Localising temperature risk

Wolfgang Karl Härdle, Brenda López Cabrera
Ostap Okhrin, Weining Wang

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de

Weather

\square Influences our daily lives and choices
\square Impact on corporate revenues and earnings
\square Meteorological institutions: business activity is weather dependent

- British Met Office: daily beer consumption gain 10% if temperature increases by $3^{\circ} \mathrm{C}$
- If temperature in Chicago is less than $0^{\circ} \mathrm{C}$ consumption of orange juice declines 10% on average

Weather

Top 5 sectors in need of financial instruments to hedge weather risk, PwC survey for WRMA:

Localizing temperature risk

What are Weather Derivatives (WD)?

Hedge weather related risk exposures
\square Payments based on weather related measurements
\square Underlying: temperature, rainfall, wind, snow, frost
Chicago Mercantile Exchange (CME)
\square Monthly/seasonal/weekly temperature Futures/Options
$\square 24$ US, 6 Canadian, 9 European, 3 Australian, 3 Asian cities
\square From 2.2 billion USD in 2004 to 15 billion USD through March 2009

Weather Derivatives

Temperature CME products
$\square \operatorname{HDD}\left(\tau_{1}, \tau_{2}\right)=\int_{\tau_{1}}^{\tau_{2}} \max \left(18^{\circ} \mathrm{C}-T_{t}, 0\right) d t$
$\square \operatorname{CDD}\left(\tau_{1}, \tau_{2}\right)=\int_{\tau_{1}}^{\tau_{2}} \max \left(T_{t}-18^{\circ} \mathrm{C}, 0\right) d t$
$\bullet \operatorname{CAT}\left(\tau_{1}, \tau_{2}\right)=\int_{\tau_{1}}^{\tau_{2}} T_{t} d t$, where $T_{t}=\frac{T_{t, \text { max }}+T_{t, \text { min }}}{2}$
$\square \operatorname{AAT}\left(\tau_{1}, \tau_{2}\right)=\int_{\tau_{1}}^{\tau_{2}} \widetilde{T}_{t} d t$, where $\widetilde{T}_{t}=\frac{1}{24} \int_{1}^{24} T_{t_{i}} d t_{i}$ and $T_{t_{i}}$ denotes the temperature of hour t_{i},

Algorithm

$$
\begin{array}{cc}
\text { Econometrics } & \text { Fin. Mathematics. } \\
T_{t} & \operatorname{CAR}(p) \\
\downarrow & \downarrow \\
X_{t}=T_{t}-\Lambda_{t} & F_{C A T\left(t, \tau_{1}, \tau_{2}\right)}=\mathrm{E}^{Q_{\lambda}}\left[\operatorname{CAT}\left(\tau_{1}, \tau_{2}\right)\right] \\
\downarrow \\
X_{t+p}=a^{\top} X_{t}+\sigma_{t} \varepsilon_{t} & \\
\downarrow \\
\hat{\varepsilon}_{t}=\frac{\hat{X}_{t}}{\hat{\sigma}_{t}} \sim \mathrm{~N}(0,1) &
\end{array}
$$

\square How to smooth the seasonal mean \& variance curve?
\square How close are the residuals to $\mathbf{N}(0,1)$?
\square How to infer the market price of weather risk?
\square How to price no CME listed cities?

Figure 1: Kaohsiung daily average temperature, seasonal mean (left) \& seasonal variation function (middle) with a Fourier truncated, the corrected Fourier and local linear estimation, seasonal variation over years (right).
Localizing temperature risk

Outline

1. Motivation \checkmark
2. Weather Dynamics
3. Stochastic Pricing
4. Localising temperature risk
5. Conclusion

CAT and AAT Indices

Can we make money?

WD type	Trading date	Measurement Period			Realised $T_{\boldsymbol{t}}$
	t	$\tau_{\mathbf{1}}$	τ_{2}	CME^{1}	$I_{\left(\tau_{\mathbf{1}}, \tau_{2}\right)}^{2}$
Berlin-CAT	20070316	20070501	20070531	457.00	494.20
		20070601	20070630	529.00	574.30
Tokyo-AAT	20081027	20070701	20070731	616.00	583.00
		20090401	20090430	592.00	479.00
		20090501	20090531	682.00	623.00
		20090601	20090630	818.00	679.00

Table 1: Berlin and Tokyo contracts listed at CME. Source: Bloomberg. CME^{1} WD Futures listed on CME, $I_{\left(\tau_{1}, \tau_{2}\right)}^{2}$ index values computed from the realized temperature data.

Weather Dynamics

Figure 2: The Fourier truncated, the corrected Fourier and the the local linear seasonal component for daily average temperatures.

$\operatorname{AR}(\mathrm{p}): X_{t}=\sum_{l=1}^{L} \beta_{l} X_{t-I}+\varepsilon_{t}, \varepsilon_{t}=\sigma_{t} e_{t}$

Figure 3: (square) Residuals $\hat{\varepsilon}_{\boldsymbol{t}}$ (left), $\hat{\varepsilon}_{\boldsymbol{t}}^{2}$ (right). No rejection of H_{0} that residuals are uncorrelated at 0% significance level, (Li-McLeod Portmanteau test)

Weather Dynamics

ACF of (Squared) Residuals after Correcting Seasonal Volatility

Figure 4: (Left) Right: ACF for temperature (squared) residuals $\frac{\hat{\varepsilon}_{\boldsymbol{t}}}{\hat{\sigma}_{t, L L R}}$ Localizing temperature risk

Residuals $\left(\frac{\hat{\varepsilon}_{t}}{\hat{\sigma}_{t}}\right)$ become normal

City		JB	Kurt	Skew	KS	AD
Berlin	$\frac{\hat{\varepsilon}_{t}}{\hat{\sigma}_{t, F T S G}}$	304.77	3.54	-0.08	0.01	7.65
		279.06	3.52	-0.08	0.01	7.29
Kaohsiung	$\frac{\frac{\tilde{\varepsilon}_{t}}{\hat{\sigma}_{t, F T S G}}}{}$	2753.00	4.68	-0.71	0.06	79.93
	$\frac{\frac{\hat{t}_{t}}{\hat{\sigma}_{t, L L R}}}{\text { ctet }}$	2252.50	4.52	-0.64	0.06	79.18
Tokyo	$\frac{\stackrel{\varepsilon_{t}}{\hat{\sigma}_{t, F}}}{}$	133.26	3.44	-0.10	0.02	8.06
	$\frac{\hat{\epsilon}_{t} \hat{\varepsilon}_{t}}{\hat{\sigma}_{t, L L R}}$	148.08	3.44	-0.13	0.02	10.31

Table 2: Skewness, kurtosis, Jarque Bera (JB), Kolmogorov Smirnov (KS) and Anderson Darling (AD) test statistics (365 days). Critical values JB: 5\%(5.99), 1\%(9.21), KS: 5\%(0.07), 1\%(0.08), AD: 5\%(2.49),1\% (3.85)

Temperature Dynamics

Temperature time series:

$$
T_{t}=\Lambda_{t}+X_{t}
$$

with seasonal function $\Lambda_{t} . X_{t}$ can be seen as a discretization of a continuous-time process $\operatorname{AR}(p)(\operatorname{CAR}(p))$.

This stochastic model allows $\operatorname{CAR}(\mathrm{p})$ futures/options pricing.

CAT Futures

For $0 \leq t \leq \tau_{1}<\tau_{2}$, the future Cumulative Average Temperature:

$$
\begin{aligned}
F_{C A T\left(t, \tau_{1}, \tau_{2}\right)} & =\mathrm{E}^{Q_{\lambda}}\left[\int_{\tau_{1}}^{\tau_{2}} T_{s} d s \mid \mathcal{F}_{t}\right] \\
& =\int_{\tau_{1}}^{\tau_{2}} \Lambda_{u} d u+\mathbf{a}_{t, \tau_{1}, \tau_{2}} \mathbf{X}_{t}+\int_{t}^{\tau_{1}} \lambda_{u} \sigma_{u} \mathbf{a}_{t, \tau_{1}, \tau_{2}} \mathbf{e}_{L} d u \\
& +\int_{\tau_{1}}^{\tau_{2}} \lambda_{u} \sigma_{u} \mathbf{e}_{1}^{\top} \mathbf{A}^{-1}\left[\exp \left\{\mathbf{A}\left(\tau_{2}-u\right)\right\}-I_{L}\right] \mathbf{e}_{L} d u
\end{aligned}
$$

with $\mathbf{a}_{t, \tau_{1}, \tau_{2}}=\mathbf{e}_{1}^{\top} \mathbf{A}^{-1}\left[\exp \left\{\mathbf{A}\left(\tau_{2}-t\right)\right\}-\exp \left\{\mathbf{A}\left(\tau_{1}-t\right)\right\}\right], I_{L}: L \times L$ identity matrix, λ_{u} MPR inferred from data, Benth et al. (2007). Λ_{u}, σ_{u} to be localised.

Localizing temperature risk

Local Temperature Risk

Normality of ε_{t} requires estimating the function $\theta(t)=\left\{\Lambda_{t}, \sigma_{t}^{2}\right\}$ with $t=1, \ldots, 365$ days, $j=0, \ldots, J$ years. Recall:

$$
\begin{aligned}
X_{365 j+t} & =T_{t, j}-\Lambda_{t}, \\
X_{365 j+t} & =\sum_{l=1}^{L} \beta_{l j} X_{365 j+t-l}+\varepsilon_{t, j}, \\
\varepsilon_{t, j} & =\sigma_{t} e_{t, j}, \\
e_{t, j} & \sim \mathrm{~N}(0,1), \text { i.i.d. }
\end{aligned}
$$

Adaptation Scale (for variance)

Fix $s \in 1,2, \ldots, 365$, sequence of ordered weights:
$W^{k}(s)=\left\{w\left(s, 1, h_{k}\right), w\left(s, 2, h_{k}\right), \ldots, w\left(s, 365, h_{k}\right)\right\}^{\top}$.
Define $w\left(s, t, h_{k}\right)=K_{h_{k}}(s-t),\left(h_{1}<h_{2}<\ldots<h_{K}\right)$.

$$
\begin{aligned}
\hat{\varepsilon}_{365 j+t} & =X_{365 j+t}-\sum_{l=1}^{L} \hat{\beta}_{l} X_{365 j+t-I} \\
\tilde{\theta}_{k}(s) & \stackrel{\text { def }}{=} \underset{\theta \in \Theta}{\arg \max } L\left\{W^{k}(s), \theta\right\} \\
& =\underset{\theta \in \Theta}{\arg \min } \sum_{t=1}^{365} \sum_{j=0}^{J}\left\{\log (2 \pi \theta) / 2+\hat{\varepsilon}_{t, j}^{2} / 2 \theta\right\} w\left(s, t, h_{k}\right) \\
& =\sum_{t, j} \hat{\varepsilon}_{t, j}^{2} w\left(s, t, h_{k}\right) / \sum_{t, j} w\left(s, t, h_{k}\right)
\end{aligned}
$$

Parametric Exponential Bounds

$$
\begin{aligned}
L\left(W^{k}, \tilde{\theta}_{k}, \theta^{*}\right) & \stackrel{\text { def }}{=} N_{k} \mathcal{K}\left(\tilde{\theta}_{k}, \theta^{*}\right) \\
& =-\left\{\log \left(\tilde{\theta}_{k} / \theta^{*}\right)+1-\theta^{*} / \tilde{\theta}_{k}\right\} / 2,
\end{aligned}
$$

where $\mathcal{K}\left\{\tilde{\theta}_{k}, \theta^{*}\right\}$ is the Kullback-Leibler divergence between $\tilde{\theta}_{k}$ and θ^{*} and $N_{k}=J \cdot \sum_{t=1}^{365} w\left(s, t, h_{k}\right)$. For any $\mathfrak{z}>0$,

$$
\begin{aligned}
\mathrm{P}_{\theta^{*}}\left\{L\left(W^{k}, \tilde{\theta}_{k}, \theta^{*}\right)>\mathfrak{z}\right\} & \leq 2 \exp (-\mathfrak{z}) \\
\mathrm{E}_{\theta^{*}}\left|L\left(W^{k}, \tilde{\theta}_{k}, \theta^{*}\right)\right|^{r} & \leq \mathfrak{r}_{r}
\end{aligned}
$$

where $\mathfrak{r}_{r}=2 r \int_{\mathfrak{z} \geq 0} \mathfrak{z}^{r-1} \exp (-\mathfrak{z}) d \mathfrak{z}$.
Localizing temperature risk

LMS Procedure

Construct an estimate $\hat{\theta}=\hat{\theta}(s)$, on the base of $\tilde{\theta}_{1}(s), \tilde{\theta}_{2}(s), \ldots, \tilde{\theta}_{K}(s)$.
\square Start with $\hat{\theta}_{1}=\tilde{\theta}_{1}$.
\square For $k \geq 2, \tilde{\theta}_{k}$ is accepted and $\hat{\theta}_{k}=\tilde{\theta}_{k}$ if $\tilde{\theta}_{k-1}$ was accepted and

$$
L\left(W^{k}, \tilde{\theta}_{\ell}, \tilde{\theta}_{k}\right) \leq \mathfrak{z} \ell, \ell=1, \ldots, k-1
$$

$\hat{\theta}_{k}$ is the the latest accepted estimate after the first k steps.

Propagation Condition

A bound for the risk associated with first kind error:

$$
\begin{equation*}
\mathrm{E}_{\theta^{*}}\left|L\left(W^{k}, \tilde{\theta}_{k}, \hat{\theta}_{k}\right)\right|^{r} \leq \alpha \mathfrak{r}_{r} \tag{1}
\end{equation*}
$$

where $k=1, \ldots, K$ and \mathfrak{r}_{r} is the parametric risk bound.

Sequential Choice of Critical Values

\square Consider first \mathfrak{z}_{1} letting $\mathfrak{z}_{2}=\ldots=\mathfrak{z} K-1=\infty$. Leads to the estimates $\hat{\theta}_{k}\left(\mathfrak{z}_{1}\right)$ for $k=2, \ldots, K$.
\square The value \mathfrak{z}_{1} is selected as the minimal one for which

$$
\sup _{\theta^{*}} \mathrm{E}_{\theta^{*}}\left|L\left\{W^{k}, \tilde{\theta}_{k}, \hat{\theta}_{k}\left(\mathfrak{z}_{1}\right)\right\}\right|^{r} \leq \frac{\alpha}{K-1} \mathfrak{r}_{r}, k=2, \ldots, K .
$$

\square Set $\mathfrak{z}_{k+1}=\ldots=\mathfrak{z}_{K-1}=\infty$ and $\mathfrak{f i x} \mathfrak{z}_{k}$ lead the set of parameters $\mathfrak{z}_{1}, \ldots, \mathfrak{z}_{k}, \infty, \ldots, \infty$ and the estimates $\hat{\theta}_{m}\left(\mathfrak{z} 1, \ldots, \mathfrak{z}_{k}\right)$ for $m=k+1, \ldots, K$. Select $\mathfrak{z} k$ s.t.

$$
\begin{aligned}
& \sup _{\theta^{*}} \mathrm{E}_{\theta^{*}}\left|L\left\{W^{k}, \tilde{\theta}_{m}, \hat{\theta}_{m}\left(\mathfrak{z}_{1}, \mathfrak{z}_{2}, \ldots, \mathfrak{z}_{k}\right)\right\}\right|^{r} \leq \frac{k \alpha}{K-1} \mathfrak{r}_{r}, \\
& m=k+1, \ldots, K .
\end{aligned}
$$

Critical Values

Figure 5: Simulated CV with $\theta^{*}=1, r=0.5, M C=5000$ with $\alpha=0.3$, $0.5,0.7$ (left), with different bandwidth sequences (right).

Small Modeling Bias (SMB) Condition and Oracle Property

$$
\Delta\left(W^{k}, \theta\right)=\sum_{t=1}^{365} \mathcal{K}\{\theta(t), \theta\} \mathbf{1}\left\{w\left(s, t, h_{k}\right)>0\right\} \leq \Delta, \forall k<k^{*}
$$

k^{*} is the maximum k satisfying the SMB condition.
Propagation Property:
For any estimate $\tilde{\theta}_{k}$ and θ satisfying SMB, it holds:

$$
\mathrm{E}_{\theta(.)} \log \left\{1+\left|L\left(W^{k}, \tilde{\theta}_{k}, \theta\right)\right|^{r} / \mathfrak{r}_{r}\right\} \leq \Delta+\alpha
$$

Stability Property

The attained quality of estimation during "propagation" can not get lost at further steps.

$$
L\left(W^{k^{*}}, \tilde{\theta}_{k^{*}}, \hat{\theta}_{\hat{k}}\right) \mathbf{1}\left\{\hat{k}>k^{*}\right\} \leq \mathfrak{z}_{k^{*}}
$$

$\hat{\theta}_{\hat{k}}$ delivers at least the same accuracy of estimation as the "oracle" $\tilde{\theta}_{k^{*}}$

Oracle Property

Theorem

Let $\Delta\left(W^{k}, \theta\right) \leq \Delta$ for some $\theta \in \Theta$ and $k \leq k^{*}$. Then
$E_{\theta(.)} \log \left\{1+\left|L\left(W^{k^{*}}, \tilde{\theta}_{k^{*}}, \theta\right)\right|^{r} / \mathfrak{r}_{r}\right\} \leq \Delta+1$
$E_{\theta(.)} \log \left\{1+\left|L\left(W^{k^{*}}, \tilde{\theta}_{k^{*}}, \hat{\theta}_{\hat{k}}\right)\right|^{r} / \mathfrak{r}_{r}\right\} \leq \Delta+\alpha+\log \left\{1+\mathfrak{z} k^{*} / \mathfrak{r}_{r}\right\}$

Figure 6: Estimation of mean 2007 (left) and variance 20050101-20071231 (right) for Berlin. Bandwidths sequences (upper panel), nonparametric function estimation, with fixed bandwidth, adaptive bandwidth and truncated Fourier (bottom panel), $\alpha=0.7$, $r=0.5$.
Localizing temperature risk

Figure 7: Estimation of mean 2008 (left) and variance 20060101-20081231 (right) for Kaohsiung. Bandwidths sequences (upper panel), nonparametric function estimation, with fixed bandwidth, adaptive bandwidth and truncated Fourier (bottom panel), $\alpha=$ $0.7, r=0.5$.
Localizing temperature risk

Iterative approach, $\theta(t)=\left\{\Lambda_{t}, \sigma_{t}^{2}\right\}$

Step 1. Estimate $\hat{\beta}$ in an initial Λ_{t}^{0} using a truncated Fourier series or any other deterministic function;
Step 2. For fixed $\hat{\Lambda}_{s, \nu}=\left\{\hat{\Lambda}_{s, \nu}^{\prime}, \hat{\Lambda}_{s, \nu}^{\prime \prime}\right\}^{\top}, s=\{1, \ldots, 365\}$ from last step ν, and fixed $\hat{\beta}$, get $\hat{\sigma}_{s, \nu+1}^{2}$ by

$$
\begin{aligned}
\hat{\sigma}_{s, \nu+1}^{2} & =\underset{\sigma^{2}}{\arg \min } \sum_{t=1}^{365} \sum_{j=0}^{J}\left[\left\{T_{365 j+t}-\hat{\Lambda}_{s, \nu}^{\prime}-\hat{\Lambda}_{s, \nu}^{\prime \prime}(t-s)\right.\right. \\
& \left.\left.-\sum_{l=1}^{L} \hat{\beta}_{l} X_{365 j+t-l}\right\}^{2} / 2 \sigma^{2}+\log \left(2 \pi \sigma^{2}\right) / 2\right] w\left(s, t, h_{k}^{\prime}\right) ;
\end{aligned}
$$

Iterative approach

Step 3. For fixed $\hat{\sigma}_{s, \nu+1}^{2}$ and $\hat{\beta}$, we estimate $\hat{\Lambda}_{s, \nu+1}, s=\{1, \ldots, 365\}$ via another a local adaptive procedure:

$$
\begin{aligned}
& \hat{\Lambda}_{s, \nu+1}=\underset{\left\{\Lambda^{\prime}, \Lambda^{\prime \prime}\right\}^{\top}}{\arg \min } \sum_{t=1}^{365} \sum_{j=0}^{J}\left\{T_{365 j+t}-\Lambda^{\prime}-\Lambda^{\prime \prime}(t-s)\right. \\
& \left.-\sum_{l=1}^{L} \hat{\beta}_{l} X_{365 j+t-I}\right\}^{2} w\left(s, t, h_{k}^{\prime}\right) / 2 \hat{\sigma}_{s, \nu+1}^{2}
\end{aligned}
$$

where $\left\{h_{1}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime}, \ldots, h_{K^{\prime}}^{\prime}\right\}$ is a sequence of bandwidths;
Step 4. Repeat steps 2 and 3 till both $\left|\hat{\Lambda}_{t, \nu+1}-\hat{\Lambda}_{t, \nu}\right|<\pi_{1}$ and $\left|\hat{\sigma}_{t, \nu+1}^{2}-\hat{\sigma}_{t, \nu}^{2}\right|<\pi_{2}$ for some constants π_{1} and π_{2}.

Aggregated approach

Let $\hat{\theta}^{j}(t)$ the localised observation at time t of year j, the aggregated local function is given by:

$$
\begin{equation*}
\hat{\theta}_{\omega}(t)=\sum_{j=1}^{J} \omega_{j} \hat{\theta}^{j}(t) \tag{2}
\end{equation*}
$$

$\underset{\omega}{\arg \min } \sum_{j=1}^{J} \sum_{t=1}^{365}\left\{\hat{\theta}_{\omega}(t)-\hat{\theta}_{j}^{o}(t)\right\}^{2}$ s.t. $\sum_{j=1}^{J} \omega_{j}=1 ; \omega_{j}>0$, $\hat{\theta}_{j}^{o}$ defined as:

1. (Locave) $\hat{\theta}_{j}^{o}(t)=J^{-1} \sum_{j=1}^{J} \hat{\sigma}_{j}^{2}(t)$
2. $($ Locsep $) \hat{\theta}_{j}^{o}(t)=\hat{\sigma}_{j}^{2}(t)$
3. (Locmax) maximising p-values of AD-test over a year.

Normalized Residuals

	2 years			3 years		
	KS	JB	AD	KS	JB	AD
Adaptive BW	5.06e-06	$1.91 \mathrm{e}-01$	0.55		$2.41 \mathrm{e}-01$	0.56
. Fixed BW	$3.49 \mathrm{e}-03$	$1.81 \mathrm{e}-10$	0.06		6.55e-08	0.13
$\stackrel{\text { ¢ }}{\stackrel{\text { D }}{0}}$ Locmax	$9.79 \mathrm{e}-01$	$3.30 \mathrm{e}-01$	0.94		$1.60 \mathrm{e}-02$	0.47
\oplus Fourier	$3.14 \mathrm{e}-01$	0.00	0.01	0.60	$2.22 \mathrm{e}-16$	0.01
Campbell\&Diebold	4.94e-07	0.00	0.00	0.00	0.00	0.01
${ }_{0}$ Adaptive BW	1.55e-07	$9.90 \mathrm{e}-03$	1.78e-02	2.38e-05	1.04e-11	$1.57 \mathrm{e}-07$
S Fixed BW	$1.83 \mathrm{e}-05$	0.00	$2.76 \mathrm{e}-09$	$2.25 \mathrm{e}-03$	0.00	$1.13 \mathrm{e}-14$
Locmax	5.92e-02	$1.11 \mathrm{e}-04$	$4.44 \mathrm{e}-04$	9.05e-03	$1.57 \mathrm{e}-05$	4.46e-06
$\underset{\sim}{0}$ Fourier	6.29e-03	0.00	$3.03 \mathrm{e}-10$	3.89e-04		$2.01 \mathrm{e}-14$
Campbell\&Diebold	$1.49 \mathrm{e}-05$	0.00	$1.95 \mathrm{e}-10$	0.00	0.00	6.72e-20

Table 3: p-values for different models and GoF tests for Berlin and Kaohsiung.

Figure 8: QQ-plot for standardized residuals from Berlin using different methods for the data from 2005-2007 (3 years)
Localizing temperature risk

Can we make money?

Trading date		MP								Future Prices					Real. T_{t}		
t	τ_{1}		τ_{2}	CME	$\lambda_{t}=0$	$\lambda_{t}=\lambda$	$I_{\left(\tau_{1}, \tau_{2}\right)}$	Strategy									
Berlin-CAT																	
20070316	20070501	20070531	457.00	450.67	442.58	494.20	$6.32(\mathrm{C})$										
20070316	20070601	20070630	529.00	538.46	542.92	574.30	$-9.46(\mathrm{P})$										
20070316	20070701	20070731	616.00	628.36	618.89	583.00	$-12.36(\mathrm{P})$										
Tokyo-AAT																	
20081027	20090401	20090430	592.00	442.12	458.47	479.00	$149.87(\mathrm{C})$										
20081027	20090501	20090531	682.00	577.98	602.75	623.00	$104.01(\mathrm{C})$										
20081027	20090601	20090630	818.00	688.28	692.54	679.00	$129.71(\mathrm{C})$										

Table 4: Weather contracts listed at CME. (Source: Bloomberg). Future prices $\hat{F}_{t, \tau_{1}, \tau_{2}, \lambda, \theta}$ estimated prices with MPR $\left(\lambda_{\boldsymbol{t}}\right)$ under different localisation schemes ($\hat{\theta}$ under Locmax for Berlin (20020101-20061231), Tokyo (20030101-20081231)), Strategy (CME- $\left.\hat{F}_{t, \tau_{1}, \tau_{2}}, \lambda=0\right), \mathrm{P}($ Put $), \mathrm{C}($ Call $), \mathrm{MP}($ Measurement Period)
Localizing temperature risk

References

雷 W．K．Härdle and B．López Cabrera（2011）
Implied market price of weather risk
Applied Mathematical Finance，Issue 5，1－37．
國 F．E Benth and J．S．Benth and S．Koekebakker（2007）
Putting a price on temperature
Scandinavian Journal of Statistics 34：746－767
圊 P．J．Brockwell
Continuous time ARMA Process
Handbook of Statistics 19：248－276， 2001

Localizing temperature risk

Localising temperature risk

Wolfgang Karl Härdle, Brenda López Cabrera
Ostap Okhrin, Weining Wang

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de

Appendix A

Li-McLeod Portmanteau Test- modified Portmanteau test statistic Q_{L} to check the uncorrelatedness of the residuals:

$$
Q_{L}=n \sum_{k=1}^{L} r_{k}^{2}(\hat{\varepsilon})+\frac{L(L+1)}{2 n}
$$

where $r_{k}, k=1, \ldots, L$ are values of residuals ACF up to the first L lags and n is the sample size. Then,

$$
Q_{L} \sim \chi_{(L-p-q)}^{2}
$$

Q_{L} is χ^{2} distributed on $(L-p-q)$ degrees of freedom where p, q denote AR and MA order respectively and L is a given value of considered lags.

Localizing temperature risk

Appendix

Consider 2 prob. measures $P \& Q$. Assume that $\left.\frac{d Q}{d P}\right|_{\mathcal{F}_{t}}=Z_{t}>0$ is a positive Martingale. By Ito's Lemma, then:

$$
\begin{align*}
Z_{t} & =\exp \left\{\log \left(Z_{t}\right)\right\} \\
& =\exp \left\{\int_{0}^{t}\left(Z_{s}\right)^{-1} d Z_{s}-\frac{1}{2} \int_{0}^{t}\left(Z_{s}\right)^{-2} d<Z, Z>_{s}\right\} \tag{3}
\end{align*}
$$

Let $d Z_{s}=Z_{s} \cdot \theta_{s} \cdot d B_{s}$, then:

$$
\begin{equation*}
Z_{t}=\exp \left(\int_{0}^{t} \theta_{s} d B_{s}-\frac{1}{2} \int_{0}^{t} \theta_{s}^{2} d s\right) \tag{4}
\end{equation*}
$$

Appendix B

Let B_{t}, Z_{t} be Martingales under P, then by Girsanov theorem:

$$
\begin{align*}
B_{t}^{\theta} & =B_{t}-\int_{0}^{t}\left(Z_{s}\right)^{-1} d<Z, B>_{s} \\
& =B_{t}-\int_{0}^{t}\left(Z_{s}\right)^{-1} d<\int_{0}^{s} \theta_{u} Z_{u} d B_{u}, B_{s}> \\
& =B_{t}-\int_{0}^{t}\left(Z_{s}\right)^{-1} \theta_{s} Z_{s} d<B_{s}, B_{s}> \\
& =B_{t}-\int_{0}^{t} \theta_{s} d s \tag{5}
\end{align*}
$$

is a Martingale unter Q.
Localizing temperature risk

Black-Scholes Model

Asset price follows:

$$
d S_{t}=\mu S_{t} d t+\sigma_{t} S_{t} d B_{t}
$$

Note that S_{t} is not a Martingale unter P, but it is under Q ! Explicit dynamics:

$$
\begin{align*}
S_{t} & =S_{0}+\int_{0}^{t} \mu S_{s} d s+\int_{0}^{t} \sigma_{s} S_{s} d B_{s} \\
& =S_{0}+\int_{0}^{t} \mu S_{s} d s+\int_{0}^{t} \sigma_{s} S_{s} d B_{s}^{\theta}+\int_{0}^{t} \theta_{s} \sigma_{s} S_{s} d s \\
& =S_{0}+\int_{0}^{t} S_{s}\left(\mu+\theta_{s} \sigma_{s}\right) d s+\int_{0}^{t} \sigma_{s} S_{s} d B_{s}^{\theta} \tag{6}
\end{align*}
$$

Market price of Risk and Risk Premium

By the no arbitrage condition, the risk free interest rate r should be equal to the drift $\mu+\theta_{s} \sigma_{s}$, so that:

$$
\begin{equation*}
\theta_{s}=\frac{r-\mu}{\sigma_{s}} \tag{7}
\end{equation*}
$$

In practice:
$B_{t}^{\theta}=B_{t}-\int_{0}^{t}\left(\frac{\mu-r}{\sigma_{s}}\right) d s$ is a Martingale under Q and then $e^{-r t} S_{t}$ is also a Martingale.

Under risk taking, the risk premium is defined as:

$$
r+\Delta
$$

Stochastic Pricing

The process $X_{t}=T_{t}-\Lambda_{t}$ can be seen as a discretization of a continuous-time process $\operatorname{AR}(\mathrm{L})(\mathrm{CAR}(\mathrm{L})$): Ornstein-Uhlenbeck process $\mathbf{X}_{t} \in \mathbb{R}^{L}$:

$$
d \mathbf{X}_{t}=\mathbf{A} \mathbf{X}_{t} d t+\mathbf{e}_{L} \sigma_{t} d B_{t}
$$

\mathbf{e}_{I} : Ith unit vector in \mathbb{R}^{L} for $I=1, \ldots, L, \sigma_{t}>0, \mathbf{A}:(L \times L)$-matrix

$$
\mathbf{A}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & \cdots & \cdots & 0 & 1 \\
-\alpha_{L} & -\alpha_{L-1} & \cdots & & -\alpha_{1}
\end{array}\right)
$$

\mathbf{X}_{t} can be written as a Continuous-time $\operatorname{AR}(\mathrm{p})(\operatorname{CAR}(\mathrm{p}))$:
For $p=1$,

$$
d X_{1 t}=-\alpha_{1} X_{1 t} d t+\sigma_{t} d B_{t}
$$

For $p=2$,

$$
\begin{aligned}
X_{1(t+2)} & \approx\left(2-\alpha_{1}\right) X_{1(t+1)} \\
& +\left(\alpha_{1}-\alpha_{2}-1\right) X_{1 t}+\sigma_{t}\left(B_{t-1}-B_{t}\right)
\end{aligned}
$$

For $p=3$,

$$
\begin{aligned}
X_{1(t+3)} & \approx\left(3-\alpha_{1}\right) X_{1(t+2)}+\left(2 \alpha_{1}-\alpha_{2}-3\right) X_{1(t+1)} \\
& +\left(-\alpha_{1}+\alpha_{2}-\alpha_{3}+1\right) X_{1 t}+\sigma_{t}\left(B_{t-1}-B_{t}\right)
\end{aligned}
$$

Proof $\operatorname{CAR}(3) \approx A R(3)$

Let

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\alpha_{3} & -\alpha_{2} & -\alpha_{1}
\end{array}\right)
$$

\square use $B_{t+1}-B_{t}=\varepsilon_{t}$
\square assume a time step of length one $d t=1$
\square substitute iteratively into X_{1} dynamics

Proof $\operatorname{CAR}(3) \approx A R(3)$:

$$
\begin{aligned}
X_{1(t+1)}-X_{1(t)}= & X_{2(t)} d t \\
X_{2(t+1)}-X_{2(t)}= & X_{3(t)} d t \\
X_{3(t+1)}-X_{3(t)}= & -\alpha_{1} X_{1(t)} d t-\alpha_{2} X_{2(t)} d t-\alpha_{3} X_{3(t)} d t+\sigma_{t} \varepsilon_{t} \\
X_{1(t+2)}-X_{1(t+1)}= & X_{2(t+1)} d t \\
X_{2(t+2)}-X_{2(t+1)}= & X_{3(t+1)} d t \\
X_{3(t+2)}-X_{3(t+1)}= & -\alpha_{1} X_{1(t+1)} d t-\alpha_{2} X_{2(t+1)} d t \\
& -\alpha_{3} X_{3(t+1)} d t+\sigma_{t+1} \varepsilon_{t+1} \\
& X_{2(t+2)} d t \\
X_{1(t+3)}-X_{1(t+2)}= & X_{3(t+2)} d t \\
X_{2(t+3)}-X_{2(t+2)}= & -\alpha_{1} X_{1(t+2)} d t-\alpha_{2} X_{2(t+2)} d t \\
X_{3(t+3)}-X_{3(t+2)}= & -\alpha_{3} X_{3(t+2)} d t+\sigma_{t+2} \varepsilon_{t+2} \\
&
\end{aligned}
$$

Temperature: $T_{t}=X_{t}+\Lambda_{t}$ Seasonal function with trend:

$$
\begin{align*}
\hat{\Lambda}_{t} & =a+b t+\sum_{l=1}^{L} \hat{c}_{l} \cdot \cos \left\{\frac{2 \pi l\left(t-\hat{d}_{i}\right)}{l \cdot 365}\right\} \\
& +\mathcal{I}(t \in \omega) \cdot \sum_{i=1}^{p} \hat{c}_{i} \cdot \cos \left\{\frac{2 \pi(i-4)\left(t-\hat{d}_{i}\right)}{i \cdot 365}\right\} \tag{8}
\end{align*}
$$

â: average temperature, \hat{b} : global Warming. $\mathcal{I}(t \in \omega)$ an indicator for Dec., Jan. and Feb

City	Period	\hat{a}	\hat{b}	\hat{c}_{1}	\hat{d}_{1}
Tokyo	$19730101-20081231$	15.76	$7.82 \mathrm{e}-05$	10.35	-149.53
Osaka	$19730101-20081231$	15.54	$1.28 \mathrm{e}-04$	11.50	-150.54
Beijing	$19730101-20081231$	11.97	$1.18 \mathrm{e}-04$	14.91	-165.51
Taipei	$19920101-20090806$	23.21	$1.68 \mathrm{e}-03$	6.78	-154.02

Table 5: Seasonality estimates of daily average temperatures in Asia. All coefficients arecainzero tat 1% significance level. Data source: Bloomberg

City(Period)	\hat{a}	\hat{b}	$\hat{c}_{\mathbf{1}}$	$\hat{d}_{\mathbf{1}}$	$\hat{c}_{\mathbf{2}}$	$\hat{d}_{\mathbf{2}}$	$\hat{c}_{\mathbf{3}}$	$\hat{d}_{\mathbf{3}}$
Tokyo								
$(730101-081231)$	15.7415	0.0001	8.9171	-162.3055	-2.5521	-7.8982	-0.7155	-15.0956
$(730101-821231)$	15.8109	0.0001	9.2855	-162.6268	-1.9157	-16.4305	-0.5907	-13.4789
$(830101-921231)$	15.4391	0.0004	9.4022	-162.5191	-2.0254	-4.8526	-0.8139	-19.4540
$(930101-021231)$	16.4284	0.0001	8.8176	-162.2136	-2.1893	-17.7745	-0.7846	-22.2583
(030101-081231)	16.4567	0.0001	8.5504	-162.0298	-2.3157	-18.3324	-0.6843	-16.5381
Taipei								
(920101-081231)	23.2176	0.0002	1.9631	-164.3980	-4.8706	-58.6301	-0.2720	39.1141
(920101-011231)	23.1664	0.0002	3.8249	-150.6678	-2.8830	-68.2588	0.2956	-41.7035
(010101-081231)	24.1295	-0.0001	1.8507	-149.1935	-5.1123	-67.5773	-0.3150	22.2777
Osaka								
(730101-081231)	15.2335	0.0002	10.0908	-162.3713	-2.5653	-7.5691	-0.6510	-19.4638
(730101-821231)	15.9515	-0.0001	9.7442	-162.5119	-2.1081	-17.9337	-0.5307	-18.9390
(830101-921231)	15.7093	0.0003	10.1021	-162.4248	-2.1532	-10.7612	-0.7994	-24.9429
(930101-021231)	16.1309	0.0003	10.3051	-162.4181	-2.0813	-21.9060	-0.7437	-27.1593
(030101-081231)	16.9726	0.0002	10.5863	-162.4215	-2.1401	-14.3879	-0.8138	-17.0385
Kaohsiung								
(730101-081231)	24.2289	0.0001	0.9157	-145.6337	-4.0603	-78.1426	-1.0505	10.6041
(730101-821231)	24.4413	0.0001	2.1112	-129.1218	-3.3887	-91.1782	-0.8733	20.0342
(830101-921231)	25.0616	0.0003	2.0181	-135.0527	-2.8400	-89.3952	-1.0128	20.4010
(930101-021231)	25.3227	0.0003	3.9154	-165.7407	-0.7405	-51.4230	-1.1056	19.7340
Beijing								
(730101-081231)	11.8904	0.0001	14.9504	-165.2552	0.0787	-12.8697	-1.2707	4.2333
(730101-821231)	11.5074	0.0003	14.8772	-165.7679	0.6253	15.8090	-1.2349	1.8530
(830101-921231)	12.4606	0.0002	14.9616	-165.7041	0.5327	14.3488	-1.2630	4.8809
(930101-021231)	13.6641	-0.0003	14.8970	-166.1435	0.9412	16.9291	-1.1874	-4.5596
(030101-081231)	12.8731	0.0003	14.9057	-165.9098	0.7266	16.5906	-1.5323	1.8984

Table 6: Seasonality estimates $\hat{\lambda}_{t}$ of daily average temperatures in Asia. All coefficients are nonzero at 1% significance level. Data source: Bloomberg.

$\operatorname{AR}(\mathrm{p}) \rightarrow \operatorname{CAR}(\mathrm{p})$

City	ADF		KPSS	AR(3)					CAR(3)				
		\hat{k}	β_{1}	β_{2}	β_{3}	α_{1}	α_{2}	α_{3}	$\tilde{\lambda}_{1}$	$\tilde{\lambda}_{2,3}$			
Portland	$-45.13+$	0.05^{*}	0.86	-0.22	0.08	2.13	1.48	0.26	-0.27	-0.93			
Atlanta	$-55.55+$	$0.21^{* * *}$	0.96	-0.38	0.13	2.03	1.46	0.28	-0.30	-0.86			
New York	$-56.88+$	0.08^{*}	0.76	-0.23	0.11	2.23	1.69	0.34	-0.32	-0.95			
Houston	$-38.17+$	0.05^{*}	0.90	-0.39	0.15	2.09	1.57	0.33	-0.33	-0.87			
Berlin	$-40.94+$	$0.13^{* *}$	0.91	-0.20	0.07	2.08	1.37	0.20	-0.21	-0.93			
Essen	$-23.87+$	0.11^{*}	0.93	-0.21	0.11	2.06	1.34	0.16	-0.16	-0.95			
Tokyo	$-25.93+$	0.06^{*}	0.64	-0.07	0.06	2.35	1.79	0.37	-0.33	-1.01			
Osaka	$-18.65+$	0.09^{*}	0.73	-0.14	0.06	2.26	1.68	0.34	-0.33	-0.96			
Beijing	$-30.75+$	$0.16^{* * *}$	0.72	-0.07	0.05	2.27	1.63	0.29	-0.27	-1.00			
Kaohsiung	$-37.96+$	0.05^{*}	0.73	-0.08	0.04	2.26	1.60	0.29	-0.45	-0.92			
Taipei	$-32.82+$	0.09^{*}	0.79	-0.22	0.06	2.20	1.63	0.36	-0.40	-0.90			

Table 7: ADF and KPSS-Statistics, coefficients of $\operatorname{AR}(3), \operatorname{CAR}(3)$ and eigenvalues $\lambda_{1,2,3}$, for the daily average temperatures time series. +0.01 critical values, ${ }^{*} 0.1$ critical value, ${ }^{* * 0} 0.05$ critical value (0.14), ${ }^{* * *} 0.01$ critical value. Historical data: 1947010120091210.

Localizing temperature risk -

