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Set up of the process 2-1

� (X ,A) – measured state space with A – σ-algebra of Borel
sets on X

� Ω defines the set of all nonnegative measures α on X , that are
concentrated on the finite subsets from A

� For α ∈ Ω, α = (x1, n1; . . . ; xk , nk) where {x1, . . . , xk} is that
finite subset A on which α is concentrated.

� ni is a nonnegative integer, and corresponds to the number of
particles of a specific type.

� Let Y be a Kolmogorov σ-algebra on Ω, which is the smallest
σ-algebra, that contains all cylindric sets
{α ∈ Ω : α({x}) = n}.
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Set up of the process 2-2

� Let P(t1, x , t2,A) be the transition probability, where
t1, t2 ∈ R is time, x ∈ X , A ∈ Y.

� lifetime τ of a particle is random.
� in the end of life every particle promptly gives rise to a random

number of offsprings.
� random measures µxt0t(A) and µt0t(A), for A ∈ Y.
� X = R+.
� in the beginning there is a finite number of particles.
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Set up of the process 2-3

Based on measure µxt0t(A) we introduce a multivariate measure
µxt0t(A)

µα(x)t0t(A) =

∫
X
µxt0t(A) dx ,

where α ∈ Ω, x ⊂ X is the set of types of particles, which is the
argument for the function α. For the short hand writing let
µ·(t0, t) = µ·t0t(X ).

Having P(t1, x , t2,A) let us introduce P̂(t1, α1, t2, α2), α1, α2 ∈ Ω.

It is obvious, that

P̂(t1, α1, t2, α2) = P{µα1(t1, t2) = α2}.
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Set up of the process 2-4

Let us fix the the finite S ∈ Ω, 0 /∈ S , which as the generalization
can be of Lebesgue measure zero.

Stopped, or S-stopped multitype branching process is the process
ξαt(X ), defined for t ∈ R+ and α ∈ Ω by equations

ξx(t0, t) =


µx(t0, t), if ∀v , 0 ≤ v < t, µx(t0, v) /∈ S ;
µx(t0, u), if ∀v , 0 ≤ v < u, µx(t0, v) /∈ S ,

µx(t0, u) ∈ S , u < t.
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Main properties of the transition matrix 3-1

Let P̂S(t1, α, t2,A) be trans. prob. for S-stopped process and
P̂(t1, α, t2,A) for ordinary process defined for all t1 ≤ t2, α ∈ Ω
and A ⊂ Y.
Both P̂S(t1, α, t2,A) and P̂(t1, α, t2,A) define branch processes
with cont time if they fulfill following properties:
� P̂(t1, α, t2,Ω) = P̂S(t1, α, t2,Ω) = 1
� P̂(t1, α, t1,A) = P̂S(t1, α, t1,A) = I{α ∈ A}
� Kolmogorov-Chapman equation:

P̂(t1, α, t3,A) =

∫
Ω
P̂(t2, α

′, t3,A)P̂(t1, α, t2, dα
′), ∀t1 ≤ t2 ≤ t3,

and a small modification for the S-stopped

P̂S(t1, α, t3,A) =

∫
Ω\(S\A)

P̂(t2, α
′, t3,A)P̂(t1, α, t2, dα

′), ∀t1 ≤ t2 ≤ t3.
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Main properties of the transition matrix 3-2
As all particles in the process evolute independently from each
other, we may write following relationships

P̂(t1, α1 + α2, t2,A) =

∫
Ω

∫
Ω

I{α′1 + α′2 ∈ A}P̂(t1, α1, t2, dα
′
1)

× P̂(t1, α2, t2, dα
′
2),

P̂S(t1, α1 + α2, t2,A) =

∫
Ω\(S\A)

∫
Ω\(S\A)

I{α′1 + α′2 ∈ A}P̂(t1, α1, t2, dα
′
1)

× P̂(t1, α2, t2, dα
′
2).

Under the given conditions, for the process with the continuous
time, it is natural to assume, that for 4→ 0 both processes are
equal P̂(t, α, t +4,A) = P̂S(t, α, t +4,A) and

P̂(t, α, t +4,A) =

{
1 + p(t, α,A)t + o(t), for p(t, α,A) < 0, α ∈ A;
p(t, α,A)t + o(t), for p(t, α,A) ≥ 0, α /∈ A.
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Main properties of the transition matrix 3-3

Thus upper defined assumption can be reformulated as follows

P̂(t1, α, t2,A) = p(t1, α,A)(t2 − t1) + o(t2 − t1),

t2 → t−1 , α /∈ A,

lim
t2→t+

1

P̂(t1, α, t2,A)− P̂(t1, α, t1,A)

t2 − t1
= p(t1, α,A).

Similarly one can show this for the right limit

lim
t2→t−1

P̂(t2, α, t1,A)− P̂(t1, α, t1,A)

t2 − t1
= p(t1, α,A).

This is equivalent to the fact, that ∂
∂t P̂(t, α, t,A) = p(t, α,A).

Function p(t, α,A) will be called a transition density of the
branching process.
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Laplace Functional 4-1

Let us introduce ordinal and logarithmic Laplace functional for both
processes, based on the main transition probabilities
([f , α] =

∫
X f (x)α(dx))

F (t1, α, t2, s) =

∫
Ω
exp
{∫

X
s(x)α′(dx)

}
P̂(t1, α, t2, dα

′)

Ψ(t1, α, t2, s) = log F (t1, α, t2, s) = log EP̂ exp[s, α],

FS(t1, α, t2, s) =

∫
Ω
exp
{∫

X
s(x)α′(dx)

}
P̂S(t1, α, t2, dα

′)

= EP̂S
exp[s, α]

=

∫
Ω\(S\A)

exp
{∫

X
s(x)α′(dx)

}
P̂S(t1, α, t2, dα

′),

ΨS(t1, α, t2, s) = log FS(t1, α, t2, s) = log EP̂S
exp[s, α].
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Main Result 5-1

Know fact from Jirina M. (1967) “General branching processes
with continuous time parameter”, Proc. Fifth Berkeley Symp.
on Math. Statist. and Prob., Vol. 2, Pt. 1 (Univ. of Calif. Press,
1967), 389-399.:

Theorem
Functional equation for the ordinary branching processed is given
through

∂

∂s
F (s,w , t, f ) = −

∫
Ω
F (s,w ′, t, f )p(s,w , dw ′).

On the Generating Functional



Main Result 5-2

Theorem
Functional equation for S-stopped branching processed became

∂

∂s
F (s,w , t, f ) = −

∫
Ω
F (s,w ′, t, f )pS̄(s,w , dw ′) + B

where B = ∂B/∂s and pS̄(t, α,A) = p(t, α,A \ S).

Part B does not contain any recursions and infinite sums, and is
also continuous and differentiable with respect to s.

On the Generating Functional



Further Research 6-1

� Immigration influence on S-stopped branching processes
� Critical extension
� Other properties
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