Copula methods in Finance

Wolfgang K. Härdle Ostap Okhrin

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt-Universität zu Berlin http://ise.wiwi.hu-berlin.de

Motivation

Recipe for Disaster: The Formula That Killed Wall Street

By Felix Salmon 🔯 👘 02.23.09

In the mid-'80s, *Wall* Street turned to the quants – brainy financial engineers – to invent new ways to boost profits.

Their methods for minting money worked brilliantly...

until one of the them devastated the global economy.

Probability - Specifically, this is a joint default probability-the likelihood that any two members of the pool (A and B) will both default. It's what investors are looking for, and the rest of the formula provides the answer.

Survival times - The amount of time between now and when A and B can be expected to default. Li took the idea from a concept in actuarial science that charts what happens to someone's life expectancy when their spouse dies.

$$Pr[\mathbf{T}_{A} < 1, \mathbf{T}_{B} < 1] = \boldsymbol{\varphi}_{2}(\boldsymbol{\varphi}^{\cdot 1}(\mathbf{F}_{A}(1)), \boldsymbol{\varphi}^{\cdot 1}(\mathbf{F}_{B}(1)), \boldsymbol{\gamma})$$

Distribution functions - The probabilities of how long A and B are likely to survive. Since these are not certainties, they can be dangerous: Small miscalculations may leave you facing much more risk than the formula indicates.

Copula - This couples (hence the Latinate term copula) the individual probabilities associated with A and B to come up with a single number. Errors here massively increase the risk of the whole equation blowing up.

Gamma - The all-powerful correlation parameter, which reduces correlation to a single constant-something that should be highly improbable, if not impossible. This is the magic number that made Li's copula function irresistible.

1 - 6

Example

 we pay 200 EUR for the chance to win 1000 EUR, if DAX returns decrease by 2%

$$P_{DAX}(r_{DAX} \le -0.02) = F_{DAX}(-0.02) = 0.2$$

Example

 we pay 200 EUR for the chance to win 1000 EUR, if DAX returns decrease by 2%

$$P_{DAX}(r_{DAX} \le -0.02) = F_{DAX}(-0.02) = 0.2$$

 we pay 200 EUR for the chance to win 1000 EUR, if DJ returns decrease by 1%

$$P_{DJ}(r_{DJ} \le -0.01) = F_{DJ}(-0.01) = 0.2$$

Example

 we get 1000 EUR if DAX and DJ indices decrease simultaneously by 2% and 1% respectively. how much are we ready to pay in this case?

$$P\{(r_{DAX} \le -0.02) \land (r_{DJ} \le -0.01)\} \\ = F_{DAX,DJ}(-0.02, -0.01) \\ = C\{F_{DAX}(-0.02), F_{DJ}(-0.01)\} \\ = C(0.2, 0.2).$$

Outline

- 1. Motivation \checkmark
- 2. Univariate Distributions and their Estimation
- 3. Multivariate Distributions and their Estimation
- 4. Copulae
- 5. Classical Approach
- 6. Our Findings

Univariate Case

Let x_1, \ldots, x_n be realizations of the random variable X $X \sim F$, where F is unknown

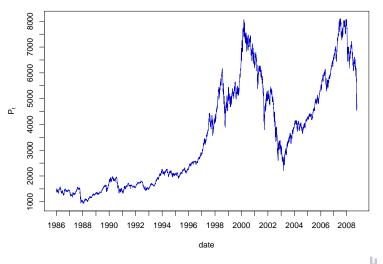
Example 1

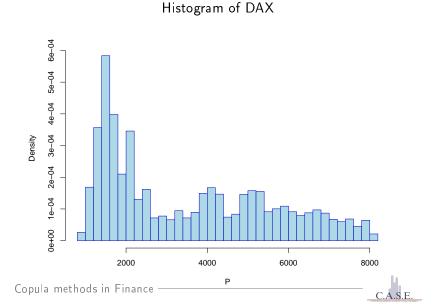
x_i are returns of the asset for one firm at the day t_i
 x_i are numbers of sold albums The Man Who Sold the World by David Bowie at day t_i

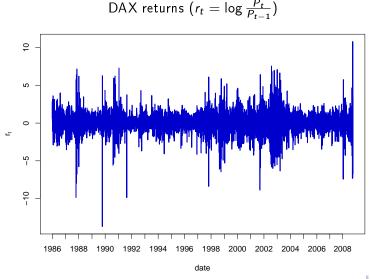
What is a good approximation of F ?

traditional or modern approach

DAX (P_t)



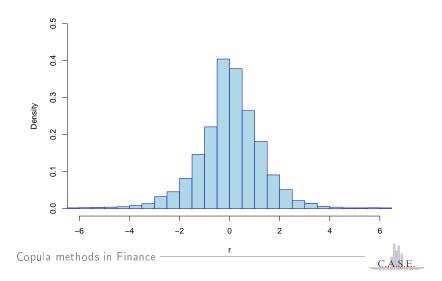




$$\mathsf{DAX} \text{ returns } (r_t = \log rac{P_t}{P_{t-1}})$$

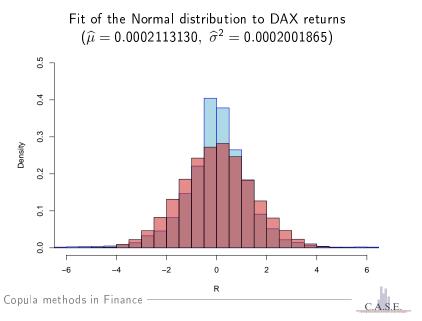
Copula methods in Finance

Histogram of DAX returns



Traditional approach:

F₀ - known distribution parameters of F₀ are estimated from the sample x₁,..., x_n F₀ = N(μ, σ²) ⇒ (μ, σ), here μ̂ = x̄, σ² = s² F₀ = St(α, β, μ, σ²) ⇒ (α, β, μ, σ) are estimated by Hull Estimator, Tail Exponent Estimation, etc. check the appropriateness of F₀ by a test (KS type) H₀ : F = F₀ vs H₁ : F ≠ F₀ if test confirm F₀, use F₀



Univariate Distributions

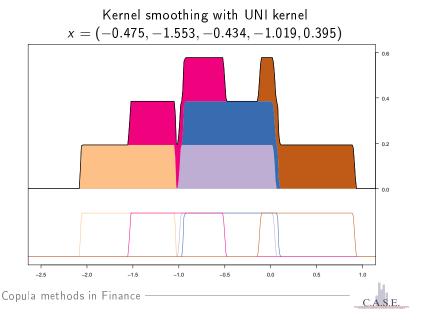
Modern approach: calculate the edf

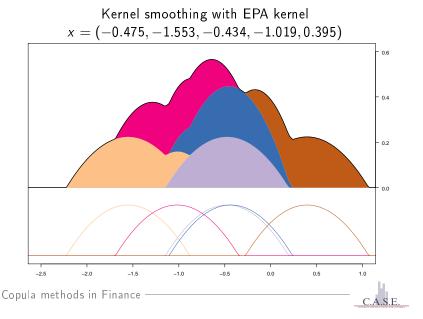
$$\widehat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathsf{I}\{X_i \leq x\},\$$

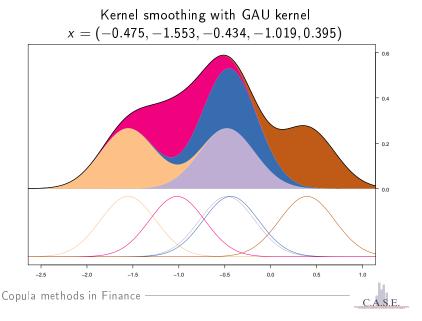
or the nonparametric kernel smoother

$$\widehat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right)$$

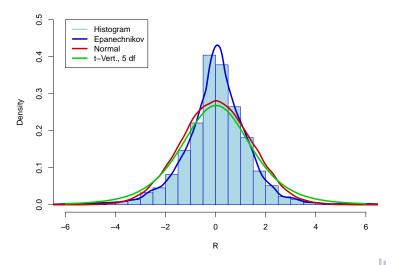
name	K(u)
Uniform Epanechnikov Gaussian	$\frac{\frac{1}{2}I\{ u \le 1\}}{\frac{3}{4}(1-u^2)I\{ u \le 1\}}$ $\frac{\frac{1}{\sqrt{2\pi}}\exp\left\{-\frac{1}{2}u^2\right\}}{\frac{1}{\sqrt{2\pi}}\exp\left\{-\frac{1}{2}u^2\right\}}$







The estimated density of DAX returns



Multivariate Case

 $\{x_{1i}, \ldots, x_{di}\}_{i=1,\ldots,n}$ is the realization of the vector $(X_1, \ldots, X_d) \sim F$, where F is unknown.

Example 2

- : $\{x_{1i}, \ldots, x_{di}\}_{i=1,\ldots,n}$ are returns of the *d* assets in the portfolio at day t_i
- (x_{1i}, x_{2i})[⊤] are numbers of sold albums The Man Who Sold The World by David Bowie and singles I Saved The World Today by Eurythmics at day t_i

Multivariate Case

What is a good approximation of F ?

traditional or modern approach

Very flexible approximation to F is challenging in high dimension due to curse of dimensionality.

Traditional approach: Mainly restricted to the class of elliptical distributions: Normal or *t* distributions

$$f_N(x_1,\ldots,x_d) = \frac{1}{\sqrt{|\Sigma|(2\pi)^d}} \exp\left\{-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu)\right\}$$

Drawbacks of the elliptical distributions:

- 1. does not often describe financial data properly
- 2. huge number of parameters to be estimated f.e. for Normal distribution: $\underbrace{\frac{d(d-1)}{2}}_{in \ dependency} + \underbrace{\frac{2d}{in \ margins}}_{in \ margins}$
- 3. ellipticity

Simulate $X \sim \mathsf{N}(\mu, \Sigma)$ with the sample size n=1000 and estimate the parameters $(\widehat{\mu}, \widehat{\Sigma})$

$$\Sigma = \begin{pmatrix} 1.5 & 0.7 & 0.2 \\ 0.7 & 1.3 & -0.4 \\ 0.2 & -0.4 & 0.3 \end{pmatrix} \Rightarrow \widehat{\Sigma} = \begin{pmatrix} 1.461 & 0.726 & 0.181 \\ 0.726 & 1.335 & -0.408 \\ 0.181 & -0.408 & 0.301 \end{pmatrix}$$

$$\mu = (0, 0, 0) \Rightarrow \widehat{\mu} = (0.0175, -0.0022, 0.0055)$$

 $\widehat{\Sigma}$ and Σ are not close to each other for only 3 dimensions and quiet big sample

Correlation

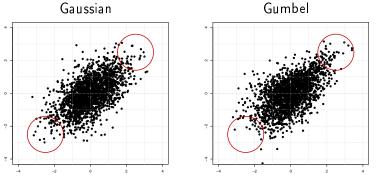


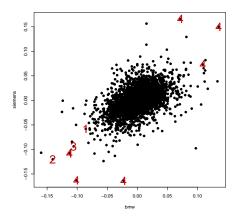
Figure 1: Scatterplots for two distribution with ho= 0.4

- same marginal distributions
- same linear correlation coefficient

"Extreme, synchronized rises and falls in financial markets occur infrequently but they do occur. The problem with the models is that they did not assign a high enough chance of occurrence to the scenario in which many things go wrong at the same time - the "perfect storm" scenario"

(Business Week, September 1998)

Correlation



Black Monday 2 16 10 1989 Berlin Wall 3. 19.08.1991 Kremlin Krise

2 - 19

1.19.10.1987

- 4. 17.03.2008, 19.09.2008,
- 10.10.2008, 13.10.2008, 15.10.2008, 29.10.2008

Copulae

Copula

For a distribution function F with marginals F_{X_1}, \ldots, F_{X_d} , there exists a copula $C : [0, 1]^d \to [0, 1]$, such that

$$F(x_1,\ldots,x_d)=\mathsf{C}\{F_{X_1}(x_1),\ldots,F_{X_d}(x_d)\}.$$

A little bit of history

1940s: Wassilij Hoeffding studies properties of multivariate distributions

1914–91, b. Mustamäki, Finland; d. Chapel Hill, NC gained his PhD from U Berlin in 1940 1924–45 work in U Berlin

Wassilij Hoeffding on BBI

A little bit of history

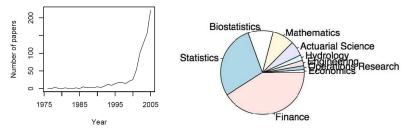
- 1940s: Wassilij Hoeffding studies properties of multivariate distributions
- □ 1959: The word copula appears for the first time (Abe Sklar)
- 1999: Introduced to financial applications (*Paul Embrechts*, Alexander McNeil, Daniel Straumann in RISK Magazine)
- 2000: Paper by David Li in Journal of Derivatives on application of copulae to CDO
- 2006: Several insurance companies, banks and other financial institutions apply copulae as a risk management tool

Applications

Practical Use:

- 1. medicine (Vandenhende (2003))
- 2. hydrology (Genest and Favre (2006))
- 3. biometrics (Wang and Wells (2000, JASA), Chen and Fan (2006, CanJoS))
- 4. economics
 - portfolio selection (Patton (2004, JoFE), Xu (2004, PhD thesis), Hennessy and Lapan (2002, MathFin))
 - time series (Chen and Fan (2006a, 2006b, JoE), Fermanian and Scaillet (2003, JoR), Lee and Long (2005, JoE))
 - risk management (Junker and May (2002, EJ), Breyman et. al. (2003, QF))

Applications



Bourdeau-Brien (2007) covers 871 publications

Special Copulas

Theorem

Let C be a copula. Then for every $(\textit{u}_1,\textit{u}_2) \in [0,1]^2$

$$\max{(u_1+u_2-1,0)} \le C(u_1,u_2) \le \min{(u_1,u_2)},$$

where bounds are called **lower and upper Fréchet-Höffdings bounds**. When they are copulas they represent perfect negative and positive dependence respectively.

The simplest copula is product copula

$$\Pi(u_1,u_2)=u_1u_2$$

characterize the case of independence.

Copula Classes

- 1. elliptical
 - implied by well-known multivariate df's (Normal, t), derived through Sklar's theorem
 - do not have closed form expressions and are restricted to have radial symmetry
- 2. Archimedean

$$C(u_1, u_2) = \phi^{-1} \{ \phi(u_1) + \phi(u_2) \}$$

- allow for a great variety of dependence structures
- closed form expressions
- several useful methods for multivariate extension
- not derived from mv df's using Sklar's theorem

Copula Examples 1

Gaussian copula

$$C_{\delta}^{G}(u_{1}, u_{2}) = \Phi_{\delta} \{ \Phi^{-1}(u_{1}), \Phi^{-1}(u_{2}) \}$$

=
$$\int_{-\infty}^{\Phi^{-1}(u_{1})} \int_{-\infty}^{\Phi^{-1}(u_{2})} \frac{1}{2\pi\sqrt{1-\delta^{2}}} \exp \left\{ \frac{-(s^{2}-2\delta st+t^{2})}{2(1-\delta^{2})} \right\} ds dt,$$

- 🖸 Gaussian copula contains the dependence structure
- normal marginal distribution + Gaussian copula = multivariate normal distributions
- non-normal marginal distribution + Gaussian copula = meta-Gaussian distributions
- allows to generate joint symmetric dependence, but no tail dependence

Copula Examples 2

Gumbel copula

$$C_{\theta}^{Gu}(u_1, u_2) = \exp \left\{ -\left[(-\log u_1)^{1/\theta} + (-\log u_2)^{1/\theta} \right]^{\theta} \right\}.$$

for θ > 1 allows to generate dependence in the upper tail
 for θ = 1 reduces to the product copula
 for θ → ∞ obtain Frèchet-Hoeffding upper bound

$$C_{\theta}(u_1, u_2) \stackrel{\theta \to \infty}{\to} \min(u_1, u_2)$$

C.A.S.E.

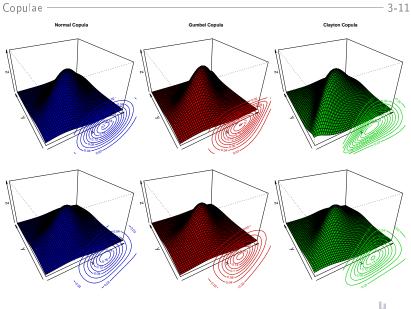
3-9

Copula Examples 3

Clayton copula

$$\mathcal{C}^{Cl}_{ heta}(u_1,u_2) ~=~ \left[\max\left(u_1^{- heta}+u_2^{- heta}-1,0
ight)
ight]^{-rac{1}{ heta}}$$

- \boxdot dependence becomes maximal when $heta
 ightarrow\infty$
- \boxdot independence is achieved when heta=0
- : the distribution tends to the lower Frèchet-Hoeffding bound when $\theta \rightarrow 1$
- allows to generate asymmetric dependence and lower tail dependence, but no upper tail dependence



Dependencies, Linear Correlation

$$\delta(X_1, X_2) = \frac{Cov(X_1, X_2)}{\sqrt{Var(X_1)Var(X_2)}}$$

- ☑ Sensitive to outliers
- \boxdot Measures the 'average dependence' between X_1 and X_2
- Invariant under strictly increasing linear transformations
- May be misleading in situations where multivariate df is not elliptical

Dependencies, Kendall's tau

Definition

If F is continuous bivariate cdf and let (X_1, X_2) , (X'_1, X'_2) be independent random pairs with distribution F. Then **Kendall's tau** is

$$\tau = P\{(X_1 - X_1')(X_2 - X_2') > 0\} - P\{(X_1 - X_1')(X_2 - X_2') < 0\}$$

- Less sensitive to outliers
- \boxdot Measures the 'average dependence' between X and Y
- Invariant under strictly increasing transformations
- Depends only on the copula of (X_1, X_2)
- \Box For elliptical copulae: $\delta(X_1, X_2) = \sin\left(\frac{\pi}{2}\tau\right)$

Dependencies, Spearmans's rho

Definition

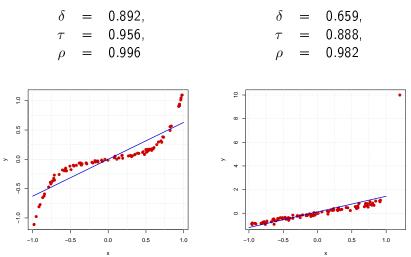
If F is a continuous bivariate cumulative distribution function with marginal F_1 and F_2 and let $(X_1, X_2) \sim F$. Then **Spearmans's rho** is a correlation between $F_1(X_1)$ and $F_2(X_2)$

$$\rho = \frac{Cov\{F_1(X_1), F_2(X_2)\}}{\sqrt{Var\{F_1(X_1)\}Var\{F_2(X_2)\}}}.$$

- Less sensitive to outliers
- \boxdot Measures the 'average dependence' between X_1 and X_2
- Invariant under strictly increasing transformations
- \bigcirc Depends only on the copula of (X_1, X_2)

. For elliptical copulae: $\delta(X_1, X_2) = 2 \sin(\frac{\pi}{6}\rho)$ Copula methods in Finance

Copulae



Dependencies, **Examples**

Gaussian copula

$$\begin{array}{rcl} \rho & = & \displaystyle \frac{6}{\pi} \arcsin \frac{\delta}{2}, \\ \tau & = & \displaystyle \frac{2}{\pi} \arcsin \delta, \end{array}$$

where δ is a linear correlation coefficient. Gumbel copula

$$ho \ -$$
 no closed form,
 $au \ = \ 1 - rac{1}{ heta}.$

Multivariate Copula Definition

Definition

The **copula** is a multivariate distribution with all univariate margins being U(0,1).

Theorem (Sklar, 1959)

Let X_1, \ldots, X_k be random variables with marginal distribution functions F_1, \ldots, F_k and joint distribution function F. Then there exists a k-dimensional copula $C : [0,1]^k \to [0,1]$ such that $\forall x_1, \ldots, x_k \in \mathbb{R} = [-\infty, \infty]$

$$F(x_1,...,x_k) = C\{F_1(x_1),...,F_k(x_k)\}$$
(1)

If the margins F_1, \ldots, F_k are continuous, then C is unique. Otherwise C is uniquely determined on $F_1(\overline{\mathbb{R}}) \times \cdots \times F_k(\overline{\mathbb{R}})$ Conversely, if C is a copula and F_1, \ldots, F_k are distribution functions, then the function F defined in (1) is a joint distribution function with margins F_1, \ldots, F_k Copula methods in Finance

Copula Density

Several theorems provides existence of derivatives of copulas, having them copula density is defined as

$$c(u_1,\ldots,u_k)=\frac{\partial^n C(u_1,\ldots,u_k)}{\partial u_1\ldots\partial u_k}.$$

Joint density function based on copula

$$_{c}f(x_{1},\ldots,x_{k})=c\{F_{1}(x_{1}),\ldots,F_{k}(x_{k})\}\cdot f_{1}(x_{1})\ldots f_{k}(x_{k}),$$

where $f_1(\cdot), \ldots, f_k(\cdot)$ are marginal density functions.

Special Copulas Theorem

Let C be a copula. Then for every $(u_1,\ldots,u_k)\in [0,1]^k$

$$\max\left(\sum_{i=1}^k u_i + 1 - k, 0\right) \leq C(u_1, \ldots, u_k) \leq \min(u_1, \ldots, u_k),$$

where bounds are called **lower and upper Fréchet-Höffdings bounds**. When they are copulas they represent perfect negative and positive dependence respectively.

The simplest copula is product copula

$$\Pi(u_1,\ldots,u_k)=\prod_{i=1}^k u_i$$

characterize the case of independence.

Simulation

Frees and Valdez, (1998, NAAJ), Whelan, (2004, QF), Marshal and Olkin, (1988, JASA) **Conditional inversion method:** Let $C = C(u_1, \ldots, u_k)$, $C_i = C(u_1, \ldots, u_i, 1, \ldots, 1)$ and $C_k = C(u_1, \ldots, u_k)$. Conditional distribution of U_i is given by $C_i(u_i|u_1, \ldots, u_{i-1}) = P\{U_i \le u_i|U_1 = u_1 \ldots U_{i-1} = u_{i-1}\}$ $= \frac{\partial^{i-1}C_i(u_1, \ldots, u_i)}{\partial u_1 \ldots \partial u_{i-1}} / \frac{\partial^{i-1}C_{i-1}(u_1, \ldots, u_{i-1})}{\partial u_1 \ldots \partial u_{i-1}}$

Estimations: Empirical Copula

Let $(x_{(1)}^i, \ldots, x_{(T)}^i)$ be the order statistics if *i*-th stock and (r_1^i, \ldots, r_T^i) corresponding rank statistics such that $x_{(r_t^i)^i} = x_t^i$ for all $i = 1, \ldots, d$. Any function

$$\widehat{C}\left(\frac{t_1}{T},\ldots,\frac{t_d}{T}\right) = \frac{1}{T}\sum_{t=1}^T\prod_{i=1}^d I\{r_t^i \le t_i\}$$

is an empirical copula

Estimation: bivariate case

 \boxdot based on Kendall's au estimator

$$\tau_n=\frac{4}{n(n-1)}P_n-1,$$

where P_n is the number of concordant pairs. For Gumbel copula $\hat{\theta}_n = \frac{1}{1-\tau_n}$ \Box based on Spearman's ρ estimator

$$\rho_n = \frac{\sum_{i=1}^n (R_i - \overline{R})^2 (S_i - \overline{S})^2}{\sqrt{\sum_{i=1}^n (R_i - \overline{R})^2 \sum_{i=1}^n (S_i - \overline{S})^2}},$$

where $(R_i, S_i) \forall i = \overline{1, n}$ are pairs of ranks. For Gaussian Copula $\delta_n = 2 \sin \frac{\pi \rho_n}{6}$

______C.A.S.E.___

Copula Estimation

The distribution of $X = (X_1, \ldots, X_d)'$ with marginals $F_{X_j}(x_j, \delta_j)$ $j = 1, \ldots, d$ is given by

$$F_X(x_1,\ldots,x_d)=C\{F_{X_1}(x_1,\delta_1),\ldots,F_{X_d}(x_d,\delta_d);\theta\}$$

and its density is given by

 $f(x_1,\ldots,x_d,\delta_1,\ldots,\delta_d,\theta)=c\{F_{X_1}(x_1,\delta_1),\ldots,F_{X_d}(x_d,\delta_d);\theta\}\prod_{j=1}^d f_j(x_j,\delta_j)$

Copula Estimation

For a sample of observations $\{x_t\}_{t=1}^{\prime}$ and $\vartheta = (\delta_1, \dots, \delta_d; \theta) \in \mathbb{R}^{d+1}$ the likelihood function is

$$L(\vartheta; x_1, \ldots, x_T) = \prod_{t=1}^T f(x_{1,t}, \ldots, x_{d,t}; \delta_1, \ldots, \delta_d; \theta)$$

and the corresponding log-likelihood function

$$\ell(\vartheta; x_1, \dots, x_T) = \sum_{t=1}^T \log c \{ F_{X_1}(x_{1,t}, \delta_1), \dots, F_{X_d}(x_{d,t}, \delta_d); \theta \}$$

+
$$\sum_{t=1}^T \sum_{j=1}^d \log f_j(x_{j,t}, \delta_j)$$

Full Maximum Likelihood (FML)

 \boxdot FML estimates vector of parameters artheta in one step through

$$\widetilde{artheta}_{\textit{FML}} = rgmax_artheta rac{1}{artheta} \mathrm{max}\ell(artheta)$$

: the estimates
$$\widetilde{\vartheta}_{FML} = (\widetilde{\delta}_1, \dots, \widetilde{\delta}_d, \widetilde{\theta})'$$
 solve

 $(\partial \ell / \partial \delta_1, \dots, \partial \ell / \partial \delta_d, \partial \ell / \partial \theta)' = 0$

 Drawback:with an increasing dimension the algorithm becomes too burdensome computationally

Copula methods in Finance _____

Inference for Margins (IFM)

1. estimate parameters δ_j from the marginal distributions:

$$\widehat{\delta}_{j} = \arg \max_{\delta} \left\{ \sum_{t=1}^{T} \log f_{j}(x_{j,t}; \delta_{j}) \right\}$$

2. estimate the dependence parameter θ by minimizing the *pseudo log-likelihood* function

$$\ell(\theta;\widehat{\delta}_1,\ldots,\widehat{\delta}_d) = \sum_{t=1}^T \log c\{F_{X_1}(x_{1,t};\widehat{\delta}_1),\ldots,F_{X_d}(x_{d,t};\widehat{\delta}_d);\theta\}$$

3. the estimates $\widehat{\vartheta}_{\mathit{IFM}} = (\widehat{\delta}_1, \dots, \widehat{\delta}_d, \widehat{\theta})'$ solve

$$(\partial \ell / \partial \delta_1, \ldots, \partial \ell / \partial \delta_d, \partial \ell / \partial \theta)' = 0$$

4. Advantage: numerically stable Copula methods in Finance —

Canonical Maximum Likelihood (CML)

 CML maximizes the *pseuso log-likelihood* function with *empirical* marginal distributions

$$\ell(\theta) = \sum_{t=1}^{T} \log c\{\widehat{F}_{X_1}(x_{1,t}), \dots, \widehat{F}_{X_d}(x_{d,t}); \theta\}$$
$$\widehat{\theta}_{CML} = \arg \max_{\theta} \ell(\theta)$$

where

$$\widehat{F}_{X_j}(x) = \frac{1}{T+1} \sum_{t=1}^T \mathsf{I}\{X_j, t \le x\}$$

 Advantage: no assumptions about the parametric form of the marginal distributions

$(X_1,X_2)\sim \mathcal{C}_{ heta}^{ extsf{Gu}}$, with $ heta=1.5$ and
$F_1 = F_2 = \mathcal{N}(\mu_1, \sigma_1^2) = \mathcal{N}(\mu_2, \sigma_2^2) = \mathcal{N}(0, 1)$

	estimate	std. error
μ_1	0.00365	0.00998
σ_1^2	1.00553	0.00690
μ_2	-0.00106	0.00991
σ_2^2	0.99779	0.00684
θ	1.49632	0.01327

4-9

Attractive Features

- A copula describes how the marginals are tied together in the joint distribution
- The joint df is decomposed into the marginal dfs and a copula
- The marginal dfs and the copula can be modelled and estimated separately, independent of each other
- Given a copula, we can obtain many multivariate distributions by selecting different marginal dfs
- The copula is invariant under increasing and continuous transformations

