neither an announcement letter nor a memory jogger – as explained below – was sent out.

2.5.1 Announcement letter

The respective city or a representative of the city was in charge of mailing the letters. The accompanying letter was written by the cities while the TU Dresden ensured that the comparability was maintained. The announcement letter contains the following information (figure 3):

- information on the survey topic
- the exact date of the survey day
- instructions for filling out the memory jogger
- information and appointment for the home visit of the interviewer
- the number of the toll-free telephone hotline
- a thank you for their participation in the survey
Memory joggers help to make notes of the trips, which have to be recorded during the interviews on the next day (figure 4). These forms were sent to all households along with the announcement letter.
Figure 4: First page of Memory Jogger (Czech version)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>_20 hod.</td>
<td>Cesta do práce</td>
<td>Přejíždí k autobusu pak autopscény, pak příjezd</td>
<td>_8_10 hod.</td>
<td>10,5 km</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>____ hod.</td>
<td>____ hod.</td>
<td>____ hod.</td>
<td>____ hod.</td>
<td>____ km</td>
<td></td>
</tr>
</tbody>
</table>
3. IMPLEMENTATION OF THE SURVEY

3.1 SAMPLE CHARACTERISTICS AND DRAWING OF SAMPLE

3.1.1 Basics

The goal of the survey in each city is to reach a net survey of 1,000 persons. Therefore a random sampling had to be done as a first step. Depending on the availability of registers in the city, this random sample can be determined according to one of the following ways:

- drawing from a register of residents\(^{11}\) (chapter 3.1.2)
- drawing from an address register\(^{12}\) (chapter 3.1.3)
- using the random route method\(^{13}\) (chapter 3.1.4)

In the course of the model method SrV the random sample is usually drawn from the register of residents. Thus every person independent from age, nationality and environment (city district, building structure) has the same probability to be drawn. This ensures that the sample is representative for these parameters of the population. Additionally the register of residents is usually easily available for the cities and contains all relevant information for sampling (for example name, age, address).

During the surveys of the Central MeetBike project this approach had to be changed, because not all the cities could provide such a register. Thus TU Dresden developed methods to draw a random sample also using two different ways (address register and random route).

If there was no register of inhabitants available, a register of addresses was used for random drawing. This register only provides the user with addresses of the particular city without any link to households at these addresses. Along with that come some problems to identify specific households, because a household is not equal to an address in e.g. multi apartment buildings. The solution of this problem is described in chapter 3.1.3.

\(^{11}\) This is a database of registered inhabitants of the city. It contains each person as one dataset and (at least) his/her date of birth and address (chapter 3.1.2). This register usually is available at the statistical bureau of a city or at the civil registry office.

\(^{12}\) This is a database including addresses that consists of street name, house number and city district (chapter 3.1.3). It may be available at the city administration or at municipal organisation such as local energy supplier.

\(^{13}\) This is a method to identify households by walking through the city districts and choosing them respecting given rules (chapter 3.1.4).
In the city of Prešov neither a register of residents nor a register of addresses was available. In order to ensure that households were "drawn" randomly a third method was adopted: with the Random-Route-Method it is possible to randomly identify households while walking through the city. The method is described in chapter 3.1.4.

Table 3 shows which method was used in each Central MeetBike city.

<table>
<thead>
<tr>
<th>City</th>
<th>Drawing from a register of residents (chapter 3.1.2)</th>
<th>Drawing from a register of addresses (chapter 3.1.3)</th>
<th>Random-Route method (chapter 3.1.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gdańsk (PL)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tczew (PL)</td>
<td>X (planned)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pardubice (CZ)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uherské Hradiště (CZ)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Žilina (SK)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prešov (SK)</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Table 3: Method of drawing the sample in each city

TU Dresden supported the cities in putting together requirements for drawing a sample, which could be made available to the respective bureau for statistics or the company conducting the survey.

The goal is 1,000 surveyed individuals (n_{Net}^{14}). The size of the sample population is determined based on experience gathered from earlier surveys. In larger cities 1,000 respondents are necessary when using a simple random sample in order to calculate the specific traffic volume for the entire city with 95% confidence interval and a margin of error of +/- 4% as well as for determining modal split (vehicle share) with a margin of error of +/- 2 percentage points. The sample size always is a compromise between accuracy and cost.

The sample size, relevant for drawing the sample, differs from the target size mentioned

14 for definition see chapter 2.2.4
above. This is due to response deficiencies such as non-response or incomplete interviews. In order to counteract these discrepancies an oversized sample population (n_{Gross}) was drawn so that, in the end, the number of usable interviews (n_{Net}) which could be analysed was about 1,000.

3.1.2 Drawing from register of residents

If a register of residents was available for the survey, drawing the sample from this register was the preferred method. This register lists all persons registered in the particular city with (at least) their date of birth and address.

The cities were able to choose between two methods of drawing the sample, both of which drew random samples.

- **Method 1**: Simple random sample: Each unit of the total population was assigned a random number. The total population was subsequently sorted according to the random number. Beginning with the first entry, all consecutive entries were selected until the required sample size was reached.

<table>
<thead>
<tr>
<th>Population (not sorted)</th>
<th>Population (sorted by random number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of person</td>
<td>Random number</td>
</tr>
<tr>
<td>1</td>
<td>0.24124007</td>
</tr>
<tr>
<td>2</td>
<td>0.04246308</td>
</tr>
<tr>
<td>3</td>
<td>0.27632941</td>
</tr>
<tr>
<td>4</td>
<td>0.18420375</td>
</tr>
<tr>
<td>5</td>
<td>0.99205507</td>
</tr>
<tr>
<td>6</td>
<td>0.49371558</td>
</tr>
<tr>
<td>7</td>
<td>0.61239002</td>
</tr>
<tr>
<td>8</td>
<td>0.11153661</td>
</tr>
<tr>
<td>9</td>
<td>0.54799921</td>
</tr>
<tr>
<td>10</td>
<td>0.60231511</td>
</tr>
</tbody>
</table>

 Table 4: Example how to identify 3 persons in a population of 10 persons with method 1

- **Method 2**: Random sample with fixed step size: The names in the register were sorted alphabetically by last name. Every i^{th} entry of the total population was selected for

15 for definition see chapter 2.2.4
the sample, whereby “i” is the quotient of total number of residents and the required size of the selected sample.

The first method was to be preferred, because this method ensures unrestricted random sampling. However, if this was not technically possible, then the second method could be utilized. In both cases the resulting samples fulfilled the criterion that they are random. Both methods ensure that distribution of residents into districts of particular city and sociological parameters (for example age, sex) were respected, because each person had the same probability to be drawn.

It was a mayor goal of the survey to describe mobility behaviour of persons in a household context16. Therefore the sample of persons that was generated with the method described above, had to be transferred into a sample of households in a second step.

For this reason the address assigned to each person was defined as the address of a household. When sending survey documents, the household was contacted using the last name of the person drawn. Even if more than one person in a household was drawn, it was ensured that the household was entered only once into the household sample. Drawing persons and assigning households results in a PPS (Probability Proportional to Size) sample in which the probability of selection increases proportionally with household size. This effect is taken into account by applying weighting factors.

\subsection{3.1.3 Drawing from register of addresses}

If not a register of residents but an address register was available, the sample had to be won on this basis. In this case, the individual households (the decisive sampling unit) could not be drawn from the address register in a representative way, because several households can live in one building with the same address.

For this reasons, the sample drawing had to be carried out in multiple steps:

16 Mobility behaviour of individual persons usually is a result of complex interactions of mobility decisions within the household. The availability of only one car for all household members and the necessity to accompany young children are only two examples of these household connected restrictions. Therefore households have been the analytical unit in German mobility surveys (for example “SrV-Mobility in towns”) since more than 40 years (Hubrich/ Wittwer, 2011, p.2).
1) A number of addresses from the address register had to be calculated randomly (methods see chapter 3.1.2) for each city district separately.

2) Interviewers were then tasked with counting the number of households at each address drawn in step 1 and noting the names of the households in a field journal. The number of households per address then defines the address type (e.g. “Building with 5 flats”).

3) Distribution of address types was calculated for each district in the city.

4) A register including the following columns was prepared: city district, address, address type, household name.

5) Random drawing of households was done from the register prepared in step 4. It accounted for the distribution of address types in the district17.

In the end there was a database available that includes not only addresses, but also corresponding names of households. Therefore preparatory survey documents could then be sent to selected households before the actual interviewing took place (see chapter 3.2 and after).

3.1.4 Drawing by “Random Route Method”

In Prešov there was neither a residential nor an address register available. Therefore the Random Route Method was used. The sample households selected using this method likewise fulfil the criterion for a random sample and are therefore representative for the entire city. In the course of the Random Route Method the sampling is done by staff walking through the city and collecting households following specific instructions (see descriptions below). In order to reduce costs by not sending out the staff twice for sampling and implementation of interviews, these two processes were combined into one process in Prešov.

The following steps had to be completed:

1. **Calculating the net sample per district and week**

The target sample size is divided amongst districts based on residential distribution and divided equally throughout the duration of the fieldwork.

17 It was assumed that the type of the building has an influence on the mobility behaviour of the residents, because larger buildings are usually better connected to public transport systems, whereas single-family houses are not. Therefore it was necessary to interview households from each address type.
This sample is distributed across a total of 30 districts in the city of Prešov. The proportional number of residents for a district (i) was calculated as follows:

\[n_{\text{Net},i} = n_{\text{Net}} \times \frac{\text{residents}_i}{\text{residents}} \]

The results for \(n_{\text{net},i} \) are rounded up to the next whole number.

2. **Determining the start address**

The interviewer receives a street name and house number in a district as a random starting point. Specified walking instructions were then given to the interviewers, which had to be respected while identifying the random households for the interviews.

The random choice of the starting address was based on a street directory. If a street directory was not available then one had to be created. The street directory had to contain the following information: street name, range of addresses and the district in which the street is located. If a street ran through multiple districts then a district could be matched to a section of street by means of the addresses. The directory was subsequently sorted by district.

The number of required starting addresses \(n_{\text{ADR}} \) was determined by the number of interviewers and survey days per district. Starting streets were chosen from the list of streets per district using a random selection process. The starting house numbers were then determined using random numbers. If a generated house number did not exist or was not in the district then the process was to be continued until an appropriate random number was generated.

3. **Preparing the work schedule**

Work schedules were completed based on the calculated net sample size per district and survey day. For interviews the time period from 4:00pm to 7:00pm (three hours) was available per interview day.
4. **Carrying out the interviews**

The interviews were carried out according to the general rules described in chapters 3.2.3 and 3.2.4. In the case of sampling using the random route method the interviewers were instructed to determine their walking route according to the description below\(^{18}\):

- **Street side:** The interviewer walks along the side of the street on which the starting address is found.

- **Walking direction:** If the starting house number is even, then the walking direction is ascending. If the starting house number is odd, then the walking direction is descending.

- **Increment:** Every third household is stopped at. For single-family homes this means every third house, for multi-family buildings every third doorbell, in which case, the interviewer begins counting from left to right and top to bottom. Empty houses or doorbells with no name have to be counted. Non-private houses and doorbells are skipped. Households which have already been interviewed are not counted.

- **Change in direction and behaviour at intersections:** At intersections the interviewer turns right on even days and left on odd days. If the required turn is not possible at a three-way intersection, then the interviewer continues walking straight.

- **New start after completing a street section:** If a street section is completed without the interviewer having come to an intersection he or she returns to the last intersection and turns right on even days and left on odd days. At a three-way intersection the interviewer turns onto the street which branches off.

3.2 IMPLEMENTATION OF INTERVIEWS

3.2.1 Overview

In the survey “Mobility in Towns” (SrV), the standard means of collecting information is via telephone, mail or through an online questionnaire. Deviating from this, a face-to-face meth-

\(^{18}\) Based on methods from Hoffmeyer-Zlotnik (2006, p.21), adapted to the given circumstances.
od was chosen for the Central MeetBike project in agreement with the project partners and with consideration for local factors. In this case the interviewer goes directly to the selected households in order to conduct the survey. Experience has shown that the quality of answers with this method is very high. In order to reach as many households as possible while they are at home, it is important to choose an appropriate time window for the survey. In coordination with the city of Uherské Hradiště, the time from 4:00p.m. to 8:00p.m. was determined to be particularly suitable.

3.2.2 Mailing of survey documents

In a face-to-face survey the complete questionnaire documents are not mailed. However, all households in every city participating – except in Prešov – received notice of the survey via mail. The respective test day was noted on the written announcement. Each household received information on data privacy with the written notice as well as a memory jogger for filling in information about trips of the test day. The interview always took place on the day following the travel day.

In Prešov, where the process of sampling and implementation of interviews was combined into one process, there was no preliminary mailing of survey information. The survey was announced to residents through posters and informational pieces on the radio. Households received privacy information directly from the interviewers. As in the other cities the interviews always took place on the day after the travel day.

3.2.3 Training of interviewers

Each interviewer was made familiar with the requirements of the interview during a training session that was implemented by the city or the data collection bureau. Training materials and guidelines were provided by TU Dresden. The following areas made up the training:

- general instructions on carrying out the interviews
• instructions on completing the questionnaires
• instructions on keeping the field journal
• handing out of the surveyor identification
• introductions for determining the walking route (only in case of Random-Route procedure)

The following information was given to the interviewer:

• documents from the interview training
• target number of respondents on interview day
• blank questionnaires
• interview field journal
• list of people already questioned (only in case of Random-Route procedure)
• starting address (only in case of Random-Route procedure)
• walking instructions (only in case of Random-Route procedure)

3.2.4 Face-to-face survey

Only households for which data was collected in full came into consideration for the final data analysis\(^1\). Information regarding households and persons was only to be given by persons of legal age. Answers for persons up to and including 17 years of age were given by a representative (e.g. parent or guardian). Information regarding trips was directly, i.e. personally, enquired only of persons over 14 years of age. For younger household members a representative could answer the questions. If a person who was to be questioned personally was not able to be reached on the survey day, a new interview appointment was to be made for this person. When possible, the appointment was rescheduled for within the same week. If that was not possible, a representative could answer the questions, if he or she was able to ensure that complete and correct answers would be given.

The interviews were carried out on each of the days following the test day (i.e. Wednesday, Thursday and Friday) between 4:00pm and 8:00pm. As soon as the interviewer reached his

\(^{1}\) This regulation exists due to the aim to picture complex interactions in mobility behaviour of individuals in their household. Furthermore there is a risk to regularly miss persons with special mobility behaviour during the interviews (e.g. father of family with long working times). This might influence the results systematically.
or her target (number of respondents on interview day) the interviews were able to be ended for that day. If the target of interviewed persons per day was reached, but there still was a part of a household to be interviewed, the interviewer had to finish interviewing the entire household before ending the interview day.

3.2.5 Monitoring of field time
The progress of the interviews was continually and randomly monitored during the fieldwork in order to verify the correctness of the assumptions made and to check whether or not the interview procedures were observed. Adjustments to the work schedules were to be made in the case of any deviations (higher or lower response rates20), for which purpose the interviewer was to keep a field journal.

Evaluating the field journals helped the data collection office to adjust the work schedules of interviewer or target number of interviews per day according to actual response rates during the survey period. Additionally, the list of households, which have already been interviewed, was prepared based on the journals.

3.2.6 Computer data input
The questionnaires were fed into a computer-based databank according to guidelines from the TU Dresden and the journals were evaluated. The results of the journal evaluation made it possible to control the data collection on short notice.

3.2.7 Reminder activities
Reminders were not planned for the face-to-face surveys. If test persons were not reached, the household was contacted again on the following day at a different time. If a third visit to a household was without success, the interviewer had to later question a replacement household.

20 see definitions chapter 2.2.4
3.2.8 Information, accompanying public relations

Public relations were coordinated by the cities. The TU Dresden did not provide any guidelines for this issue. In the city of Uherské Hradiště residents were informed about the survey through the announcement letter, articles in newsletters, magazines and on the internet as well as radio spots.

3.3 DATA ANALYSIS

3.3.1 Data preparation

The completed questionnaires and field journals were forwarded to the data collection office by the interviewers. The questionnaires were entered into a computer-supported database according to guidelines from the TU Dresden. The interviewers’ field journals were analysed, the results were used to react to false assumptions (e.g. length of interview) and to guide the collection of data.

The database of digitised questionnaires was submitted to the TU Dresden for initial analysis. As part of the initial review of the raw data, the consistency of the three survey levels – household, person and trip – amongst each other was checked. It was additionally checked whether all mandatory questions were answered. In the case that problems should arise at this stage, the data collection office had the opportunity to make corrections to the database.

Studies involving data collection are inherently subject to various influences on the margin of error. As part of the data preparation, the effects of

- **Survey Collection Errors** (knowingly or unknowingly providing false information when filling out questionnaires or during a telephone interview) and

- **Data Processing Errors** (input and output errors, mistakes in programming, equations or tabulating)

need to be minimized. Data preparation serves the goal of providing consistent and credible data for evaluation. This ensures the quality of study results.
As part of the data preparation, not credible (i.e. inconsistent, unusual or missing) information was manually identified. In doing so, to the following key points particular attention was given to:

- Is there information, for each household, on the household, on all persons and on trips?
- Are there missing answers to individual questions?
- Have the ranges of values in the response fields been complied with? Of concern are not only logical associations (e.g. an unusually high number of bicycles in the household) but also specifications such as how, for example, a refused answer is to be coded by the surveying institute.
- Are the given answers compatible with each other (e.g. age of interviewed person and possession of driving license)?
- Is the stated destination really located within or outside of the place of residence? Survey participants had the opportunity to specify their trip destination. This information was optional, however afterwards it was possible to examine the categorisation of the trip according to spatial characteristics (internal traffic, originating traffic, destination traffic).
- Does the trip numbering correspond to the start and end times of the individual trips?

In processing potentially not credible data the following three options were available:

- correction of individual characteristics
- removal, addition or adjustment of trips
- acceptance as unusual but allowable data

The correction of characteristics and the removal, addition or adjustment of trips only took place if the relevant changes were able to be derived from the context of the household (and only then).
3.3.2 Weighting of data

The objective of weighting the data is to correct for or minimise the systematic bias in the sample. Factors were thus developed, which were put to use in all analyses. The factors were the result of a comparison of various distributions in the base population and the sample. Information about the base population was provided by the cities.

Accordingly, survey data was weighted at the level of persons with regard to the following explanatory variables:

- distribution of number of inhabitants in city districts
- age distribution
- distribution according to sex

Since there was no information about distribution of household size in the cities taking part in the survey – except the city of Pardubice – no weighting for this specific parameter was done (which is equal to weighting factor 1 for every household). However, weighting according to household size is the standard used in the model survey SrV. Therefore households were weighted in the city of Pardubice where the required information was available.
4 RESULTS IN TABLES AND DIAGRAMS

Using the methodology described in the previous chapters, an extensive data set was created containing mobility-related information concerning households, persons and trips for the city of Uherské Hradiště. On the following pages, tables and diagrams describing the travel behaviour of Uherské Hradiště residents have been put together based upon methods used in the SrV.

The results will be discussed with respect to results from other Central MeetBike cities21. For several parameters the authors also provide a comparison to data collected during the SrV 2008 in Germany. This comparison serves to place the results from the CMB survey into context. In addition, the results from the SrV 2008 provide several indications of potential development paths for mobility in the Central MeetBike cities. The affluence and demographics of the Czech Republic, Poland and Slovakia are increasingly conforming to western European countries and mobility behaviour is experiencing lasting change. As a result, the comparative data from Germany take on relevance for transport planning in other Central European countries.

The results of the survey in Uherské Hradiště on the following pages are presented in four chapters:

4.1 Characteristics of the survey implementation and the sample
4.2 Household and vehicle-specific parameters
4.3 Mobility related facts about persons
4.4 Characteristics of trips

21 Unfortunately survey in the Polish city of Tczew was not finished by the finalisation of this report. Therefore there is no comparison to results from Tczew available.
4.1 CHARACTERISTICS OF THE SURVEY IMPLEMENTATION AND THE SAMPLE

4.1.1 Parameters of the survey

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Time</td>
<td>04.04.2012 - 31.05.2012</td>
</tr>
<tr>
<td>Response</td>
<td>55%</td>
</tr>
<tr>
<td>Households interviewed</td>
<td>424*</td>
</tr>
<tr>
<td>Persons interviewed</td>
<td>1215*</td>
</tr>
<tr>
<td>Trips gathered</td>
<td>2572*</td>
</tr>
</tbody>
</table>

* number may vary from number in diagrams on next pages due to selection of particular households/persons/trips

Table 5: Parameters of the survey implementation

Table 5 shows general characteristics of the survey in Uherské Hradiště. These are important for interpretation and comparison of the results. The survey was implemented in April and May 2012. This period was chosen because previous surveys implemented by the TU Dresden showed that mobility behaviour during this period (along with a period in autumn (September – November)) can be seen as representative for the whole year. Therefore, results of this survey represent mobility behaviour of Uherské Hradiště inhabitants on a normal working day (Tuesday – Thursday) for the whole year, which means these are mean values of winter and summer.

During implementation of the survey more than 1,000 persons were interviewed in Uherské Hradiště. This ensures statistical reliability for the results\(^{22}\). When more specific and complex combinations of parameters were analysed on demand of project partners (e.g. modal split based on trip length) reliability suffers. To what extent is indicated in the following chapters.

\(^{22}\) See chapter 3.1.1 for more information
4.1.2 Sample structure according to age and sex

Table 6 compares sample structure and official city statistics according to age. Unfortunately the official age statistics of Uherské Hradiště were not available for smaller groups. However, a comparison of age structure between the sample and the population shows very good conformability between both groups. Thus there should be no influences on the results from an unrepresentative age structure of the sample.

In comparison to German cities it is noticeable that there are many more children and teenagers under the age of 18 in the Uherské Hradiště sample (Germany: 9.8%23). In contrast the share of elderly people above 65 years is higher in German cities (Germany: 22.3%24).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
 & Sample structure & & Official city statistics & \\
 & Age & Male & Female & All persons & All persons \\
\hline
0 - 17 years & 16\% & 18\% & 17\% & 19\% \\
18 - 44 years & 37\% & 36\% & 36\% & 37\% \\
45 - 64 years & 29\% & 27\% & 28\% & 27\% \\
65 years and older & 18\% & 19\% & 19\% & 17\% \\
\hline
\end{tabular}
\caption{Sample structure according to age and sex}
\end{table}

23 Ahrens et al., 2009, Table 3.1
24 ibidem
4.1.3 Sample structure according to occupation and sex

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Male</th>
<th>Female</th>
<th>All Persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>not employed (unemployed, retiree, small children)</td>
<td>29%</td>
<td>35%</td>
<td>32%</td>
</tr>
<tr>
<td>employed (full time, part time)</td>
<td>52%</td>
<td>43%</td>
<td>47%</td>
</tr>
<tr>
<td>education (pupil, student, trainee)</td>
<td>19%</td>
<td>22%</td>
<td>21%</td>
</tr>
<tr>
<td></td>
<td>566 Persons</td>
<td>627 Persons</td>
<td>1193 Persons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Male</th>
<th>Female</th>
<th>All Persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>not employed (unemployed, retiree, small children)</td>
<td>36%</td>
<td>42%</td>
<td>39%</td>
</tr>
<tr>
<td>employed (full time, part time)</td>
<td>46%</td>
<td>40%</td>
<td>43%</td>
</tr>
<tr>
<td>education (pupil, student, trainee)</td>
<td>18%</td>
<td>18%</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td>8.190 Persons</td>
<td>8.710 Persons</td>
<td>16.900 Persons</td>
</tr>
</tbody>
</table>

* German cities are represented by the SrV-Städtepeigel - a pool of East German cities of a size from approx. 80.000 - 500.000 inhabitants from flat and hilly regions. The data is from 2008.

Table 7: Sample structure according to occupation and sex

Table 7 compares the sample structure according to occupation and sex in Uherské Hradiště and in East German cities. Unfortunately there were no official statistics about occupation of Uherské Hradiště inhabitants available. Thus it cannot be validated if the sample structure fully represents the population according to occupation. However, there is a hint that there are no influences to be expected: The sample structure according to occupation fits with the results of the sample structure based on age group. The group of persons in education corresponds with the – compared to German cities – high share of persons under 18 years of age.

In German cities, analysed with SrV 2008, 18% of all persons questioned were in education, which is lower than in Uherské Hradiště. Additionally the share of persons not employed is lower than in German cities (Germany: 39%), due to the smaller number of retirees and unemployed persons in the Uherské Hradiště sample.
4.1.4 Sample structure according to household size

Table 8: Sample structure according to household size

<table>
<thead>
<tr>
<th>Household size</th>
<th>Uherské Hradiště</th>
<th>German cities*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Person</td>
<td>15%</td>
<td>47%</td>
</tr>
<tr>
<td>2 Persons</td>
<td>32%</td>
<td>33%</td>
</tr>
<tr>
<td>3 Persons</td>
<td>21%</td>
<td>13%</td>
</tr>
<tr>
<td>4 Persons</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>5 and more Persons</td>
<td>10%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Average Household size in sample 2.87 1.82

* German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80.000 - 500.000 inhabitants from flat and hilly regions. The data is from 2008.

Table 8: Sample structure according to household size

Table 8 indicates the sample structure according to household size in Uherské Hradiště and East German cities. There was no information available to validate whether the sample structure in Uherské Hradiště is representative also in respect of household size. However, since every household has the same probability to be drawn from the register of addresses, there should not be any major influences.

A comparison of the distribution of household size of the sample in Uherské Hradiště and German cities shows significant differences. The share of 1-person-households in German cities is approximately 3 times higher than in Uherské Hradiště. By contrast approx. one third of all households in the sample of Uherské Hradiště have more than 4 members. In German cities this number is much lower (7%).

A comparison of household size in cities, which were surveyed in Central MeetBike and in cities from Germany, reveals similar results for all CMB cities. Households still generally seem to be bigger in the surveyed cities from Czech Republic, Slovakia and Poland. But also here the trend towards smaller households can be expected.
4.2 HOUSEHOLD AND VEHICLE-SPECIFIC PARAMETERS

4.2.1 Household-specific parameters

Figure 5: Motorisation with cars of households

One quarter of all households do not own a car in Uherské Hradiště, while in Germany this number is much higher. In contrast to motorisation of persons, the availability of a car on household level is higher in Uherské Hradiště than in German cities. This is mainly due to the larger size of households in Uherské Hradiště.

Among the partner cities of the Central MeetBike survey, only the city of Gdańsk has a larger number of households without a car (46%) than in German cities. This might be mainly influenced by the fact that Gdańsk is the largest of all cities surveyed with the highest share of 1-person-households among all Polish, Czech and Slovak Central MeetBike cities. In all remaining cities this share of households without a car is about 24-31%, which is much lower than in German cities.

* German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80,000 - 500,000 inhabitants from flat and hilly regions. The data is from 2008.
Table 9: Motorisation of households and household income

Table 9 shows the number of cars that are available per 1,000 households in different household income classes. Households with more than approx. 36,000 CZK monthly household incomes usually have one car available. 41% of all households of the sample had less than 36,000 CZK available per month.

Figure 6 (next page) compares walking time from households to the closest public transport stop in Uherské Hradiště and in German cities.

The city of Uherské Hradiště is well developed with public transport. 56% of all inhabitants live within a 5 minute walking distance to the next bus stop. 15% have to walk longer than 10 minutes.

In comparison to results from Germany it can be stated that the share of people that do not know where the next public transport stop is located, is very low. Inhabitants of Uherské Hradiště seem to be better informed about their public transport system. This can also be interpreted as a hint that they are more accustomed to the use of their public transport system.
Figure 6: Walking time to public transport stop that is closest one from household

4.2.2 Parameters describing use of vehicles

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Uherské Hradiště</th>
<th>German cities*</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>average number of persons in cars</td>
<td>1,3</td>
<td>1,3</td>
<td>persons/car</td>
</tr>
<tr>
<td>average annual distance travelled by most used car of household (2010)</td>
<td>15,761</td>
<td>13,800</td>
<td>km/year,car</td>
</tr>
<tr>
<td>average annual distance travelled by most used bicycle of household (2010)</td>
<td>1148</td>
<td>not analysed</td>
<td>km/year,bicycle</td>
</tr>
</tbody>
</table>

* German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80,000 - 500,000 inhabitants from flat and hilly regions. The data is from 2008.

Table 10: Basic parameters of vehicle use

Table 10 shows basic parameters to describe the use of vehicles in Uherské Hradiště and in German cities. It can be stated that there is no major difference between car use in German cities and Uherské Hradiště. As for bicycle use comparison is not possible, because annual kilometres ridden by bicycle were not analysed in SrV.
In comparison of all cities surveyed in Central MeetBike it became clear that the amount of kilometres ridden by bike significantly increases with increasing modal split of cycling. The annual distance travelled by bicycle ranges from approx. 500km in Žilina to 1.650km in Pardubice.

Figure 7 shows where inhabitants of Uherské Hradiště usually park their car or bicycle at their place of residence in comparison to East German cities. The results for parking the car differ significantly between both surveys, because it is much less common to park one’s car on public areas in Uherské Hradiště than in German cities. It can be stated that it is also very uncommon to park bicycles on public areas in the surrounding of one’s place of residence. Private storing possibilities such as a cellar are used for almost every bicycle. This result for bicycles can be observed in other cities surveyed in Central MeetBike as well.

* German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80.000 - 500.000 inhabitants from flat and hilly regions. The data is from 2008.
** Parking space for bicycles was not analysed in SrV
4.3 MOBILITY RELATED FACTS ABOUT PERSONS

Table 11: Basic parameters of mobility behaviour of inhabitants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Uherské Hradiště</th>
<th>German cities**</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of trips per person and day (all persons)</td>
<td>2,12</td>
<td>3,10</td>
<td>trips/day</td>
</tr>
<tr>
<td>Share of persons with trips*</td>
<td>74%</td>
<td>88%</td>
<td></td>
</tr>
<tr>
<td>Number of trips per person and day (persons with trips)</td>
<td>3,03</td>
<td>3,50</td>
<td>trips/day</td>
</tr>
<tr>
<td>daily kilometres travelled</td>
<td>21,8</td>
<td>19,2</td>
<td>km/person,day</td>
</tr>
<tr>
<td>average time used for all trips per day</td>
<td>59,5</td>
<td>63,2</td>
<td>min/person,day</td>
</tr>
</tbody>
</table>

* Persons have not necessarily had trips on the test day. This number indicates how many persons did have trips on the test day.
** German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80.000 - 500.000 inhabitants from flat and hilly regions.

Table 11 compares basic parameters of mobility behaviour of inhabitants of Uherské Hradiště and from East German cities. Every person that had a trip on the test day reported 3.0 trips as an average for the whole. This means that a person that left from home (e.g. to work) usually did one additional trip (e.g. shopping) before returning home. However, 3.0 trips per person and day is significantly lower than in East German cities. Therefore it can be assumed that some trips might have not been reported during the interviews. But since similar results also occur in other Central MeetBike cities (see graph below), the small number of trips per day might also be caused by cultural differences between Germany and other Central European countries (e.g. fewer leisure trips on a normal working day, see chapter 4.4.2). In comparison the other Central MeetBike cities, the number of trips per person and day is relatively high (see Figure 8, next page).

Additionally it is worth mentioning that the share of persons without any trips on the test day was the highest among all cities surveyed. One of four persons had no trips on the test day in Uherské Hradiště, whereas this share is usually about one out of eight to ten.
Car availability is an important factor for individuals in their transport mode choice. Studies have shown that persons that do have a car available make significantly more trips by car than those without permanent access to a private car. In the course of the survey two relevant factors have been analysed:

Method 1: Direct question about availability of a private car at the test day: Persons interviewed could choose from three categories: „yes, unlimited“, „yes, with agreement“ and „no, no possibility“. This results in a subjective assessment of unlimited access to a private car of each individual. Figure 9 shows results of this analysis.

25 Ahrens et al., 2013, S.66
The availability of a car for inhabitants of Uherské Hradiště only differs slightly from German cities. The share of persons without access to a car on the test days is very similar in Uherské Hradiště and German cities. On the other hand the share of persons that had to make an agreement is a little bit higher, which points to a higher use of one vehicle by multiple persons in comparison to Germany. The situation with access to cars in the other Central MeetBike cities – except Prešov and Gdańsk – is, very similar to Uherské Hradiště and much more comparable to German cities. In Prešov and Gdańsk there are many more persons without access to a car on the particular test day.

Method 2: General access to a private car: In order to categorise inhabitants of a city it is relevant to differentiate between those who generally have access to a car and those who don’t. General access to a private car was not asked directly in the questionnaire, but it could be analysed from the database afterwards. A person generally has access to a private car, if there is a private car at the household and if the person has a drivers licence. Figure 10 shows the result of the analysis.
According to the definition of general access to a private car given on the last page, 68% of all inhabitants of Uherské Hradiště do generally have a car available for their daily trips. This is much more in comparison to the 57% surveyed in East German cities in 2008. Figure 9 shows that from these 68% in Uherské Hradiště approx. 34% can only use the car with an agreement with other users of the car (e.g. other household members).

Figure 11 shows possession of drivers licence for male and female persons of different ages. As in East German cities, fewer women have a drivers licence in Uherské Hradiště. However, in younger age classes below 45 years of age this slowly levels. In the Slovak city of Prešov rate of possession of drivers licence is the lowest among all Central MeetBike cities.
Figure 12 compares motorisation of inhabitants in Uherské Hradiště and in German cities. With 325 private cars per 1.000 inhabitants the motorisation for private cars is lower in Uherské Hradiště as compared to German cities. This is especially notable, because such a low level of motorisation was surveyed in Germany only in the capital of Berlin. According to experiences from German mobility surveys the motorisation is increasing in cities, while the number of inhabitants is decreasing. Therefore one would expect a higher motorisation in Uherské Hradiště. Low motorisation presents a favourable basis for sustainable mobility behaviour, because people without cars make significantly shorter trips and fewer trips by car. At the same time the inhabitants of Uherské Hradiště seem to be well equipped with bicycles. The number of bicycles per 1.000 inhabitants is 23% higher compared to German cities.

![Figure 12: Motorisation of inhabitants with cars and bicycles](image)

* Company cars are vehicles that are available at households also for private trips, but they are owned by companies
** German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80,000 - 500,000 inhabitants from flat and hilly regions. The data is from 2008.

After the political change in 1990, motorisation in East German cities doubled from about 200 to 400 cars per 1.000 inhabitants until 1998. Later, increase was only marginal. In Germany, the highest values of motorisation can be found in the countryside and in small cities. In Berlin the lowest motorisation was observed. It can be concluded that also in Uherské Hradiště motorisation will grow further.

26 Ahrens et al., 2013, S.66
However, low motorisation is favourable for environmental reasons. People without cars make significantly shorter trips and fewer trips by car and therefore cause less pollution and CO$_2$ emissions27.

Figure 13: Motorisation of inhabitants with cars and bicycles in CMB and SrV cities

In comparison to other Central MeetBike cities, Uherské Hradiště has an average motorisation. With approx. 400 cars/1.000 inhabitants (private and company cars) this number is 12\% lower than in German cities.

Gdańsk showed exceptionally low rates of motorisation both for cars and for bicycles. In contrast, Czech cities showed very high rates of bicycles per 1.000 inhabitants and the city of Pardubice also had a motorisation rate that was on the same level as German cities.

Due to the still lower motorisation rates, share of trips done by car in Uherské Hradiště is lower than in Germany (see chapter 4.4). However, it can be expected that car ownership might increase during the next years. With this, problems of space consumption for streets and car parking, emissions and accidents will increase as well. Whether this development is desired has to be discussed and decided in the partner cities.

27 Ahrens et al., 2013, S.66
4.4 CHARACTERISTICS OF TRIPS

Table 12: Duration and length of trips by inhabitants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Uherské Hradiště</th>
<th>German cities*</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>average duration of all trips</td>
<td>18,5</td>
<td>21,5</td>
<td>min/trip</td>
</tr>
<tr>
<td>average duration of all trips within the city</td>
<td>15,2</td>
<td>19,0</td>
<td>min/trip</td>
</tr>
<tr>
<td>average length of all trips</td>
<td>5,7</td>
<td>6,5</td>
<td>km/trip</td>
</tr>
<tr>
<td>average length of all trips within the city</td>
<td>2,3</td>
<td>4,2</td>
<td>km/trip</td>
</tr>
</tbody>
</table>

* German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80.000 - 500.000 inhabitants from flat and hilly regions.

Table 12 compares duration and length of trips in Uherské Hradiště and in East German cities. Trips are shorter in distance and time in Uherské Hradiště than in East German cities.

4.4.1 Modal split by inhabitants

Modal split of trips is the most common indicator to describe the mobility behaviour. In the course of this survey modal split was analysed for all trips by inhabitants (Figure 14) and for all trips within the city boundaries by inhabitants (Figure 16).
Figure 14 indicates the modal split of all trips done by inhabitants of Uherské Hradiště in comparison to inhabitants of East German cities. The share of trips by car is lower in Uherské Hradiště (36%) than in German cities (42%). This results in a significantly higher share of trips taken by transport modes of the mobility coalition (walking, cycling and public transport). This is an indicator of a more sustainable mobility behaviour among the inhabitants of Uherské Hradiště compared with German cities. However, since the share of trips done by car will very likely increase over the next years in Uherské Hradiště, the development might lead to a similar situation as in Germany.

Uherské Hradiště is a rather small city among all the cities of the Central MeetBike project. The compact structure of the city might be one reason for the inhabitants of Uherské Hradiště to have such a high number of walking trips. Also cycling is very popular in Uherské Hradiště. The modal split of bicycle transport is higher than in average German cities. In contrast public transport is much less important. However, transport policy in Uherské Hradiště should merely focus on keeping the current state of mobility behaviour of its inhabitants and provide good and safe conditions for all transport modes.

As a result of the survey it became clear that inhabitants of Uherské Hradiště, along with those in other Central European cities, still have a more sustainable mobility behaviour than in many West European cities (Figure 15). The share of trips by car is relatively low and the coalition of walking, cycling and public transport is strong. In Uherské Hradiště this is mainly the result of a relatively high modal split for cycling in combination with many more walking trips. However, the partners of the Central MeetBike project see some potential for even more cycling in order to stop the increase of trips done by car. Cycling is a zero emission individual mode, which is healthy exercise at the same time.
Figure 15: Modal split of inhabitants in CMB and SrV cities

71% of all trips analysed in the survey in Uherské Hradiště started and terminated within the city boundaries. This relatively low share is a hint that there are numerous transport connections between Uherské Hradiště and its surrounding cities.

Modal split of these “trips within the city” differs from the results presented above. It became clear that for trips within the city the car is used less whereas there are many more walking trips in comparison to all trips of inhabitants. Almost every second trip within the city of Uherské Hradiště is done by walking.

Figure 16: Modal split of trips within the city by inhabitants

* German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80,000 - 500,000 inhabitants from flat and hilly regions. The data is from 2008.
Modal split varies with respect to several trip characteristics. On the following pages, modal split according to trip length (Figure 17) and by purpose of trip is analysed (Figure 19).

Modal split and trip lengths, Uherské Hradiště, N=2.479 trips

Against the background of only very little numbers of trips for different purposes, numbers from Uherské Hradiště are only an indication for the modal split of the population.

![Modal split and trip lengths](image)

Figure 17: Modal split based on trip length

This graph shows modal split of inhabitants in Uherské Hradiště in four trip length classes. It is not surprising that the share of walking trips decreases with increasing trip length while the share of trips by car and public transport simultaneously increase. However, it is noticeable that the number of trips with distances below 5km is very high in Uherské Hradiště (82%). Trips from this length class are usually seen as very suitable for bicycle transport, because cycling is the fastest transport mode from door to door for trips below 5 to 6 km\(^2\). In German

\(^2\)UBA, 2009, S.10
cities about 66% of all trips by inhabitants are shorter than 5 km. In Uherské Hradiště trips with a distance between 5 and 10 kilometres also have an above-average bicycle share. Among the cities that were surveyed in the course of Central MeetBike only in the city of Gdańsk is this ratio of trips shorter than 5 km at the same level as in German cities. In the remaining cities 77 – 82% of all trips analysed were shorter than 5 km.

4.4.2 Purpose of trips

This graph shows the purpose of trips in Uherské Hradiště in comparison to German cities. With 37% of the trips having "home" as the destination this number is at the same level as in East German cities (41%). Furthermore it can be analysed that, on working days, inhabitants of Uherské Hradiště focus on obligatory trips such as going to work or school than on occasional trips (e.g. shopping or leisure trips). In comparison to other Central MeetBike cities similar tendencies of more work trips and less shopping and leisure trips can be observed as well.

* German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80,000 - 500,000 inhabitants from flat and hilly regions. The data is from 2008.

Figure 18: Purpose of trips

29 For definition of trip purposes: p.12.
From former surveys implemented in Germany, the authors know about the fact that modal split not only differs according to trip length but also with respect to trip purpose. Results of this analysis are shown in Figure 19.

In comparison to German cities the use of the car for trips to school (German cities: 34%) and for leisure trips (German cities: 38%) is much lower in Uherské Hradiště. This mainly results from a significantly stronger use of walking for these purposes in Uherské Hradiště. As for work trips the share for cars (German cities: 55%) is only slightly lower in Uherské Hradiště. The modal split of bicycle transport for work trips is almost the same as in German cities (15%). There are more inhabitants walking to their place of work in Uherské Hradiště in comparison to German cities (11%). In contrast, public transport is less used in Uherské Hradiště (German cities: 20%).

Figure 19: Modal split by purpose of trips

Against the background of only very little numbers of trips for different purposes, numbers from Uherské Hradiště are only an indication for the modal split of the population.
5. SOURCES

UBA – Umweltbundesamt (German Federal Environmental Agency): „Sprit sparen und mobil sein“ („Save fuel and be mobile“). Dessau-Rosslau. 2009
6. ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMB</td>
<td>Central MeetBike</td>
</tr>
<tr>
<td>e.g.</td>
<td>exempli gratia, for example</td>
</tr>
<tr>
<td>ERDF</td>
<td>European Regional Development Fund</td>
</tr>
<tr>
<td>ibidem</td>
<td>at the same place</td>
</tr>
<tr>
<td>i.e.</td>
<td>id est, in other words</td>
</tr>
<tr>
<td>inhab.</td>
<td>Inhabitants</td>
</tr>
<tr>
<td>PT</td>
<td>public transport</td>
</tr>
<tr>
<td>SrV</td>
<td>System of representative surveys on mobility behaviour</td>
</tr>
</tbody>
</table>
7. APPENDICES
Appendix 1 – Questionnaire Czech language

Questionnaire for household

<table>
<thead>
<tr>
<th>Kód</th>
<th>K.</th>
<th>Počet osob v domácnosti, včetně Vás?</th>
<th>Počet osob oslovujících vozidel</th>
<th>Počet osob oslovujících jízdních kol</th>
<th>Ostatní vozidla u Vás</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VELKOST DOMÁCNOSTI</th>
<th>Pokud není v dané kategorie žádné, výplňte, prosím „ne“.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolik osob žije ve Vaší domácnosti, včetně Vás?</td>
<td>Počet osob oslovujících vozidel</td>
</tr>
<tr>
<td>Počet osob oslovujících vozidel</td>
<td>Počet osob oslovujících jízdních kol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POČET VOZIDEL</th>
<th>Pokud není v dané kategorie žádné, výplňte, prosím „ne“.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolik z následujících druhů vozidel je ve Vaší domácnosti?</td>
<td>Počet osob oslovujících vozidel</td>
</tr>
<tr>
<td>Počet osob oslovujících vozidel</td>
<td>Počet osob oslovujících jízdních kol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARAMETRY VOZIDEL</th>
<th>Pokud není v dané kategorie žádné, výplňte, prosím „ne“.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ostatní automobil u Vás</td>
<td>Ostatní jízdní kola u Vás</td>
</tr>
<tr>
<td>Ostatní automobil u Vás</td>
<td>Ostatní jízdní kola u Vás</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEJBLÍZŠÍ ZASTAVKA</th>
<th>Jaký jde odnesený výkon (zatím) vašeho osobního vozidla v roce 2019?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ostatní automobil u Vás</td>
<td>Ostatní jízdní kola u Vás</td>
</tr>
<tr>
<td>Ostatní automobil u Vás</td>
<td>Ostatní jízdní kola u Vás</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRŮMĚRY DOMÁCNOSTI</th>
<th>Pokud není v dané kategorie žádné, výplňte, prosím „ne“.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet osob oslovujících vozidel</td>
<td>Počet osob oslovujících jízdních kol</td>
</tr>
<tr>
<td>Počet osob oslovujících vozidel</td>
<td>Počet osob oslovujících jízdních kol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRŮMĚRY DOMÁCNOSTI</th>
<th>Pokud není v dané kategorie žádné, výplňte, prosím „ne“.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet osob oslovujících vozidel</td>
<td>Počet osob oslovujících jízdních kol</td>
</tr>
<tr>
<td>Počet osob oslovujících vozidel</td>
<td>Počet osob oslovujících jízdních kol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRŮMĚRY DOMÁCNOSTI</th>
<th>Pokud není v dané kategorie žádné, výplňte, prosím „ne“.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet osob oslovujících vozidel</td>
<td>Počet osob oslovujících jízdních kol</td>
</tr>
<tr>
<td>Počet osob oslovujících vozidel</td>
<td>Počet osob oslovujících jízdních kol</td>
</tr>
</tbody>
</table>
Questionnaire for person – page 1

Osobní dotazník – strana 1

Číslo osoby:

<table>
<thead>
<tr>
<th>Nejstarší osoba</th>
<th>Druhá nejstarší osoba</th>
<th>Třetí nejstarší osoba</th>
<th>Čtvrtá nejstarší osoba</th>
<th>Pátá nejstarší osoba</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Obvyklý průběh rozhodného dne práce

- Odpovídá průběh vedeného dne práce obvyklému průběhu cizého dne v jejich firmě?
 - Ano
 - Ne

Omezení mobilitu

- Je omezený v zdravotních důvodech?
 - Ano, postižením ohrožený
 - Ano, zdravotním postižením
 - Ano, jiným omezením
 - Ne

Možnost též větší míru posílení?

- Možnost též větší míru posílení?
 - Ano
 - Ne

Výdejní činnosti

- Zákaznická služba
 - Učebnictví, rekultikace

Nejvýšší ukončené vzdělání

- Ukončení základního vzdělání
 - Vzdělání bez maturování
 - Střední odborná s maturovou (ústní přísloví)
 - Vzdělání odborného vzdělání, vč. částního zastoupení
 - Vysokoškolské (Mgr., Ing., et al.)

Nejvýšší ukončené vzdělání

- Vzdělání odborná škola, střední odborná škola
 - Mistrovská škola, technická škola, odborné učiliště, větší odborné školy, odborná akademie
 - Vysoká škola nebo odborná vysoká škola
 - Bez vzdělání

This project is implemented through the CENTRAL EUROPE Programme co-financed by the IPA.
Questionnaire for person – page 2

<table>
<thead>
<tr>
<th>Vlastnictví řidicího průkazu</th>
<th>Osobní automobil (v pořadí 8, 7. m.)</th>
<th>Číslo osoby:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ne</td>
<td>Ne</td>
<td>Ne</td>
<td>Ne</td>
<td>Ne</td>
<td>Ne</td>
</tr>
<tr>
<td>Možnost užívání motorového vozidla</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Vyúžívání verejné dopravy</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Druh jízdního dokladu</th>
<th>Jednotlivý jízdenka</th>
<th>Jednocestní jízdenka</th>
<th>Všechna jízdenka</th>
<th>Jízdenka pro všechny vozidla</th>
<th>Jízdenka pro jízdu</th>
<th>Jízdenka pro jízdu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nejvyužívanější zastávky</th>
<th>Dobová doba</th>
<th>Dobová doba</th>
<th>Dobová doba</th>
<th>Dobová doba</th>
<th>Dobová doba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>min</td>
<td>min</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>Pokud na zastávce dojde neve, při</td>
<td>min</td>
<td>min</td>
<td>min</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>o žádou místě nebo nevyužívá zastávku</td>
<td>min</td>
<td>min</td>
<td>min</td>
<td>min</td>
<td>min</td>
</tr>
</tbody>
</table>
Questionnaire for trips – page 1

První ocest

<table>
<thead>
<tr>
<th>Zde (Co)</th>
<th>Zde (Co)</th>
<th>Zde (Co)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Druhá ocest

<table>
<thead>
<tr>
<th>Zde (Co)</th>
<th>Zde (Co)</th>
<th>Zde (Co)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Třetí ocest

<table>
<thead>
<tr>
<th>Zde (Co)</th>
<th>Zde (Co)</th>
<th>Zde (Co)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UPOZORNĚNÍ

Rukou nedoplněné a nebude po určitém čase možné dokončit.

DOPEVLÁNO

Nebojte se doplnit alespoň. Není to problém.

Hodnocení

- Vysoká
- Střední
- Nízká

Jméno, příjmení,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adresa,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pohlaví,

<table>
<thead>
<tr>
<th>Muž</th>
<th>Žena</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Číslo telefonu,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vlastnické,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vystup,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zvážená,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upravováno,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Právní příslušenství,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adresář,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Přihlášení,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nové,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Používané,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ohnivzdorač

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E-mail,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kontaktní,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adresa,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pronájem,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questionnaire for trips – page 2

Chvěť cesta vs. lázně cesta

<table>
<thead>
<tr>
<th>Chvěť cesta</th>
<th>Váš názor</th>
<th>Chvěť cesta</th>
<th>Váš názor</th>
<th>Chvěť cesta</th>
<th>Váš názor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Užitečné</td>
<td>Větší zaměření</td>
<td>Užitečné</td>
<td>Větší zaměření</td>
<td>Užitečné</td>
<td>Větší zaměření</td>
</tr>
<tr>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
</tr>
<tr>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sedmá cesta</th>
<th>Váš názor</th>
<th>Sedmá cesta</th>
<th>Váš názor</th>
<th>Sedmá cesta</th>
<th>Váš názor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Užitečné</td>
<td>Větší zaměření</td>
<td>Užitečné</td>
<td>Větší zaměření</td>
<td>Užitečné</td>
<td>Větší zaměření</td>
</tr>
<tr>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
</tr>
<tr>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
</tr>
</tbody>
</table>

Otevřená část

<table>
<thead>
<tr>
<th>Otevřená část</th>
<th>Váš názor</th>
<th>Otevřená část</th>
<th>Váš názor</th>
<th>Otevřená část</th>
<th>Váš názor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Užitečné</td>
<td>Větší zaměření</td>
<td>Užitečné</td>
<td>Větší zaměření</td>
<td>Užitečné</td>
<td>Větší zaměření</td>
</tr>
<tr>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
</tr>
<tr>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
</tr>
</tbody>
</table>

Otevřená část

<table>
<thead>
<tr>
<th>Otevřená část</th>
<th>Váš názor</th>
<th>Otevřená část</th>
<th>Váš názor</th>
<th>Otevřená část</th>
<th>Váš názor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Užitečné</td>
<td>Větší zaměření</td>
<td>Užitečné</td>
<td>Větší zaměření</td>
<td>Užitečné</td>
<td>Větší zaměření</td>
</tr>
<tr>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
</tr>
<tr>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
</tr>
</tbody>
</table>

Otevřená část

<table>
<thead>
<tr>
<th>Otevřená část</th>
<th>Váš názor</th>
<th>Otevřená část</th>
<th>Váš názor</th>
<th>Otevřená část</th>
<th>Váš názor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Užitečné</td>
<td>Větší zaměření</td>
<td>Užitečné</td>
<td>Větší zaměření</td>
<td>Užitečné</td>
<td>Větší zaměření</td>
</tr>
<tr>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
<td>Jiné sítě</td>
</tr>
<tr>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
<td>Jiné prostředí</td>
</tr>
</tbody>
</table>