TRAVEL BEHAVIOUR SURVEY AND MODAL SPLIT ANALYSIS

CITY OF ŽILINA

More sustainable transport in Central European cities through improved integrated bicycle promotion and international networking
TRAVEL BEHAVIOUR SURVEY AND MODAL SPLIT ANALYSIS – CITY OF ŽILINA

This survey was implemented as Output 3.1.9 of the European project “Central MeetBike – More sustainable transport in Central European cities through improved integrated bicycle promotion and international networking”. This project is implemented through the CENTRAL EUROPE programme and co-financed by ERDF.

Output: 3.1.9

Prepared by:
Technische Universität Dresden
Chair of Transport and Infrastructure Planning
Prof. Dr.-Ing. Gerd-Axel Ahrens

Author:
Jan Schubert

Contribution:
Ute Kabitzke, Kevin Vincent, Stefan Hubrich, Dr. Frank Ließke

www.centralmeetbike.eu
List of figures ... 6
List of tables ... 7
1. Introduction .. 8
2. Basic information about the survey 10
 2.1 Focus of survey .. 10
 2.2 Definitions ... 11
 2.2.1 Trip/movement ... 11
 2.2.2 Purpose of trips .. 12
 2.2.3 Means of transport .. 14
 2.2.4 Statistical expressions .. 15
 2.3 Survey period and test days ... 16
 2.4 Recorded characteristics and questionnaire 16
 2.4.1 Household characteristics ... 16
 2.4.2 Characteristics of persons ... 17
 2.4.3 Trip characteristics ... 18
 2.4.4 Questionnaire .. 18
 2.5 Further interview materials ... 19
 2.5.1 Announcement letter ... 19
 2.5.2 Memory jogger ... 20
3. Implementation of the survey ... 22
 3.1 Sample characteristics and drawing of sample 22
 3.1.1 Basics .. 22
 3.1.2 Drawing from register of residents 24
 3.1.3 Drawing from register of addresses 25
 3.1.4 Drawing by “Random Route Method” 26
3.2 Implementation of interviews .. 28
 3.2.1 Overview .. 28
 3.2.2 Mailing of survey documents .. 29
 3.2.3 Training of interviewers .. 29
 3.2.4 Face-to-face survey ... 30
 3.2.5 Monitoring of field time .. 31
 3.2.6 Computer data input .. 31
 3.2.7 Reminder activities .. 31
 3.2.8 Information, accompanying public relations .. 32

3.3 Data analysis .. 32
 3.3.1 Data preparation ... 32
 3.3.2 Weighting of data ... 34

4 RESULTS IN TABLES AND DIAGRAMS .. 35

4.1 CHARACTERISTICS OF THE SURVEY IMPLEMENTATION AND THE SAMPLE 36
 4.1.1 Parameters of the survey .. 36
 4.1.2 Sample structure according to age and sex .. 37
 4.1.3 Sample structure according to occupation and sex ... 38
 4.1.4 Sample structure according to household size .. 39

4.2 Household and vehicle-specific parameters .. 40
 4.2.1 Household-specific parameters ... 40
 4.2.2 Parameters describing use of vehicles .. 42

4.3 Mobility related facts about persons ... 44

4.4 Characteristics of trips ... 50
 4.4.1 Modal split by inhabitants ... 50
 4.4.2 Purpose of trips ... 54

5. Sources .. 56
6. Abbreviations .. 57
7. Appendices ... 58
LIST OF FIGURES

Figure 1: Surveyed cities in Central MeetBike ... 9
Figure 2: Spatial distribution of trips in relation to city boundaries 11
Figure 3: Example of an announcement letter (Pardubice) ... 20
Figure 4: First page of Memory Jogger (Czech version) ... 21
Figure 5: Motorisation with cars of households .. 40
Figure 6: Walking time to public transport stop that is closest one from household 42
Figure 7: Space for parking vehicles at place of residence ... 43
Figure 8: Number of trips per day in German cities and Central MeetBike cities 45
Figure 9: Availability of car on test day - method 1 ... 46
Figure 10: Availability of a car on test day - method 2 ... 47
Figure 11: Possession of drivers’ licence according to age and sex 47
Figure 12: Motorisation of inhabitants with cars and bicycles 48
Figure 13: Motorisation of inhabitants with cars and bicycles in CMB and SrV cities 49
Figure 14: Modal split of all trips by inhabitants .. 50
Figure 15: Modal split of inhabitants in CMB and SrV cities .. 52
Figure 16: Modal split of trips within the city by inhabitants 52
Figure 17: Modal split based on trip length .. 53
Figure 18: Purpose of trips ... 54
Figure 19: Modal split by purpose of trips .. 55
LIST OF TABLES

Table 1: Main Purpose of trips and corresponding categories from “Mobility in towns” 13
Table 2: Main modes of transport and corresponding categories at questionnaire 14
Table 3: Method of drawing the sample in each city .. 23
Table 4: Example how to identify 3 persons in a population of 10 persons with method 1.. 24
Table 5: Parameters of the survey implementation ... 36
Table 6: Sample structure according to age and sex ... 37
Table 7: Sample structure according to occupation and sex .. 38
Table 8: Sample structure according to household size .. 39
Table 9: Motorisation of households and household income 41
Table 10: Basic parameters of vehicle use .. 42
Table 11: Basic parameters of mobility behaviour of inhabitants 44
Table 12: Duration and length of trips by inhabitants .. 50
1. INTRODUCTION

The European project Central MeetBike (More sustainable transport in Central European cities through improved integrated bicycle promotion and international networking) promotes sustainable transport policy and planning according to the state of the art. Important is the integration and preferred use of public transport, walking, cycling and new mobility services (e.g. car sharing, bicycle rental schemes). In this context Central MeetBike focusses on the questions of how to create better conditions for cycling in Central European countries and thus how to promote sustainable transport in general\(^1\). The project concentrates on exchange of knowledge and experiences among the project partners and to estimate effects of different measures.

Studies about the current situation of bicycle transport in Central MeetBike partner countries Czech Republic, Slovakia and Poland showed that there is a general lack of knowledge about mobility behaviour in these countries\(^2\). This often goes along with little expertise in implementing surveys that provide users with reliable results. Therefore the surveys are an important element of the project in order to provide partner cities with comparable findings about mobility behaviour of the inhabitants. At the same time this report is intended to give an insight for planners from municipalities on how to implement a survey that allows obtaining reliable and comparable results.

This report provides the reader with results of the household survey conducted in the Slovak city Žilina. The survey was also implemented in the cities of Prešov, Uherské Hradiště, Pardubice, Gdańsk and Tczew (figure 1).

The survey provides the cities with statistics about e.g. number of trips, use of means of transport (modal split), kilometres travelled and access to vehicles. These numbers serve:

- for transport policy and internal administrative work (benchmarking)

\(^1\) Further information: www.centralmeetbike.eu

\(^2\) These studies were implemented in the course of Central MeetBike. Reports can be found at www.centralmeetbike.eu.
as input data for transport modelling and continuous sustainable urban mobility planning (SUMP)
for evaluation and quality management (monitoring)
for information and public relations

Repeating the survey (e.g. every 5 years) is recommended in order to observe the development of mobility behaviour and its critical parameters.

The method “Mobility in Towns” (SrV – System of representative surveys on mobility behaviour) that was established at the TU Dresden, served as the model. In the framework of the Central MeetBike survey, TU Dresden (Chair of Transport and Infrastructure Planning) developed the method’s adjustments for the city of Žilina, served as an advisor before and during the field time and did the evaluation of the data. The implementation of the survey was supervised in situ by members of the city of Žilina.

Since the same survey method is used for each partner city of Central MeetBike, there are not only specific results for each city, but also results that arise by comparing the cities amongst each other and with results from last German survey from 2008.

3 Ahrens et al., 2009
4 “Mobility in towns” (SrV) is a travel behaviour survey that is regularly conducted in Germany. It was first implemented in 1972 in cities of the former German Democratic Republic. It has taken place eight more times: in 1977, 1982, 1987, 1991, 1994, 1998, 2003 and 2008.
5 The next SrV-survey for 2013 is in progress. Results will be available in autumn 2014.
2. BASIC INFORMATION ABOUT THE SURVEY

2.1 FOCUS OF SURVEY

The focus of the survey is the mobility behaviour of inhabitants in each city. During interviews each person in a randomly selected household is asked numerous questions. The questionnaire is divided into three parts (see also Chapter 2.4): questions about household and vehicles, questions about every person registered in household, questions about every trip taken by every person. Thus the results are structured in a similar way:

- data about household- and vehicle-specific parameters (e.g. number of cars in household, annual vehicle kilometres driven)
- data about persons with parameters about sociodemographic and transport related aspects (e.g. drivers licence, education level)
- data about trips taken per person (e.g. number of trips, trip length, means of transport)

Population and surveyed trips

The survey population is comprised of all inhabitants of the city without any limitation of age, sex, nationality and primary or secondary place of residence. Mobility behaviour is surveyed for one particular test day (Tuesday – Thursday). These days represent a normal working day. All trips (definition of trip in chapter 2.2.1) for each person in the household are recorded without any limitation.

The survey analyses all trips taken by city inhabitants regardless where they originated or terminated. All trips done by persons that are not inhabitants of the particular city and trips of commercial traffic (e.g. freight delivery, craftsmen driving to customers) were not surveyed with the method used.
Since only inhabitants of the particular city were questioned, most trips that originate and terminate outside the municipality and through trips as well as commercial trips cannot be surveyed with the method (figure 2). Of all the trips in, to and from a city, results of this survey only include trips made by residents of the city. This is indicated in the following report and in diagrams and tables with the expression “all trips of inhabitants”.

![Figure 2: Spatial distribution of trips in relation to city boundaries](image)

2.2 DEFINITIONS

2.2.1 Trip/movement

For the purposes of this survey a trip is defined as a person’s change in location with an origin and/or destination, which lies beyond the property on which the participating person lives.

One trip is defined exactly by one purpose (see chapter 2.2.2) and two locations (origin, destination). One trip may include different stages with different means of transport (e.g. by bike to tram stop and by tram to workplace). As long as the purpose does not change the combi-

6 Ahrens et al., 2009, S.6. Translated into English
nation of these stages is regarded as one trip\(^7\). The survey does not record different trip stages. The mode of one trip with several stages is assigned to the mode of the longest stage under consideration of a predefined decision hierarchy (see chapter 2.2.3). Also short trips (e.g. to put a letter in a mailbox) are likewise independent trips and have to be explicitly recorded.

Roundtrips (e.g. taking a walk), where the origin and destination are identical, are counted as two separate trips. Length and distance of the originally-specified trip are divided in half.

2.2.2 Purpose of trips

In general the purpose of a trip is defined by the activity at the destination. In the course of this survey the purpose of a trip is characterised with the type of the destination. Therefore trips home are assigned to the purpose “Home” which is not in accordance with the definition of trip purpose in the literature and of some other surveys. However, this approach makes it easier to use the results for modelling the great number of home trips in traffic models more accurately.

As part of this study, participants were questioned in detail about 17 purposes which were combined into six main purpose groups. The following table shows the classifications used.

\(^7\) The purpose of the trip is changing when the person interviewed e.g. does some shopping on the way home from work. These are two trips: one for shopping and one back home.
<table>
<thead>
<tr>
<th>Main purpose</th>
<th>Work</th>
<th>School/Kindergarten</th>
<th>Shopping</th>
<th>Leisure</th>
<th>Others</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>Own workplace</td>
<td>Kindergarten</td>
<td>Shopping for daily needs</td>
<td>Bar, restaurant</td>
<td>Others</td>
<td></td>
<td>Trip back home</td>
</tr>
<tr>
<td>Primary school</td>
<td>Other Shopping</td>
<td>Visiting friends</td>
<td>Other workplace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary School (including University)</td>
<td>Public institution (Post, doctor…)</td>
<td>Recreation, sport outdoors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other educational institution</td>
<td>Sports facility</td>
<td>Special event (concert…)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other leisure activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Main Purpose of trips and corresponding categories from “Mobility in towns”

In case the person interviewed had numerous work trips (e.g. as a craftsman), he/she was asked to only report the first and the last work trip of the day.
2.2.3 Means of transport

For analysing modal split the various means of transport had to be aggregated. The attribution of means of transport to four groups of main transport modes is given in table 2.

<table>
<thead>
<tr>
<th>Main modes of transport</th>
<th>Private car use</th>
<th>Public Transport</th>
<th>Bicycle</th>
<th>Walking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver in car from household</td>
<td>Long-distance train</td>
<td>Bicycle</td>
<td>Walking</td>
<td></td>
</tr>
<tr>
<td>Driver in other car</td>
<td>Regional train</td>
<td>Bicycle</td>
<td>Walking</td>
<td></td>
</tr>
<tr>
<td>Passenger in car from household</td>
<td>S-Bahn (local train)</td>
<td>Bicycle</td>
<td>Walking</td>
<td></td>
</tr>
<tr>
<td>Passenger in other car</td>
<td>Underground train</td>
<td>Bicycle</td>
<td>Walking</td>
<td></td>
</tr>
<tr>
<td>Motorcycle</td>
<td>Tram</td>
<td>Bicycle</td>
<td>Walking</td>
<td></td>
</tr>
<tr>
<td>Bus</td>
<td>Others (e.g. airplane, taxi, ferry)</td>
<td>Bicycle</td>
<td>Walking</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Main modes of transport and corresponding categories at questionnaire

To determine the travel mode of a trip, the persons interviewed could choose from the categories shown above. When more than one means was used during one trip, a main means of transport with the largest stage length (distance) was assigned. The order of priority given below shows, to which means of transport usually the longest stage of a trip is assigned:

1. Long-distance train
2. Regional train
3. S-Bahn (local train)
4. Underground train
5. Tram
6. Bus
7. Passenger in other car
8. Passenger in car belonging to own household
9. Driver in other car
10. Driver in car belonging to own household
11. Motorcycle
12. Bicycle
13. Walking

In case the person interviewed answered with “other means of transport” for his/her trip the assignment of the main means of transport was done manually for this trip.

2.2.4 Statistical expressions

This chapter includes definitions of expressions from statistics that will be used in the following document.

Gross sample

The gross sample (n_{Gross}) describes the number of persons or households that have to be drawn at the very beginning of the survey. The gross sample size has to be big enough to ensure a defined net sample under the conditions of non-response and not usable interviews.

Net sample

The net sample (n_{Net}) of a survey is the amount of answers collected in the final interview database. Only those datasets will be used for analysis. This sample will differ from the gross sample due to incomplete or implausible datasets or non-response. Since the goal was to achieve a net sample size of about 1,000 interviews in this survey, the gross sample had to be larger.

8 During interview the persons could specify their “other means of transport” in a free text field. When “other means of transport” could be categorised as a public means of transport (e.g. airplane, taxi, ferry…) this “other means of transport” was chosen as main means of transport. If “other means of transport” was specified as being an unmotorised means of transport (e.g. skateboard, inline skates …) this “other means of transport” was identified as having lowest priority.

9 The factor to calculate the gross sample depends on the estimated response rate, average number of persons per household and a security factor (about 1.2).
Response rate

Response rate is defined as the proportion of usable interviews for the final analysis (net sample) to the sample size drawn at the beginning of the sample (gross sample). The response rate is often seen as an indicator for the quality of a survey.10

2.3 SURVEY PERIOD AND TEST DAYS

The survey was originally supposed to take place in all cities of the Central MeetBike project simultaneously. Due to delays in drawing the sample as well as organisational and financing problems in several cities it was decided to use different survey periods. The comparability of the periods was maintained. Each of the survey periods was chosen such that the period closely represents the average annual values. In the case of the city of Žilina the survey took place from June 12th to June 29th 2012. The survey was conducted on workdays in the middle of the week, on Tuesdays, Wednesdays and Thursdays. Days, which fell or bordered on holidays, were excluded.

2.4 RECORDED CHARACTERISTICS AND QUESTIONNAIRE

The survey was conducted as a household survey. Next to household and individual characteristics all members of randomly chosen households were questioned about their trips on test days. The collected characteristics can be accordingly divided into three categories.

2.4.1 Household characteristics

Household characteristics describe the situational conditions of those living in the household and help to classify the household according to transport-related factors. Therefore the following characteristics were collected for each household:

- number of persons in household
- number of vehicles in household

10 A low response rate can correspond with a low reliability of the data, when the persons not responding are having different mobility behaviour. One can analyse the relationship between non-response and the accuracy of the survey statistic. Due to low budget for the surveys in the CMB project this was not done in the course of this survey.
• annual vehicle kilometres travelled for the most-used car and bicycle
• parking place for the most-used car and bicycle
• availability and amount of transferable public transport (PT) season passes in household
• walking time to the next PT stop
• monthly household net income

2.4.2 Characteristics of persons

Descriptive characteristics (e.g. a person’s stage in life) of the persons surveyed are a necessary requirement for the causal analysis of mobility behaviour. Therefore the following individual characteristics of all persons in the household were collected as differentiated as possible:

• age
• sex
• occupation and type of profession
• professional training
• possession of drivers license
• availability of household vehicle on test day
• normalcy of test day
• predominately-used public transport ticket
• walking time to most-used PT stations
• potential mobility limitations

In addition general characteristics regarding mobility on the test day were collected for each person in the household. Specifically this concerns the following:

• weather on test day
• person’s presence in the city
whether the place of residence was left
if applicable the reason for non-mobility
if applicable the type and place of departure of the first trip

2.4.3 Trip characteristics

The specific values regarding the mobility behaviour of a person can be determined through the sequence and manner of all trips (changes of location). For this reason the following characteristics were gathered for each person and each trip:

- time of trip start
- trip purpose and destination
- mode of transport used (can be more than one)
- number of accompanying persons (from household and other persons)
- number of people in vehicle
- location and type of destination
- arrival time
- trip length

2.4.4 Questionnaire

Particulars regarding the questions and requirements for answers along with the layout of the written survey can be found in appendix 1.
2.5 FURTHER INTERVIEW MATERIALS

In all cities of the Central MeetBike survey – except Prešov – each household received a letter in preparation for the interview. It includes the following parts:

- Announcement letter (figure 3)
- Memory jogger (figure 4)

In Prešov, where there was no preliminary mailing of survey information, the survey was announced to residents through posters and informational pieces on the radio. So neither an announcement letter nor a memory jogger – as explained below – was sent out.

2.5.1 Announcement letter

The respective city or a representative of the city was in charge of mailing the letters. The accompanying letter was written by the cities while the TU Dresden ensured that the comparability was maintained. The announcement letter contains the following information (figure 3):

- information on the survey topic
- the exact date of the survey day
- instructions for filling out the memory jogger
- information and appointment for the home visit of the interviewer
- the number of the toll-free telephone hotline
- a thank you for their participation in the survey
2.5.2 Memory jogger

Memory joggers help to make notes of the trips, which have to be recorded during the interviews on the next day (figure 4). These forms were sent to all households along with the announcement letter.
Figure 4: First page of Memory Jogger (Czech version)

<table>
<thead>
<tr>
<th>Číslo cesty</th>
<th>V jaké hodině jste začali/vykonali tuto cestu?</th>
<th>Jaký cíl vás napadl v této cestě? (např. do práce, domů, na nákup...)</th>
<th>Který dopravní prostředí jste použili? (např. automobil, autobus, vlak, trolejbus, cyklo, chod v kouře, procházka s dětmi nebo s domácím životním městem)</th>
<th>Kdo byl/vás cesta? (Povinou, začníte poklidně, co funguje, šíří, se sense, se nejíme... nebo neštěstí, nebo nějaký významný bod pohybu)</th>
<th>V jaké hodině jste dorazili?</th>
<th>Je tato cesta příliš městská?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7:30 hod.</td>
<td>Cesta do práce</td>
<td>Přelet přes autobus, pak autobus</td>
<td>ul Příkrká 15, 01006 město Praha</td>
<td>8:10 hod.</td>
<td>10.5 km</td>
</tr>
<tr>
<td>2</td>
<td>____ ____ hod.</td>
<td>____ ____ hod.</td>
<td>____ ____ hod.</td>
<td>____ ____ km</td>
<td>____ ____ hod.</td>
<td>____ ____ km</td>
</tr>
</tbody>
</table>

Pro zapisu dalších cest, prosím, odečte.
3. IMPLEMENTATION OF THE SURVEY

3.1 SAMPLE CHARACTERISTICS AND DRAWING OF SAMPLE

3.1.1 Basics

The goal of the survey in each city is to reach a net survey of 1,000 persons. Therefore a random sampling had to be done as a first step. Depending on the availability of registers in the city, this random sample can be determined according to one of the following ways:

- drawing from a register of residents\(^\text{11}\) (chapter 3.1.2)
- drawing from an address register\(^\text{12}\) (chapter 3.1.3)
- using the random route method\(^\text{13}\) (chapter 3.1.4)

In the course of the model method SrV the random sample is usually drawn from the register of residents. Thus every person independent from age, nationality and environment (city district, building structure) has the same probability to be drawn. This ensures that the sample is representative for these parameters of the population. Additionally the register of residents is usually easily available for the cities and contains all relevant information for sampling (for example name, age, address).

During the surveys of the Central MeetBike project this approach had to be changed, because not all the cities could provide such a register. Thus TU Dresden developed methods to draw a random sample also using two different ways (address register and random route).

If there was no register of inhabitants available, a register of addresses was used for random drawing. This register only provides the user with addresses of the particular city without any link to households at these addresses. Along with that come some problems to identify specific households, because a household is not equal to an address in e.g. multi apartment buildings. The solution of this problem is described in chapter 3.1.3.

\(^{11}\) This is a database of registered inhabitants of the city. It contains each person as one dataset and (at least) his/her date of birth and address (chapter 3.1.2). This register usually is available at the statistical bureau of a city or at the civil registry office.

\(^{12}\) This is a database including addresses that consists of street name, house number and city district (chapter 3.1.3). It may be available at the city administration or at municipal organisation such as local energy supplier.

\(^{13}\) This is a method to identify households by walking through the city districts and choosing them respecting given rules (chapter 3.1.4).
In the city of Prešov neither a register of residents nor a register of addresses was available. In order to ensure that households were “drawn” randomly a third method was adopted: with the Random-Route-Method it is possible to randomly identify households while walking through the city. The method is described in chapter 3.1.4.

Table 3 shows which method was used in each Central MeetBike city.

<table>
<thead>
<tr>
<th>City</th>
<th>Drawing from a register of residents (chapter 3.1.2)</th>
<th>Drawing from a register of addresses (chapter 3.1.3)</th>
<th>Random-Route method (chapter 3.1.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gdańsk (PL)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tczew (PL)</td>
<td>X (planned)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pardubice (CZ)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Uherské Hradiště (CZ)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Žilina (SK)</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Prešov (SK)</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Table 3: Method of drawing the sample in each city

TU Dresden supported the cities in putting together requirements for drawing a sample, which could be made available to the respective bureau for statistics or the company conducting the survey.

The goal is 1,000 surveyed individuals (n_{Net}^{14}). The size of the sample population is determined based on experience gathered from earlier surveys. In larger cities 1,000 respondents are necessary when using a simple random sample in order to calculate the specific traffic volume for the entire city with 95 % confidence interval and a margin of error of +/- 4 % as well as for determining modal split (vehicle share) with a margin of error of +/- 2 percentage points. The sample size always is a compromise between accuracy and cost.

The sample size, relevant for drawing the sample, differs from the target size mentioned

14 for definition see chapter 2.2.4
above. This is due to response deficiencies such as non-response or incomplete interviews. In order to counteract these discrepancies an oversized sample population \(n_{\text{Gross}}^{15} \) was drawn so that, in the end, the number of usable interviews \(n_{\text{Net}} \) which could be analysed was about 1,000.

3.1.2 Drawing from register of residents

If a register of residents was available for the survey, drawing the sample from this register was the preferred method. This register lists all persons registered in the particular city with (at least) their date of birth and address.

The cities were able to choose between two methods of drawing the sample, both of which drew random samples.

- **Method 1**: Simple random sample: Each unit of the total population was assigned a random number. The total population was subsequently sorted according to the random number. Beginning with the first entry, all consecutive entries were selected until the required sample size was reached.

<table>
<thead>
<tr>
<th>Number of person</th>
<th>Random number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.24124007</td>
</tr>
<tr>
<td>2</td>
<td>0.04246308</td>
</tr>
<tr>
<td>3</td>
<td>0.27632941</td>
</tr>
<tr>
<td>4</td>
<td>0.18420375</td>
</tr>
<tr>
<td>5</td>
<td>0.99205507</td>
</tr>
<tr>
<td>6</td>
<td>0.49371558</td>
</tr>
<tr>
<td>7</td>
<td>0.61239002</td>
</tr>
<tr>
<td>8</td>
<td>0.11153661</td>
</tr>
<tr>
<td>9</td>
<td>0.54799921</td>
</tr>
<tr>
<td>10</td>
<td>0.60231511</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of person</th>
<th>Random number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.04246308</td>
</tr>
<tr>
<td>8</td>
<td>0.11153661</td>
</tr>
<tr>
<td>4</td>
<td>0.18420375</td>
</tr>
<tr>
<td>1</td>
<td>0.24124007</td>
</tr>
<tr>
<td>3</td>
<td>0.27632941</td>
</tr>
<tr>
<td>1</td>
<td>0.24124007</td>
</tr>
<tr>
<td>3</td>
<td>0.27632941</td>
</tr>
<tr>
<td>6</td>
<td>0.49371558</td>
</tr>
<tr>
<td>9</td>
<td>0.54799921</td>
</tr>
<tr>
<td>5</td>
<td>0.60231511</td>
</tr>
</tbody>
</table>

Table 4: Example how to identify 3 persons in a population of 10 persons with method 1

- **Method 2**: Random sample with fixed step size: The names in the register were sorted alphabetically by last name. Every \(i^{th} \) entry of the total population was selected for

\[15 \text{ for definition see chapter 2.2.4} \]
the sample, whereby “i” is the quotient of total number of residents and the required size of the selected sample.

The first method was to be preferred, because this method ensures unrestricted random sampling. However, if this was not technically possible, then the second method could be utilized. In both cases the resulting samples fulfilled the criterion that they are random. Both methods ensure that distribution of residents into districts of particular city and sociological parameters (for example age, sex) were respected, because each person had the same probability to be drawn.

It was a mayor goal of the survey to describe mobility behaviour of persons in a household context16. Therefore the sample of persons that was generated with the method described above, had to be transferred into a sample of households in a second step.

For this reason the address assigned to each person was defined as the address of a household. When sending survey documents, the household was contacted using the last name of the person drawn. Even if more than one person in a household was drawn, it was ensured that the household was entered only once into the household sample. Drawing persons and assigning households results in a PPS (Probability Proportional to Size) sample in which the probability of selection increases proportionally with household size. This effect is taken into account by applying weighting factors.

3.1.3 Drawing from register of addresses

If not a register of residents but an address register was available, the sample had to be won on this basis. In this case, the individual households (the decisive sampling unit) could not be drawn from the address register in a representative way, because several households can live in one building with the same address.

For this reasons, the sample drawing had to be carried out in multiple steps:

16 Mobility behaviour of individual persons usually is a result of complex interactions of mobility decisions within the household. The availability of only one car for all household members and the necessity to accompany young children are only two examples of these household connected restrictions. Therefore households have been the analytical unit in German mobility surveys (for example “SrV-Mobility in towns”) since more than 40 years (Hubrich/ Wittwer, 2011, p.2).
1) A number of addresses from the address register had to be calculated randomly (methods see chapter 3.1.2) for each city district separately.

2) Interviewers were then tasked with counting the number of households at each address drawn in step 1 and noting the names of the households in a field journal. The number of households per address then defines the address type (e.g. “Building with 5 flats”).

3) Distribution of address types was calculated for each district in the city.

4) A register including the following columns was prepared: city district, address, address type, household name.

5) Random drawing of households was done from the register prepared in step 4. It accounted for the distribution of address types in the district\(^{17}\).

In the end there was a database available that includes not only addresses, but also corresponding names of households. Therefore preparatory survey documents could then be sent to selected households before the actual interviewing took place (see chapter 3.2 and after).

3.1.4 Drawing by “Random Route Method”

In Prešov there was neither a residential nor an address register available. Therefore the Random Route Method was used. The sample households selected using this method likewise fulfil the criterion for a random sample and are therefore representative for the entire city. In the course of the Random Route Method the sampling is done by staff walking through the city and collecting households following specific instructions (see descriptions below). In order to reduce costs by not sending out the staff twice for sampling and implementation of interviews, these two processes were combined into one process in Prešov.

The following steps had to be completed:

1. Calculating the net sample per district and week

The target sample size is divided amongst districts based on residential distribution and divided equally throughout the duration of the fieldwork.

\(^{17}\) It was assumed that the type of the building has an influence on the mobility behaviour of the residents, because larger buildings are usually better connected to public transport systems, whereas single-family houses are not. Therefore it was necessary to interview households from each address type.
This sample is distributed across a total of 30 districts in the city of Prešov. The proportional number of residents for a district \((i)\) was calculated as follows:

\[
n_{\text{Net},i} = n_{\text{Net}} \times \frac{\text{residents}_i}{\text{residents}}
\]

The results for \(n_{\text{net},i}\) are rounded up to the next whole number.

2. **Determining the start address**

The interviewer receives a street name and house number in a district as a random starting point. Specified walking instructions were then given to the interviewers, which had to be respected while identifying the random households for the interviews.

The random choice of the starting address was based on a street directory. If a street directory was not available then one had to be created. The street directory had to contain the following information: street name, range of addresses and the district in which the street is located. If a street ran through multiple districts then a district could be matched to a section of street by means of the addresses. The directory was subsequently sorted by district.

The number of required starting addresses \(n_{\text{Adr}}\) was determined by the number of interviewers and survey days per district. Starting streets were chosen from the list of streets per district using a random selection process. The starting house numbers were then determined using random numbers. If a generated house number did not exist or was not in the district then the process was to be continued until an appropriate random number was generated.

3. **Preparing the work schedule**

Work schedules were completed based on the calculated net sample size per district and survey day.
4. Carrying out the interviews

The interviews were carried out according to the general rules described in chapters 3.2.3 and 3.2.4. In the case of sampling using the random route method the interviewers were instructed to determine their walking route according to the description below:\(^\text{18}\):

Street side: The interviewer walks along the side of the street on which the starting address is found.

Walking direction: If the starting house number is even, then the walking direction is ascending. If the starting house number is odd, then the walking direction is descending.

Increment: Every third household is stopped at. For single-family homes this means every third house, for multi-family buildings every third doorbell, in which case, the interviewer begins counting from left to right and top to bottom. Empty houses or doorbells with no name have to be counted. Non-private houses and doorbells are skipped. Households which have already been interviewed are not counted.

Change in direction and behaviour at intersections: At intersections the interviewer turns right on even days and left on odd days. If the required turn is not possible at a three-way intersection, then the interviewer continues walking straight.

New start after completing a street section: If a street section is completed without the interviewer having come to an intersection he or she returns to the last intersection and turns right on even days and left on odd days. At a three-way intersection the interviewer turns onto the street which branches off.

3.2 IMPLEMENTATION OF INTERVIEWS

3.2.1 Overview

In the survey “Mobility in Towns” (SrV), the standard means of collecting information is via telephone, mail or through an online questionnaire. Deviating from this, a face-to-face method was chosen for the Central MeetBike project in agreement with the project partners and

\(^{18}\) Based on methods from Hoffmeyer-Zlotnik (2006, p.21), adapted to the given circumstances.
with consideration for local factors. In this case the interviewer goes directly to the selected households in order to conduct the survey. Experience has shown that the quality of answers with this method is very high. In order to reach as many households as possible while they are at home, it is important to choose an appropriate time window for the survey. In coordination with the city of Žilina, the time from 3:00p.m. to 8:00p.m. was determined to be particularly suitable.

3.2.2 Mailing of survey documents

In a face-to-face survey the complete questionnaire documents are not mailed. However, all households in every city participating – except in Prešov – received notice of the survey via mail. The respective test day was noted on the written announcement. Each household received information on data privacy with the written notice as well as a memory jogger for filling in information about trips of the test day. The interview always took place on the day following the travel day.

In Prešov, where the process of sampling and implementation of interviews was combined into one process, there was no preliminary mailing of survey information. The survey was announced to residents through posters and informational pieces on the radio. Households received privacy information directly from the interviewers. As in the other cities the interviews always took place on the day after the travel day.

3.2.3 Training of interviewers

Each interviewer was made familiar with the requirements of the interview during a training session that was implemented by the city or the data collection bureau. Training materials and guidelines were provided by TU Dresden. The following areas made up the training:

- general instructions on carrying out the interviews
- instructions on completing the questionnaires
instructions on keeping the field journal
handing out of the surveyor identification
introductions for determining the walking route (only in case of Random-Route procedure)

The following information was given to the interviewer:
documents from the interview training
target number of respondents on interview day
blank questionnaires
interview field journal
list of people already questioned (only in case of Random-Route procedure)
starting address (only in case of Random-Route procedure)
walking instructions (only in case of Random-Route procedure)

3.2.4 Face-to-face survey

Only households for which data was collected in full came into consideration for the final data analysis. Information regarding households and persons was only to be given by persons of legal age. Answers for persons up to and including 17 years of age were given by a representative (e.g. parent or guardian). Information regarding trips was directly, i.e. personally, enquired only of persons over 14 years of age. For younger household members a representative could answer the questions. If a person who was to be questioned personally was not able to be reached on the survey day, a new interview appointment was to be made for this person. When possible, the appointment was rescheduled for within the same week. If that was not possible, a representative could answer the questions, if he or she was able to ensure that complete and correct answers would be given.

The interviews were carried out on each of the days following the test day (i.e. Wednesday, Thursday and Friday) between 3:00pm and 8:00pm. As soon as the interviewer reached his or her target (number of respondents on interview day) the interviews were able to be ended

19 This regulation exists due to the aim to picture complex interactions in mobility behaviour of individuals in their household. Furthermore there is a risk to regularly miss persons with special mobility behaviour during the interviews (e.g. father of family with long working times). This might influence the results systematically.
for that day. If the target of interviewed persons per day was reached, but there still was a part of a household to be interviewed, the interviewer had to finish interviewing the entire household before ending the interview day.

3.2.5 Monitoring of field time
The progress of the interviews was continually and randomly monitored during the fieldwork in order to verify the correctness of the assumptions made and to check whether or not the interview procedures were observed. Adjustments to the work schedules were to be made in the case of any deviations (higher or lower response rates20), for which purpose the interviewer was to keep a field journal.

Evaluating the field journals helped the data collection office to adjust the work schedules of interviewer or target number of interviews per day according to actual response rates during the survey period. Additionally, the list of households, which have already been interviewed, was prepared based on the journals.

3.2.6 Computer data input
The questionnaires were fed into a computer-based databank according to guidelines from the TU Dresden and the journals were evaluated. The results of the journal evaluation made it possible to control the data collection on short notice.

3.2.7 Reminder activities
Reminders were not planned for the face-to-face surveys. If test persons were not reached, the household was contacted again on the following day at a different time. If a third visit to a household was without success, the interviewer had to later question a replacement household.

20 see definitions chapter 2.2.4
3.2.8 Information, accompanying public relations

Public relations were coordinated by the cities. The TU Dresden did not provide any guidelines for this issue. In the city of Žilina residents were informed about the survey through the announcement letter and the city website.

3.3 DATA ANALYSIS

3.3.1 Data preparation

The completed questionnaires and field journals were forwarded to the data collection office by the interviewers. The questionnaires were entered into a computer-supported database according to guidelines from the TU Dresden. The interviewers’ field journals were analysed, the results were used to react to false assumptions (e.g. length of interview) and to guide the collection of data.

The database of digitised questionnaires was submitted to the TU Dresden for initial analysis. As part of the initial review of the raw data, the consistency of the three survey levels – household, person and trip – amongst each other was checked. It was additionally checked whether all mandatory questions were answered. In the case that problems should arise at this stage, the data collection office had the opportunity to make corrections to the database.

Studies involving data collection are inherently subject to various influences on the margin of error. As part of the data preparation, the effects of

- **Survey Collection Errors** (knowingly or unknowingly providing false information when filling out questionnaires or during an interview) and

- **Data Processing Errors** (input and output errors, mistakes in programming, equations or tabulating)

need to be minimized. Data preparation serves the goal of providing consistent and credible data for evaluation. This ensures the quality of study results.

As part of the data preparation, not credible (i.e. inconsistent, unusual or missing) infor-
mation was manually identified. In doing so, to the following key points particular attention was given to:

- Is there information, for each household, on the household, on all persons and on trips?
- Are there missing answers to individual questions?
- Have the ranges of values in the response fields been complied with? Of concern are not only logical associations (e.g. an unusually high number of bicycles in the household) but also specifications such as how, for example, a refused answer is to be coded by the surveying institute.
- Are the given answers compatible with each other (e.g. age of interviewed person and possession of driving license)?
- Is the stated destination really located within or outside of the place of residence? Survey participants had the opportunity to specify their trip destination. This information was optional, however afterwards it was possible to examine the categorisation of the trip according to spatial characteristics (internal traffic, originating traffic, destination traffic).
- Does the trip numbering correspond to the start and end times of the individual trips?

In processing potentially not credible data the following three options were available:

- correction of individual characteristics
- removal, addition or adjustment of trips
- acceptance as unusual but allowable data

The correction of characteristics and the removal, addition or adjustment of trips only took place if the relevant changes were able to be derived from the context of the household (and only then).
3.3.2 Weighting of data

The objective of weighting the data is to correct for or minimise the systematic bias in the sample. Factors were thus developed, which were put to use in all analyses. The factors were the result of a comparison of various distributions in the base population and the sample. Information about the base population was provided by the cities. Accordingly, survey data was weighted at the level of persons with regard to the following explanatory variables:

- distribution of number of inhabitants in city districts
- age distribution
- distribution according to sex

Since there was no information about distribution of household size in the cities taking part in the survey – except the city of Pardubice – no weighting for this specific parameter was done (which is equal to weighting factor 1 for every household). However, weighting according to household size is the standard used in the model survey SrV. Therefore households were weighted in the city of Pardubice where the required information was available.
4 RESULTS IN TABLES AND DIAGRAMS

Using the methodology described in the previous chapters, an extensive data set was created containing mobility-related information concerning households, persons and trips for the city of Žilina. On the following pages, tables and diagrams describing the travel behaviour of Žilina residents have been put together based upon methods used in the SrV.

The results will be discussed with respect to results from other Central MeetBike cities\(^1\). For several parameters the authors also provide a comparison to data collected during the SrV 2008 in Germany. This comparison serves to place the results from the CMB survey into context. In addition, the results from the SrV 2008 provide several indications of potential development paths for mobility in the Central MeetBike cities. The affluence and demographics of the Czech Republic, Poland and Slovakia are increasingly conforming to western European countries and mobility behaviour is experiencing lasting change. As a result, the comparative data from Germany take on relevance for transport planning in other Central European countries.

The results of the survey in Žilina on the following pages are presented in four chapters:

4.1 Characteristics of the survey implementation and the sample
4.2 Household and vehicle-specific parameters
4.3 Mobility related facts about persons
4.4 Characteristics of trips

\(^1\) Unfortunately survey in the Polish city of Tczew was not finished by the finalisation of this report. Therefore there is no comparison to results from Tczew available.
4.1 CHARACTERISTICS OF THE SURVEY IMPLEMENTATION AND THE SAMPLE

4.1.1 Parameters of the survey

Table 5: Parameters of the survey implementation

<table>
<thead>
<tr>
<th>Field Time</th>
<th>12.06.2012 - 29.06.2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>52%</td>
</tr>
<tr>
<td>Households interviewed</td>
<td>663*</td>
</tr>
<tr>
<td>Persons interviewed</td>
<td>1816*</td>
</tr>
<tr>
<td>Trips gathered</td>
<td>3787*</td>
</tr>
</tbody>
</table>

* number may vary from number in diagrams on next pages due to selection of particular households/persons/trips

Table 5 shows general characteristics of the survey in Žilina. These are important for interpretation and comparison of the results. The survey was implemented in June 2012. According to experiences from former surveys in Germany there are two periods that show results, which are representative for the mean values of mobility behaviour for the whole year: April – June and September – November. Both periods usually cover different weather conditions that mainly influence mobility behaviour. Since this survey was only implemented in June – with usually warmer weather than the average of the year – it can be assumed that results may not be representative for mobility on a normal working day of an average day of the year. Wherever this might be the case it is indicated on the following pages.

During implementation of the survey more than 1.000 persons were interviewed in Žilina. This ensures statistical reliability for the results\(^{22}\). When more specific and complex combinations of parameters were analysed on demand of project partners (e.g. modal split based on trip length) reliability suffers. To what extent is indicated in the following chapters.

\(^{22}\) See chapter 3.1.1 for more information
4.1.2 Sample structure according to age and sex

Table 6 compares sample structure and official city statistics according to age. The comparison shows very good conformability between both groups. Thus there should be no influences on the results from an unrepresentative age structure of the sample.

In comparison to German cities it is noticeable that there are many more children and teenagers under the age of 18 in the Žilina sample (Germany: 9,8% \(^{23}\)). In contrast the share of elderly people above 65 years is a lot higher in German cities (Germany: 22,3% \(^{24}\)).

<table>
<thead>
<tr>
<th>Age</th>
<th>Sample structure</th>
<th>Official city statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>0 - 17 years</td>
<td>16%</td>
<td>16%</td>
</tr>
<tr>
<td>18 - 24 years</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>25 - 44 years</td>
<td>34%</td>
<td>31%</td>
</tr>
<tr>
<td>45 - 64 years</td>
<td>27%</td>
<td>28%</td>
</tr>
<tr>
<td>65 years and older</td>
<td>13%</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td>867 Persons</td>
<td>946 Persons</td>
</tr>
</tbody>
</table>

Table 6: Sample structure according to age and sex

\(^{23}\) Ahrens et al., 2009, Table 3.1

\(^{24}\) ibidem
4.1.3 Sample structure according to occupation and sex

Table 7: Sample structure according to occupation and sex

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Male</th>
<th>Female</th>
<th>All Persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Žilina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not employed (unemployed, retiree, small children)</td>
<td>28%</td>
<td>36%</td>
<td>32%</td>
</tr>
<tr>
<td>employed (full time, part time)</td>
<td>41%</td>
<td>35%</td>
<td>38%</td>
</tr>
<tr>
<td>education (pupil, student, trainee)</td>
<td>31%</td>
<td>28%</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>842 Persons</td>
<td>922 Persons</td>
<td>1764 Persons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Male</th>
<th>Female</th>
<th>All Persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>German cities *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not employed (unemployed, retiree, small children)</td>
<td>36%</td>
<td>42%</td>
<td>39%</td>
</tr>
<tr>
<td>employed (full time, part time)</td>
<td>46%</td>
<td>40%</td>
<td>43%</td>
</tr>
<tr>
<td>education (pupil, student, trainee)</td>
<td>18%</td>
<td>18%</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td>8.190 Persons</td>
<td>8.710 Persons</td>
<td>16.900 Persons</td>
</tr>
</tbody>
</table>

* German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80,000 - 500,000 inhabitants from flat and hilly regions. The data is from 2008.

Table 7 compares the sample structure according to occupation and sex in Žilina and in East German cities. Unfortunately there were no official statistics about occupation of Žilina inhabitants available. Thus it cannot be validated if the sample structure represents the population according to occupation. However, there is a hint that there are no influences to be expected: The sample structure according to occupation fits with the results of the sample structure based on age group. The relatively high number of persons in education that took part in the survey corresponds with the – compared to German cities – high share of persons under 18 years of age.

In German cities, analysed with SrV 2008, 18% of all persons questioned were in education, which is significantly lower than in Žilina. Additionally the share of persons that participated in the survey and that were not employed is lower than in German cities (Germany: 39%), due
to the smaller number of retirees in the Žilina sample.

4.1.4 Sample structure according to household size

<table>
<thead>
<tr>
<th>Household size</th>
<th>Žilina</th>
<th>German cities*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Person</td>
<td>17%</td>
<td>47%</td>
</tr>
<tr>
<td>2 Persons</td>
<td>30%</td>
<td>33%</td>
</tr>
<tr>
<td>3 Persons</td>
<td>23%</td>
<td>13%</td>
</tr>
<tr>
<td>4 Persons</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>5 and more Persons</td>
<td>9%</td>
<td>7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Household size in sample</th>
<th>Žilina</th>
<th>German cities*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,76</td>
<td>1,82</td>
</tr>
</tbody>
</table>

* German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80,000 - 500,000 inhabitants from flat and hilly regions. The data is from 2008.

Table 8: Sample structure according to household size

Table 8 indicates the sample structure according to household size in Žilina and East German cities. There was no information available to validate whether the sample structure in Žilina is representative in respect of household size. However, since every household has the same probability to be drawn from the register of addresses, there should not be any major influences.

A comparison of the distribution of household size of the sample in Žilina and German cities shows significant differences. The share of 1-person-households in German cities is approximately 3 times higher than in Žilina. By contrast almost one third of all households in the sample of Žilina have more than 4 members. In German cities this number is much lower (7%).

A comparison of household size in cities, which were surveyed in Central MeetBike and in cities from Germany, reveals similar results for all CMB cities. Households still generally seem to be bigger in the surveyed cities from Czech Republic, Slovakia and Poland. But also here the trend towards smaller households can be expected.
4.2 HOUSEHOLD AND VEHICLE-SPECIFIC PARAMETERS

4.2.1 Household-specific parameters

![Cars per Household](image)

Almost one third of all households do not own a car in Žilina, while in Germany this number is higher. In contrast to motorisation of persons, the availability of a car on household level is higher in Žilina than in German cities. This is mainly due to the larger size of households in Žilina, which tend to have at least one car for a bigger family.

Among the partner cities of the Central MeetBike survey, only the city of Gdańsk has a larger number of households without a car (46%) than in German cities. This might be mainly influenced by the fact that Gdańsk is the largest of all cities surveyed with the highest share of 1-person-households among all Polish, Czech and Slovak Central MeetBike cities. In all remaining cities this share of households without a car is about 24-31%, which is much lower than in German cities.
Table 9: Motorisation of households and household income

Table 9 shows number of cars that are available per 1.000 households in different household income classes. Households with more than approx. 900 € monthly household income usually have one car available. About half of all households of the sample had less than 900 € available per month.

<table>
<thead>
<tr>
<th>Household income</th>
<th>Cars per 1000 households</th>
<th>Number of households in sample*</th>
</tr>
</thead>
<tbody>
<tr>
<td>below 500€</td>
<td>118</td>
<td>76</td>
</tr>
<tr>
<td>500 - 900€</td>
<td>698</td>
<td>149</td>
</tr>
<tr>
<td>900 - 1500€</td>
<td>1160</td>
<td>131</td>
</tr>
<tr>
<td>1500 - 2000€</td>
<td>1136</td>
<td>66</td>
</tr>
<tr>
<td>2000 - 2600€</td>
<td>1412</td>
<td>17</td>
</tr>
<tr>
<td>2600€ and more</td>
<td>2500</td>
<td>4</td>
</tr>
</tbody>
</table>

* for groups with less than 30 households these numbers are not significant
A comparison with German cities is not possible, because SrV uses different household income classes.

Figure 6 (next page) compares walking time from households to the closest public transport stop in Žilina and in German cities.

The city of Žilina is well developed with public transport. 81 % of all inhabitants live in a 5 minute walking distance to the next bus stop. Only 2 % have to walk longer than 10 minutes.

In comparison to results from Germany it can be stated that the share of people that do not know where the next public transport stop is located, is very low – especially in the case of bus stops. Therefore it can be assumed that inhabitants of Žilina seem to be better informed about their public transport system. This can also be interpreted as a hint that they are more accustomed to the use of their public transport system.
Figure 6: Walking time to public transport stop that is closest one from household

4.2.2 Parameters describing use of vehicles

Table 10: Basic parameters of vehicle use

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Žilina</th>
<th>German cities*</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>average number of persons in cars</td>
<td>1.2</td>
<td>1.3</td>
<td>persons/car</td>
</tr>
<tr>
<td>average annual distance travelled by most used car of household (2010)</td>
<td>23.848</td>
<td>13.800</td>
<td>km/year,car</td>
</tr>
<tr>
<td>average annual distance travelled by most used bicycle of household (2010)</td>
<td>503</td>
<td>not analysed</td>
<td>km/year,bicycle</td>
</tr>
</tbody>
</table>

* German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80,000 - 500,000 inhabitants from flat and hilly regions. The data is from 2008.

Table 10 shows basic parameters to describe the use of vehicles in Žilina and in German cities. It can be stated that there is one major difference between car use in German cities and Žilina: annual distance travelled by most used car of the household is 70% higher than in East German cities. As for bicycle use comparison is not possible, because annual kilometres ridden by bicycle were not analysed in SrV.
In comparison of all cities surveyed in Central MeetBike it became clear that the amount of kilometres ridden by bike significantly increases with increasing modal split of cycling. The annual distance travelled by bicycle ranges from approx. 500km in Žilina to 1.650km in Pardubice.

Figure 7 shows where inhabitants of Žilina usually park their car or bicycle at their place of residence in comparison to East German cities. The results for parking the car are similar in both surveys. However, it seems to be less common to park one’s car on public areas in Žilina. It can be stated that it is also very uncommon to park bicycles on public areas in the surrounding of one’s place of residence. Private storing possibilities such as a cellar are used for almost every bicycle. This result for bicycles can be observed in other cities surveyed in Central MeetBike as well.

* German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80.000 - 500.000 inhabitants from flat and hilly regions. The data is from 2008.
** Parking space for bicycles was not analysed in SrV
4.3 MOBILITY RELATED FACTS ABOUT PERSONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Žilina</th>
<th>German cities**</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of trips per person and day (all persons)</td>
<td>2.09</td>
<td>3.10</td>
<td>trips/day</td>
</tr>
<tr>
<td>Share of persons with trips*</td>
<td>90%</td>
<td>88%</td>
<td></td>
</tr>
<tr>
<td>Number of trips per person and day (persons with trips)</td>
<td>2.45</td>
<td>3.50</td>
<td>trips/day</td>
</tr>
<tr>
<td>daily kilometres travelled</td>
<td>15.0</td>
<td>19.2</td>
<td>km/person,day</td>
</tr>
<tr>
<td>average time used for all trips per day</td>
<td>57.2</td>
<td>63.2</td>
<td>min/person,day</td>
</tr>
</tbody>
</table>

* Persons have not necessarily had trips on the test day. This number indicates how many persons did have trips on the test day.
** German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80,000 - 500,000 inhabitants from flat and hilly regions.

Table 11: Basic parameters of mobility behaviour of inhabitants

Table 11 compares basic parameters of mobility behaviour of inhabitants of Žilina and from East German cities. The number of trips per person and day in Žilina is much lower, on the average 2.5 trips per day. This means that only very few people made a third or fourth trip in addition to their main movements on the test day (e.g. going to work and back home). TU Dresden and representatives from the city of Žilina discussed this issue without finding an obvious reason for this remarkable result. It can be assumed that trips might have not been reported during the interviews. But since similar results also occur in other Central MeetBike cities (see Figure 8), the small number of trips per day might also be caused by cultural differences between Germany and other Central European countries (e.g. fewer leisure trips on a normal working day, see chapter 4.4.2).
Figure 8: Number of trips per day in German cities and Central MeetBike cities

Car availability is an important factor for individuals in their transport mode choice. Studies have shown that persons that do have a car available make significantly more trips by car than those without permanent access to a private car. In the course of the survey two relevant factors have been analysed:

Method 1: Direct question about availability of a private car at the test day: Persons interviewed could choose from three categories: „yes, unlimited“, „yes, with agreement“ and „no, no possibility“. This results in a subjective assessment of unlimited access to a private car of each individual. Figure 9 shows results of this analysis.

25 Ahrens et al., 2013, S.66
The availability of a car for inhabitants of Žilina differs from East German cities. The share of persons without access to a car on the test days is approx. 50% higher in Žilina compared to German cities. This results in approx. 20% less persons with unlimited access to their car on the test day in Žilina. In comparison of all cities surveyed in Central MeetBike it became clear that in Prešov and Gdańsk there are significantly more persons without access to a car at the particular test day than in other CMB cities.

Method 2: General access to a private car: In order to categorise inhabitants of a city it is relevant to differentiate between those who generally have access to a car and those who don’t. General access to a private car was not asked directly in the questionnaire, but it could be analysed from the database afterwards. A person generally has access to a private car, if there is a private car at the household and if the person has a drivers licence. Figure 10 shows the result of the analysis.

German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80,000 - 500,000 inhabitants from flat and hilly regions. The data is from 2008.

Figure 9: Availability of car on test day - method 1

According to the definition of general access to a private car given on the last page, 59% of all inhabitants of Žilina do generally have a car available for their daily trips. This is almost equal to the 57% surveyed in East German cities in 2008. Figure 9 shows that from these 59% in Žilina approx. 26% can only use the car with an agreement with other users of the car (e.g. other household members).

Figure 11 shows possession of drivers licence for male and female persons of different ages. As in East German cities fewer women have a drivers licence in Žilina. However, in younger age classes this slowly seems to level. In Prešov rate of possession of drivers licence is the lowest among all Central MeetBike cities.

Figure 10: Availability of a car on test day - method 2

Figure 11: Possession of drivers licence according to age and sex
Figure 12 compares motorisation of inhabitants in Žilina and in German cities. The motorisation (number of vehicles per 1.000 inhabitants) for all kinds of vehicles is lower in Žilina compared to East German cities. Especially notable is the number of 314 private cars per 1.000 inhabitants, because such a low level of motorisation was surveyed in Germany only in the capital of Berlin.

After the political change in 1990, motorisation in East German cities doubled from about 200 to 400 cars per 1.000 inhabitants until 1998. Later, increase was only marginal. In Germany, the highest values of motorisation can be found in the countryside and in small cities. In Berlin the lowest motorisation was observed. It can be concluded that also in Žilina motorisation will grow further.

However, low motorisation is favourable for environmental reasons. People without cars make significantly shorter trips and fewer trips by car and therefore cause less pollution and CO₂ emissions²⁶.

²⁶ Ahrens et al., 2013, S.66
Figure 13: Motorisation of inhabitants with cars and bicycles in CMB and SrV cities

In comparison to other Central MeetBike cities, Žilina has an average motorisation. With approx. 352 cars/1000 inhabitants (private and company cars) this number is approx. 22% lower than in German cities.

Gdańsk showed exceptionally low rates of motorisation both for cars and for bicycles. In contrast, Czech cities showed very high rates of bicycles per 1.000 inhabitants and the city of Pardubice also had a motorisation rate that was on the same level as German cities.

Due to the still lower motorisation rates, share of trips done by car in Žilina is lower than in Germany (see chapter 4.4). However, it can be expected that car ownership might increase during the next years. With this, problems of space consumption for streets and car parking, emissions and accidents will increase as well. Whether this development is desired has to be discussed and decided in the partner cities.
4.4 CHARACTERISTICS OF TRIPS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Žilina</th>
<th>German cities*</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>average duration of all trips</td>
<td>20,7</td>
<td>21,5</td>
<td>min/trip</td>
</tr>
<tr>
<td>average duration of all trips within the city</td>
<td>19,0</td>
<td>19,0</td>
<td>min/trip</td>
</tr>
<tr>
<td>average length of all trips</td>
<td>4,1</td>
<td>6,5</td>
<td>km/trip</td>
</tr>
<tr>
<td>average length of all trips within the city</td>
<td>2,8</td>
<td>4,2</td>
<td>km/trip</td>
</tr>
</tbody>
</table>

* German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80.000 - 500.000 inhabitants from flat and hilly regions.

Table 12: Duration and length of trips by inhabitants

Table 12 compares duration and length of trips in Žilina and in East German cities. Even though trips are shorter in distance in Žilina they are not that much shorter in time than in Germany. This mainly results from the fact that though fewer trips are done by car in Žilina, they are usually longer and covered with higher speed.

4.4.1 Modal split by inhabitants

Modal split of trips is the most common indicator to describe the mobility behaviour. In the course of this survey modal split was analysed for all trips by inhabitants (Figure 14) and for all trips within the city boundaries by inhabitants (Figure 16).

Figure 14: Modal split of all trips by inhabitants
Figure 14 indicates the modal split of all trips done by inhabitants of Žilina in comparison to inhabitants of East German cities. The share of trips by car is much lower in Žilina (36%) than in German cities (42%). This is due to a higher share of trips done by public transport and walking. This results in a more sustainable mobility behaviour of the inhabitants of Žilina than in East German cities. However, since the share of trips done by car will very likely increase over the next years in Žilina, the development might lead to a similar situation as in Germany.

Cycling is not yet a main mode of transport in Žilina. But due to the compact structure of the city and the relatively flat terrain of the valley of Žilina there is some potential to substitute trips now done by car with cycling trips. The goal could be to avoid a higher car modal split by more cycling, walking and public transport as a combined “mobility coalition”. Since public transport is strong in Žilina, promotion of cycling should follow integrated approaches to avoid effects of cannibalism between cycling, public transport and walking. The main goal should be to keep the amount of private car trips as low as possible.

As a result of the survey it became clear that inhabitants of Žilina, along with those in other Central European cities, still have a more sustainable mobility behaviour than in many West European cities (Figure 15). The share of trips by car is relatively low. In Žilina this mainly is the result of an often-used public transport system in combination with more walking trips. Cycling is not yet an often-used transport mode for working days. However, the partners of the Central MeetBike project see some potential for cycling in order to stop the increase of trips done by car. Cycling is a zero emission individual mode, which is healthy exercise at the same time.
About 75% of all trips analysed in the survey in Žilina started and terminated within the city boundaries. It became clear that for trips within the city the car is less used whereas there are more walking trips in comparison to all trips of inhabitants. (Not included in this analysis are trips from residents outside of Žilina.)

Figure 15: Modal split of inhabitants in CMB and SrV cities

Figure 16: Modal split of trips within the city by inhabitants
Modal split varies with respect to several trip characteristics. On the following pages, modal split according to trip length (Figure 17) and by purpose of trip is analysed (Figure 19).

Modal split and trip lengths, Žilina, N=3654 trips

Against the background of only very little numbers of trips for different purposes, numbers from Žilina are only an indication for the modal split of the population.

This graph shows modal split of inhabitants in Žilina in four trip length classes. It is not surprising that the share of walking trips decreases with increasing trip length while the share of trips by car and public transport simultaneously increase. However, it is noticeable that the number of trips with distances below 5km is very high in Žilina (80%). Trips from this length class are usually seen as very suitable for bicycle transport, because cycling is the fastest
transport mode from door to door for trips below 5 to 6 km. In German cities about 66% of all trips by inhabitants are shorter than 5 km. It is noticeable that Modal Split for cycling decreases very slowly with increasing trips length. Thus still approx. 4% of all trips of more than 10 km are done by bicycle.

Among the cities that were surveyed in the course of Central MeetBike only in the city of Gdańsk is this ratio of trips shorter than 5 km at the same level as in German cities. In the remaining cities 77 – 82% of all trips analysed were shorter than 5 km.

4.4.2 Purpose of trips

![Figure 18: Purpose of trips](image)

German cities are represented by the SrV-Städtepegel - a pool of East German cities of a size from approx. 80,000 - 500,000 inhabitants from flat and hilly regions. The data is from 2008.

This graph shows the purpose of trips in Žilina in comparison to German cities. It is noticeable that almost half of the trips analysed in the course of this survey were trips with “home” as destination. This trip purpose covers only 41% of all trips by inhabitants in Germany. Furthermore it can be analysed that, on working days, inhabitants of Žilina focus on obligatory trips such as going to work or school than on occasional trips (e.g. shopping or leisure trips). In comparison to other Central MeetBike cities similar tendencies of more work trips and less shopping and leisure trips can be observed as well.

27 UBA, 2009, S.10

28 For definition of trip purposes: p.12
From former surveys implemented in Germany, the authors know about the fact that modal split not only differs according to trip length but also with respect to trip purpose. Results of this analysis are shown in Figure 19.

In comparison to German cities the use of the car for trips to school (German cities: 34%), shopping (German cities: 40%) and for leisure trips (German cities: 38%) is lower in Žilina, but higher than other CMB cities. This mainly results from a stronger use of public transport and walking in Žilina. It is noticeable that there were no children cycling to school in the survey sample. For work trips the shares for cars (German cities: 55%) and walking (German cities: 11%) are similar to German cities whereas public transport is much more often used in Žilina. Except for leisure trips, cycling does not play a major role in mobility behaviour in Žilina. However, as long as an increase of cycling is not accompanied by a decrease of car use, more cycling would mean less walking or less public transport.
5. SOURCES

UBA – Umweltbundesamt (German Federal Environmental Agency): „Sprit sparen und mobil sein“ („Save fuel and be mobile“). Dessau-Rosslau. 2009
6. ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMB</td>
<td>Central MeetBike</td>
</tr>
<tr>
<td>e.g.</td>
<td>exempli gratia, for example</td>
</tr>
<tr>
<td>ERDF</td>
<td>European Regional Development Fund</td>
</tr>
<tr>
<td>ibidem</td>
<td>at the same place</td>
</tr>
<tr>
<td>i.e.</td>
<td>id est, in other words</td>
</tr>
<tr>
<td>inhab.</td>
<td>Inhabitants</td>
</tr>
<tr>
<td>PT</td>
<td>public transport</td>
</tr>
<tr>
<td>SrV</td>
<td>System of representative surveys on mobility behaviour</td>
</tr>
</tbody>
</table>
7. APPENDICES
Appendix 1 – Questionnaire Slovak language

Questionnaire for household

![Questionnaire Image]
OSOBNÝ DOTÁZNIK – STRANA 1
Presnite všetky boxy domôcku a pokiaľ nezohľadnité zodpovedanie nesledujúcich otázok.

<table>
<thead>
<tr>
<th>Číslo osoby</th>
<th>Najstaršia osoba</th>
<th>Druhá najstaršia osoba</th>
<th>Trojička najstaršia osoba</th>
<th>Starší riaditeľ</th>
<th>Prádla na riaditeľ</th>
<th>Podľa riaditeľa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Daň</td>
<td>Daň</td>
<td>Daň</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
<tr>
<td>2</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
</tr>
<tr>
<td>3</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
<tr>
<td>4</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
</tr>
<tr>
<td>5</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
</tbody>
</table>

OBÝVKOST PRIEBEHU ROZHOĐUCIEHO DNA PRIEISKU
Zodpovedzte sledovaného DNA priebehu rozhodujúceho DNA priemerného DNA v miestnych obecných oblastiach.

<table>
<thead>
<tr>
<th>Číslo osoby</th>
<th>Najstaršia osoba</th>
<th>Druhá najstaršia osoba</th>
<th>Trojička najstaršia osoba</th>
<th>Starší riaditeľ</th>
<th>Prádla na riaditeľ</th>
<th>Podľa riaditeľa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Daň</td>
<td>Daň</td>
<td>Daň</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
<tr>
<td>2</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
</tr>
<tr>
<td>3</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
<tr>
<td>4</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
</tr>
<tr>
<td>5</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
</tbody>
</table>

OBMEDZENIE MOBILITY
Složky astrových dovoľovcov v rámci obmedzeného krajinára mobility.

<table>
<thead>
<tr>
<th>Číslo osoby</th>
<th>Najstaršia osoba</th>
<th>Druhá najstaršia osoba</th>
<th>Trojička najstaršia osoba</th>
<th>Starší riaditeľ</th>
<th>Prádla na riaditeľ</th>
<th>Podľa riaditeľa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Daň</td>
<td>Daň</td>
<td>Daň</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
<tr>
<td>2</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
</tr>
<tr>
<td>3</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
<tr>
<td>4</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
</tr>
<tr>
<td>5</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
</tbody>
</table>

ZAKROKOVÁ ČINNOSŤ
Dieta (pravdepodobné výskumové hodnoty)

<table>
<thead>
<tr>
<th>Číslo osoby</th>
<th>Najstaršia osoba</th>
<th>Druhá najstaršia osoba</th>
<th>Trojička najstaršia osoba</th>
<th>Starší riaditeľ</th>
<th>Prádla na riaditeľ</th>
<th>Podľa riaditeľa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Daň</td>
<td>Daň</td>
<td>Daň</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
<tr>
<td>2</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
</tr>
<tr>
<td>3</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
<tr>
<td>4</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
</tr>
<tr>
<td>5</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
</tbody>
</table>

NEJVYŠŠIE UKONČENÉ VZDELANIE
Ukončené základné vzdelanie

<table>
<thead>
<tr>
<th>Číslo osoby</th>
<th>Najstaršia osoba</th>
<th>Druhá najstaršia osoba</th>
<th>Trojička najstaršia osoba</th>
<th>Starší riaditeľ</th>
<th>Prádla na riaditeľ</th>
<th>Podľa riaditeľa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Daň</td>
<td>Daň</td>
<td>Daň</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
<tr>
<td>2</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
</tr>
<tr>
<td>3</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
<tr>
<td>4</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
</tr>
<tr>
<td>5</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
</tbody>
</table>

NEJVYŠŠIE UKONČENÉ PROFEZINÉ VZDELANIE
Ukončené univerzitné vzdelanie

<table>
<thead>
<tr>
<th>Číslo osoby</th>
<th>Najstaršia osoba</th>
<th>Druhá najstaršia osoba</th>
<th>Trojička najstaršia osoba</th>
<th>Starší riaditeľ</th>
<th>Prádla na riaditeľ</th>
<th>Podľa riaditeľa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Daň</td>
<td>Daň</td>
<td>Daň</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
<tr>
<td>2</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
</tr>
<tr>
<td>3</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
<tr>
<td>4</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
<td>Nie</td>
</tr>
<tr>
<td>5</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
</tbody>
</table>
Questionnaire for person – page 2

<table>
<thead>
<tr>
<th>Číslo</th>
<th>Človek 1</th>
<th>Človek 2</th>
<th>Človek 3</th>
<th>Človek 4</th>
<th>Človek 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
<td>Ano</td>
</tr>
<tr>
<td>2</td>
<td>NIE</td>
<td>NIE</td>
<td>NIE</td>
<td>NIE</td>
<td>NIE</td>
</tr>
<tr>
<td>3</td>
<td>NIE</td>
<td>NIE</td>
<td>NIE</td>
<td>NIE</td>
<td>NIE</td>
</tr>
<tr>
<td>4</td>
<td>NIE</td>
<td>NIE</td>
<td>NIE</td>
<td>NIE</td>
<td>NIE</td>
</tr>
<tr>
<td>5</td>
<td>NIE</td>
<td>NIE</td>
<td>NIE</td>
<td>NIE</td>
<td>NIE</td>
</tr>
</tbody>
</table>

Vlastníctvo vodičského preukazu

Vlastníctvo u vojenského dokladu je nezbytné.

Možnosť využívania motorového vozidla

Môžu využívať svoje osobné vozidlo, ktoré má licenciu?

Využívanie verejnej dopravy

Využíval som v prípade udelených 12 mesiacov poskytnutí verejnej dopravy?

Druh cestového dokladu

Zamieňať cestovný doklad so cestovným lístkom, ktorý je dovolený na jazdu po cestách?

Najvyžadované zastavky

Za akou došlo na zastavu prečo z dôvodu niekoho, ktorého nesťahuje cestovný lístok?
Questionnaire for trips – page 2

DOTAZNÍK ČESTY – strana 2

Table:

<table>
<thead>
<tr>
<th>Šťastá cesta</th>
<th>Pieta cesta</th>
<th>Šťastá cesta</th>
<th>Šťastá cesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvaha</td>
<td>Úvaha</td>
<td>Úvaha</td>
<td>Úvaha</td>
</tr>
<tr>
<td>Vlastní zmena</td>
<td>Vlastní zmena</td>
<td>Vlastní zmena</td>
<td>Vlastní zmena</td>
</tr>
<tr>
<td>Sestava motocyklu</td>
<td>Sestava motocyklu</td>
<td>Sestava motocyklu</td>
<td>Sestava motocyklu</td>
</tr>
<tr>
<td>Přípojka</td>
<td>Přípojka</td>
<td>Přípojka</td>
<td>Přípojka</td>
</tr>
<tr>
<td>Tým</td>
<td>Tým</td>
<td>Tým</td>
<td>Tým</td>
</tr>
<tr>
<td>Sestava motocyklu</td>
<td>Sestava motocyklu</td>
<td>Sestava motocyklu</td>
<td>Sestava motocyklu</td>
</tr>
<tr>
<td>Přípojka</td>
<td>Přípojka</td>
<td>Přípojka</td>
<td>Přípojka</td>
</tr>
<tr>
<td>Kolík</td>
<td>Kolík</td>
<td>Kolík</td>
<td>Kolík</td>
</tr>
<tr>
<td>Vlastní zmena</td>
<td>Vlastní zmena</td>
<td>Vlastní zmena</td>
<td>Vlastní zmena</td>
</tr>
<tr>
<td>Sestava motocyklu</td>
<td>Sestava motocyklu</td>
<td>Sestava motocyklu</td>
<td>Sestava motocyklu</td>
</tr>
<tr>
<td>Přípojka</td>
<td>Přípojka</td>
<td>Přípojka</td>
<td>Přípojka</td>
</tr>
</tbody>
</table>

Doprovod:

<table>
<thead>
<tr>
<th>Data</th>
<th>Jméno</th>
<th>Akce</th>
<th>Motory</th>
<th>Vlastní zmena</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.01.2023</td>
<td>Jan</td>
<td>Studen</td>
<td>Motory</td>
<td>Vlastní zmena</td>
</tr>
</tbody>
</table>

Doprovod:

<table>
<thead>
<tr>
<th>Data</th>
<th>Jméno</th>
<th>Akce</th>
<th>Motory</th>
<th>Vlastní zmena</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.01.2023</td>
<td>Jan</td>
<td>Studen</td>
<td>Motory</td>
<td>Vlastní zmena</td>
</tr>
</tbody>
</table>

Doprovod:

<table>
<thead>
<tr>
<th>Data</th>
<th>Jméno</th>
<th>Akce</th>
<th>Motory</th>
<th>Vlastní zmena</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.01.2023</td>
<td>Jan</td>
<td>Studen</td>
<td>Motory</td>
<td>Vlastní zmena</td>
</tr>
</tbody>
</table>