Localising temperature risk

Wolfgang Karl Härdle, Brenda López Cabrera Ostap Okhrin, Weining Wang

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

Weather

- Influences our daily lives and choices
- Impact on corporate revenues and earnings
- Meteorological institutions: business activity is weather dependent
 - British Met Office: daily beer consumption gain 10% if temperature increases by 3° C
 - If temperature in Chicago is less than 0° C consumption of orange juice declines 10% on average

Weather

Top 5 sectors in need of financial instruments to hedge weather risk, PwC survey for WRMA: 2005 2006

What are Weather Derivatives (WD)?

Hedge weather related risk exposures

- □ Payments based on weather related measurements
- 🖸 Underlying: temperature, rainfall, wind, snow, frost

Chicago Mercantile Exchange (CME)

- Monthly/seasonal/weekly temperature Futures/Options
- 🖸 24 US, 6 Canadian, 9 European, 3 Australian, 3 Asian cities
- From 2.2 billion USD in 2004 to 15 billion USD through March 2009

Weather Derivatives

Temperature CME products

Algorithm

- ⊡ How to smooth the seasonal mean & variance curve?
- \square How close are the residuals to N(0, 1)?
- How to infer the market price of weather risk?
- ☑ How to price no CME listed cities?

Figure 1: Kaohsiung daily average temperature, seasonal mean (left) & seasonal variation function (middle) with a Fourier truncated, the corrected Fourier and local linear estimation, seasonal variation over years (right). Localizing temperature risk

Outline

- 1. Motivation \checkmark
- 2. Weather Dynamics
- 3. Stochastic Pricing
- 4. Localising temperature risk
- 5. Conclusion

CAT and AAT Indices

Can we make money?

WD type	Trading date	Measurer	nent Period		Realised T_t
	t	$ au_1$	$ au_2$	CME1	$I^{2}_{(\tau_{1},\tau_{2})}$
Berlin-CAT	20070316	20070501	20070531	457.00	494.20
		20070601	20070630	529.00	574.30
		20070701	20070731	616.00	583.00
Tokyo-AAT	20081027	20090401	20090430	592.00	479.00
		20090501	20090531	682.00	623.00
		20090601	20090630	818.00	679.00

Table 1: Berlin and Tokyo contracts listed at CME. Source: Bloomberg. CME¹ WD Futures listed on CME, $I_{(\tau_1,\tau_2)}^2$ index values computed from the realized temperature data.

Weather Dynamics

Figure 2: The Fourier truncated, the corrected Fourier and the the local linear seasonal component for daily average temperatures.

Weather Dynamics

AR(p): $X_t = \sum_{l=1}^{L} \beta_l X_{t-l} + \varepsilon_t, \ \varepsilon_t = \sigma_t e_t$

Figure 3: (square) Residuals $\hat{\varepsilon}_t$ (left), $\hat{\varepsilon}_t^2$ (right). No rejection of H_0 that residuals are uncorrelated at 0% significance level, (Li-McLeod Portmanteau test) \cdot Go to details Localizing temperature risk - Weather Dynamics

ACF of (Squared) Residuals after Correcting Seasonal Volatility

Figure 4: (Left) Right: ACF for temperature (squared) residuals $\frac{\hat{\varepsilon}_t}{\hat{\sigma}_{t,LLR}}$ Localizing temperature risk

Weather Dynamics — Residuals $\left(\frac{\hat{\varepsilon}_t}{\hat{\sigma}_t}\right)$ become normal

City		JB	Kurt	Skew	KS	AD
Berlin	$\frac{\hat{\varepsilon}_t}{\hat{\sigma}_{t,FTSG}}$	304.77	3.54	-0.08	0.01	7.65
	$\frac{\hat{\hat{\varepsilon}}_t}{\hat{\sigma}_{t,LLR}}$	279.06	3.52	-0.08	0.01	7.29
Kaohsiung	$\frac{\hat{\varepsilon}_t}{\hat{\sigma}_{t,FTSG}}$	2753.00	4.68	-0.71	0.06	79.93
	$\frac{\hat{\varepsilon}_t}{\hat{\sigma}_{t,LLR}}$	2252.50	4.52	-0.64	0.06	79.18
Tokyo	$\frac{\hat{\varepsilon}_t}{\hat{\sigma}_{t,FTSG}}$	133.26	3.44	-0.10	0.02	8.06
	$\frac{\hat{\varepsilon}_t}{\hat{\sigma}_{t,LLR}}$	148.08	3.44	-0.13	0.02	10.31

Table 2: Skewness, kurtosis, Jarque Bera (JB), Kolmogorov Smirnov (KS) and Anderson Darling (AD) test statistics (365 days). Critical values JB: 5%(5.99), 1%(9.21), KS: 5%(0.07), 1%(0.08), AD: 5%(2.49),1% (3.85)

Temperature Dynamics

Temperature time series:

 $T_t = \Lambda_t + X_t$

with seasonal function Λ_t . X_t can be seen as a discretization of a continuous-time process AR(p) (CAR(p)).

This stochastic model allows CAR(p) futures/options pricing.

CAT Futures

For $0 \leq t \leq \tau_1 < \tau_2$, the future Cumulative Average Temperature:

$$F_{CAT(t,\tau_1,\tau_2)} = \mathsf{E}^{\mathsf{Q}_{\lambda}} \left[\int_{\tau_1}^{\tau_2} T_s ds | \mathcal{F}_t \right]$$

= $\int_{\tau_1}^{\tau_2} \mathsf{A}_u du + \mathbf{a}_{t,\tau_1,\tau_2} \mathsf{X}_t + \int_t^{\tau_1} \lambda_u \sigma_u \mathbf{a}_{t,\tau_1,\tau_2} \mathbf{e}_L du$
+ $\int_{\tau_1}^{\tau_2} \lambda_u \sigma_u \mathbf{e}_1^{\mathsf{T}} \mathsf{A}^{-1} \left[\exp \left\{ \mathsf{A}(\tau_2 - u) \right\} - I_L \right] \mathbf{e}_L du$

with $\mathbf{a}_{t,\tau_1,\tau_2} = \mathbf{e}_1^\top \mathbf{A}^{-1} [\exp {\{\mathbf{A}(\tau_2 - t)\}} - \exp {\{\mathbf{A}(\tau_1 - t)\}}], I_L : L \times L$ identity matrix, λ_u MPR inferred from data, Benth et al. (2007). Λ_u, σ_u to be localised.

Local Temperature Risk

Normality of ε_t requires estimating the function $\theta(t) = \{\Lambda_t, \sigma_t^2\}$ with t = 1, ..., 365 days, j = 0, ..., J years. Recall:

$$X_{365j+t} = T_{t,j} - \Lambda_t,$$

$$X_{365j+t} = \sum_{l=1}^{L} \beta_{lj} X_{365j+t-l} + \varepsilon_{t,j},$$

$$\varepsilon_{t,j} = \sigma_t e_{t,j},$$

$$e_{t,j} \sim N(0, 1), i.i.d.$$

4-1

Adaptation Scale (for variance)

Fix $s \in \{1, 2, \dots, 365\}$, sequence of ordered weights: $W^{k}(s) = \{w(s, 1, h_{k}), w(s, 2, h_{k}), \dots, w(s, 365, h_{k})\}^{\top}.$ Define $w(s, t, h_k) = K_{h_k}(s-t), (h_1 < h_2 < \ldots < h_K).$ $\hat{\varepsilon}_{365j+t} = X_{365j+t} - \sum_{l=1}^{L} \hat{\beta}_l X_{365j+t-l}$ $\tilde{\theta}_k(s) \stackrel{\text{def}}{=} \arg \max L\{W^k(s), \theta\}$ $\bar{\theta} \in \Theta$ 365 $= \arg \min_{\theta \in \Theta} \sum_{t=1} \sum_{i=0} \{ \log(2\pi\theta)/2 + \hat{\varepsilon}_{t,j}^2/2\theta \} w(s,t,h_k)$ $= \sum_{k,i} \hat{\varepsilon}_{t,j}^2 w(s,t,h_k) / \sum_{k,i} w(s,t,h_k)$ Localizing temperature risk

Parametric Exponential Bounds

$$L(W^{k}, \tilde{\theta}_{k}, \theta^{*}) \stackrel{\text{def}}{=} N_{k} \mathcal{K}(\tilde{\theta}_{k}, \theta^{*})$$
$$= -\{\log(\tilde{\theta}_{k}/\theta^{*}) + 1 - \theta^{*}/\tilde{\theta}_{k}\}/2,$$

where $\mathcal{K}\{\tilde{\theta}_k, \theta^*\}$ is the Kullback-Leibler divergence between $\tilde{\theta}_k$ and θ^* and $N_k = J \cdot \sum_{t=1}^{365} w(s, t, h_k)$. For any $\mathfrak{z} > 0$,

$$\begin{array}{rcl} \mathrm{P}_{\theta^*}\{L(W^k, \tilde{\theta}_k, \theta^*) > \mathfrak{z}\} &\leq & 2\exp(-\mathfrak{z})\\ \mathrm{E}_{\theta^*} \left|L(W^k, \tilde{\theta}_k, \theta^*)\right|^r &\leq & \mathfrak{r}_r \end{array}$$

where $\mathfrak{r}_r = 2r \int_{\mathfrak{z} \ge 0} \mathfrak{z}^{r-1} \exp(-\mathfrak{z}) d\mathfrak{z}$.

LMS Procedure

Construct an estimate $\hat{\theta} = \hat{\theta}(s)$, on the base of $\tilde{\theta}_1(s), \tilde{\theta}_2(s), \dots, \tilde{\theta}_K(s)$.

- \boxdot Start with $\hat{\theta}_1 = \tilde{\theta}_1$.
- : For $k \ge 2$, $\tilde{\theta}_k$ is accepted and $\hat{\theta}_k = \tilde{\theta}_k$ if $\tilde{\theta}_{k-1}$ was accepted and

$$L(W^k, \tilde{ heta}_\ell, \tilde{ heta}_k) \leq \mathfrak{z}_\ell, \ell = 1, \dots, k-1$$

 $\hat{ heta}_k$ is the the latest accepted estimate after the first k steps.

Propagation Condition

A bound for the risk associated with first kind error:

$$\mathsf{E}_{\theta^*} | L(W^k, \tilde{\theta}_k, \hat{\theta}_k) |^r \le \alpha \mathfrak{r}_r \tag{1}$$

where $k = 1, \ldots, K$ and \mathfrak{r}_r is the parametric risk bound.

Sequential Choice of Critical Values

- ⊡ Consider first \mathfrak{z}_1 letting $\mathfrak{z}_2 = \ldots = \mathfrak{z}_{K-1} = \infty$. Leads to the estimates $\hat{\theta}_k(\mathfrak{z}_1)$ for $k = 2, \ldots, K$.
- \boxdot The value \mathfrak{z}_1 is selected as the minimal one for which

$$\sup_{\theta^*} \mathsf{E}_{\theta^*} |L\{W^k, \tilde{\theta}_k, \hat{\theta}_k(\mathfrak{z}_1)\}|^r \leq \frac{\alpha}{K-1} \mathfrak{r}_r, k = 2, \dots, K.$$

 Set 3_{k+1} = ... = 3_{K-1} = ∞ and fix 3_k lead the set of parameters 3₁, ..., 3_k, ∞, ..., ∞ and the estimates *θ̂_m*(3₁,..., 3_k) for m = k + 1, ..., K. Select 3_k s.t.

$$\sup_{\theta^*} \mathsf{E}_{\theta^*} |L\{W^k, \tilde{\theta}_m, \hat{\theta}_m(\mathfrak{z}_1, \mathfrak{z}_2, \dots, \mathfrak{z}_k)\}|^r \leq \frac{k\alpha}{K-1} \mathfrak{r}_r,$$

$$m = k+1, \dots, K.$$

Critical Values

Figure 5: Simulated CV with $\theta^* = 1$, r = 0.5, MC = 5000 with $\alpha = 0.3$, 0.5, 0.7 (left), with different bandwidth sequences (right). Localizing temperature risk

Small Modeling Bias (SMB) Condition and Oracle Property

$$\Delta(\mathcal{W}^k,\theta) = \sum_{t=1}^{365} \mathcal{K}\{\theta(t),\theta\}\mathbf{1}\{w(s,t,h_k) > 0\} \leq \Delta, \forall k < k^*$$

 k^* is the maximum k satisfying the SMB condition.

Propagation Property: For any estimate $\tilde{\theta}_k$ and θ satisfying SMB, it holds:

$$\mathsf{E}_{\theta(.)} \log\{1 + |L(W^k, \tilde{\theta}_k, \theta)|^r / \mathfrak{r}_r\} \leq \Delta + \alpha$$

Stability Property

The attained quality of estimation during "propagation" can not get lost at further steps.

$$L(W^{k^*}, \tilde{ heta}_{k^*}, \hat{ heta}_{\hat{k}})\mathbf{1}\{\hat{k} > k^*\} \leq \mathfrak{z}_{k^*}$$

4-9

 $\hat{\theta}_{\hat{k}}$ delivers at least the same accuracy of estimation as the "oracle" $\tilde{\theta}_{k^*}$

Oracle Property

Theorem

Let $\Delta(W^k, \theta) \leq \Delta$ for some $\theta \in \Theta$ and $k \leq k^*$. Then

$$\begin{split} & E_{\theta(.)} \log \left\{ 1 + |L(W^{k^*}, \tilde{\theta}_{k^*}, \theta)|^r / \mathfrak{r}_r \right\} &\leq \Delta + 1 \\ & E_{\theta(.)} \log \left\{ 1 + |L(W^{k^*}, \tilde{\theta}_{k^*}, \hat{\theta}_{\hat{k}})|^r / \mathfrak{r}_r \right\} &\leq \Delta + \alpha + \log\{1 + \mathfrak{z}_{k^*} / \mathfrak{r}_r\} \end{split}$$

4 - 10

Figure 6: Estimation of mean 2007 (left) and variance 20050101-20071231 (right) for Berlin. Bandwidths sequences (upper panel), nonparametric function estimation, with fixed bandwidth, adaptive bandwidth and truncated Fourier (bottom panel), $\alpha = 0.7$, r = 0.5. Localizing temperature risk

Figure 7: Estimation of mean 2008 (left) and variance 20060101-20081231 (right) for Kaohsiung. Bandwidths sequences (upper panel), nonparametric function estimation, with fixed bandwidth, adaptive bandwidth and truncated Fourier (bottom panel), $\alpha = 0.7$, r = 0.5. Localizing temperature risk

Iterative approach, $\theta(t) = \{\Lambda_t, \sigma_t^2\}$

Step 1. Estimate $\hat{\beta}$ in an initial Λ_t^0 using a truncated Fourier series or any other deterministic function;

Step 2. For fixed $\hat{\Lambda}_{s,\nu} = \{\hat{\Lambda}'_{s,\nu}, \hat{\Lambda}''_{s,\nu}\}^{\top}, s = \{1, \dots, 365\}$ from last step ν , and fixed $\hat{\beta}$, get $\hat{\sigma}^2_{s,\nu+1}$ by

$$\hat{\sigma}_{s,\nu+1}^2 = \arg \min_{\sigma^2} \sum_{t=1}^{365} \sum_{j=0}^{J} [\{T_{365j+t} - \hat{\Lambda}_{s,\nu}' - \hat{\Lambda}_{s,\nu}''(t-s) - \sum_{l=1}^{L} \hat{\beta}_l X_{365j+t-l} \}^2 / 2\sigma^2 + \log(2\pi\sigma^2) / 2] w(s,t,h_k');$$

Iterative approach

Step 3. For fixed $\hat{\sigma}_{s,\nu+1}^2$ and $\hat{\beta}$, we estimate $\hat{\Lambda}_{s,\nu+1}$, $s = \{1, \ldots, 365\}$ via another a local adaptive procedure:

$$\hat{\Lambda}_{s,\nu+1} = \arg\min_{\{\Lambda',\Lambda''\}^{\top}} \sum_{t=1}^{365} \sum_{j=0}^{J} \left\{ T_{365j+t} - \Lambda' - \Lambda''(t-s) - \sum_{l=1}^{L} \hat{\beta}_{l} X_{365j+t-l} \right\}^{2} w(s,t,h_{k}') / 2\hat{\sigma}_{s,\nu+1}^{2},$$

where $\{h'_1, h'_2, h'_3, \dots, h'_{K'}\}$ is a sequence of bandwidths; Step 4. Repeat steps 2 and 3 till both $|\hat{\Lambda}_{t,\nu+1} - \hat{\Lambda}_{t,\nu}| < \pi_1$ and $|\hat{\sigma}^2_{t,\nu+1} - \hat{\sigma}^2_{t,\nu}| < \pi_2$ for some constants π_1 and π_2 .

Aggregated approach

Let $\hat{\theta}^{j}(t)$ the localised observation at time t of year j, the aggregated local function is given by:

$$\hat{\theta}_{\omega}(t) = \sum_{j=1}^{J} \omega_j \hat{\theta}^j(t)$$
(2)

 $\underset{\omega}{\arg\min \sum_{j=1}^{J} \sum_{t=1}^{365} \{\hat{\theta}_{\omega}(t) - \hat{\theta}_{j}^{o}(t)\}^{2} \text{ s.t. } \sum_{j=1}^{J} \omega_{j} = 1; \omega_{j} > 0,}$ $\hat{\theta}_{j}^{o} \text{ defined as:}$

- 1. (Locave) $\hat{ heta}_{j}^{o}(t) = J^{-1} \sum_{j=1}^{J} \hat{\sigma}_{j}^{2}(t)$
- 2. (Locsep) $\hat{\theta}_j^o(t) = \hat{\sigma}_j^2(t)$
- 3. (Locmax) maximising *p*-values of AD-test over a year.

Normalized Residuals

		2 years	i	3 years			
-	KS	JB	AD	KS	JB	AD	
Adaptive BW	5.06e-06	1.91e-01	0.55	0.01	2.41e-01	0.56	
_ Fixed BW	3.49e-03	1.81e-10	0.06	0.09	6.55e-08	0.13	
<u>់គ្</u> Locmax	9.79e-01	3.30e-01	0.94	0.87	1.60e-02	0.47	
∽ _{Fourier}	3.14e-01	0.00	0.01	0.60	2.22e-16	0.01	
Campbell&Diebold	4.94e-07	0.00	0.00	0.00	0.00	0.01	
ы Adaptive BW	1.55e-07	9.90e-03	1.78e-02	2.38e-05	1.04e-11	1.57e-07	
E Fixed BW	1.83e-05	0.00	2.76e-09	2.25e-03	0.00	1.13e-14	
Locmax	5.92e-02	1.11e-04	4.44e-04	9.05e-03	1.57e-05	4.46e-06	
Fixed BW Locmax Fourier	6.29e-03	0.00	3.03e-10	3.89e-04	0.00	2.01e-14	
Campbell&Diebold	1.49e-05	0.00	1.95e-10	0.00	0.00	6.72e-20	

4-16

Table 3: *p*-values for different models and GoF tests for Berlin and Kaohsiung.

Localising Temperature Risk Analysis

Figure 8: QQ-plot for standardized residuals from Berlin using different methods for the data from 2005-2007 (3 years)

Localizing temperature risk

4 - 17

Can we make money?

Trading date	Ν	ЛР	F	uture Pr	ices	Real. T_t	
t	$ au_1$	$ au_2$	СМЕ	$\lambda_t = 0$	$\lambda_t = \lambda$	$I_{(\tau_1, \tau_2)}$	Strategy
Berlin-CAT							
20070316	20070501	20070531	457.00	450.67	442.58	494.20	6.32(C)
20070316	20070601	20070630	529.00	538.46	542.92	574.30	-9.46(P)
20070316	20070701	20070731	616.00	628.36	618.89	583.00	-12.36(P)
Tokyo-AAT							
20081027	20090401	20090430	592.00	442.12	458.47	479.00	149.87(C)
20081027	20090501	20090531	682.00	577.98	602.75	623.00	104.01(C)
20081027	20090601	20090630	818.00	688.28	692.54	679.00	129.71(C)

Table 4: Weather contracts listed at CME. (Source: Bloomberg). Future prices $\hat{F}_{t,\tau_1,\tau_2,\lambda,\theta}$ estimated prices with MPR (λ_t) under different localisation schemes ($\hat{\theta}$ under Locmax for Berlin (20020101-20061231), Tokyo (20030101-20081231)), Strategy (CME- $\hat{F}_{t,\tau_1,\tau_2,\lambda=0}$), P(Put), C(Call), MP(Measurement Period) Localizing temperature risk

4-18

References

- W. K. Härdle and B. López Cabrera (2011) *Implied market price of weather risk* Applied Mathematical Finance, Issue 5, 1-37.
- F.E Benth and J.S. Benth and S. Koekebakker (2007) Putting a price on temperature Scandinavian Journal of Statistics 34: 746-767

📔 P.J. Brockwell

Continuous time ARMA Process Handbook of Statistics 19: 248-276, 2001

Localising temperature risk

Wolfgang Karl Härdle, Brenda López Cabrera Ostap Okhrin, Weining Wang

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

Appendix A

Li-McLeod Portmanteau Test- modified Portmanteau test statistic Q_L to check the uncorrelatedness of the residuals:

$$Q_L = n \sum_{k=1}^L r_k^2(\hat{\varepsilon}) + \frac{L(L+1)}{2n},$$

where r_k , k = 1, ..., L are values of residuals ACF up to the first L lags and n is the sample size. Then,

$$Q_L \sim \chi^2_{(L-p-q)}$$

 Q_L is χ^2 distributed on (L - p - q) degrees of freedom where p,q denote AR and MA order respectively and L is a given value of considered lags.

Appendix

Consider 2 prob. measures P & Q. Assume that $\frac{dQ}{dP}|_{\mathcal{F}_t} = Z_t > 0$ is a positive Martingale. By *Ito's* Lemma, then:

$$Z_t = \exp\{\log(Z_t)\} \\ = \exp\{\int_0^t (Z_s)^{-1} dZ_s - \frac{1}{2} \int_0^t (Z_s)^{-2} d < Z, Z >_s\} (3)$$

Let $dZ_s = Z_s \cdot \theta_s \cdot dB_s$, then:

$$Z_t = \exp\left(\int_0^t \theta_s dB_s - \frac{1}{2}\int_0^t \theta_s^2 ds\right) \tag{4}$$

Appendix B

Let B_t , Z_t be Martingales under P, then by Girsanov theorem:

$$B_{t}^{\theta} = B_{t} - \int_{0}^{t} (Z_{s})^{-1} d < Z, B >_{s}$$

= $B_{t} - \int_{0}^{t} (Z_{s})^{-1} d < \int_{0}^{s} \theta_{u} Z_{u} dB_{u}, B_{s} >$
= $B_{t} - \int_{0}^{t} (Z_{s})^{-1} \theta_{s} Z_{s} d < B_{s}, B_{s} >$
= $B_{t} - \int_{0}^{t} \theta_{s} ds$ (5)

is a Martingale unter Q.

Localizing temperature risk -

- 5-3

Black-Scholes Model

Asset price follows:

$$dS_t = \mu S_t dt + \sigma_t S_t dB_t$$

Note that S_t is not a Martingale unter P, but it is under Q! Explicit dynamics:

$$S_{t} = S_{0} + \int_{0}^{t} \mu S_{s} ds + \int_{0}^{t} \sigma_{s} S_{s} dB_{s}$$

$$= S_{0} + \int_{0}^{t} \mu S_{s} ds + \int_{0}^{t} \sigma_{s} S_{s} dB_{s}^{\theta} + \int_{0}^{t} \theta_{s} \sigma_{s} S_{s} ds$$

$$= S_{0} + \int_{0}^{t} S_{s} (\mu + \theta_{s} \sigma_{s}) ds + \int_{0}^{t} \sigma_{s} S_{s} dB_{s}^{\theta}$$
(6)

Localizing temperature risk -

5-4

Market price of Risk and Risk Premium

By the no arbitrage condition, the risk free interest rate r should be equal to the drift $\mu + \theta_s \sigma_s$, so that:

$$\theta_s = \frac{r - \mu}{\sigma_s} \tag{7}$$

In practice: $B_t^{\theta} = B_t - \int_0^t \left(\frac{\mu - r}{\sigma_s}\right) ds$ is a Martingale under Q and then $e^{-rt}S_t$ is also a Martingale.

Under risk taking, the risk premium is defined as:

 $r + \Delta$

Stochastic Pricing

The process $X_t = T_t - \Lambda_t$ can be seen as a discretization of a continuous-time process AR(L) (CAR(L)): Ornstein-Uhlenbeck process $X_t \in \mathbb{R}^L$:

$$d\mathbf{X}_t = \mathbf{A}\mathbf{X}_t dt + \mathbf{e}_L \sigma_t dB_t$$

 \mathbf{e}_l : /th unit vector in \mathbb{R}^L for $l=1,\ldots,L$, $\sigma_t>0$, \mathbf{A} : (L imes L)-matrix

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & \dots & 0 & 1 \\ -\alpha_{L} & -\alpha_{L-1} & \dots & -\alpha_{1} \end{pmatrix}$$

X_t can be written as a Continuous-time AR(p) (CAR(p)):

For p = 1,

$$dX_{1t} = -\alpha_1 X_{1t} dt + \sigma_t dB_t$$

For p = 2,

$$\begin{array}{rcl} X_{1(t+2)} &\approx & (2-\alpha_1)X_{1(t+1)} \\ &+ & (\alpha_1-\alpha_2-1)X_{1t}+\sigma_t(B_{t-1}-B_t) \end{array}$$

For p = 3,

$$\begin{array}{rcl} X_{1(t+3)} &\approx & (3-\alpha_1)X_{1(t+2)} + (2\alpha_1 - \alpha_2 - 3)X_{1(t+1)} \\ &+ & (-\alpha_1 + \alpha_2 - \alpha_3 + 1)X_{1t} + \sigma_t(B_{t-1} - B_t) \end{array}$$

Proof $CAR(3) \approx AR(3)$

Let

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\alpha_3 & -\alpha_2 & -\alpha_1 \end{array} \right)$$

- \boxdot use $B_{t+1} B_t = \varepsilon_t$
- \boxdot assume a time step of length one dt=1
- \boxdot substitute iteratively into X_1 dynamics

Proof $CAR(3) \approx AR(3)$:

$$\begin{array}{rcl} X_{1(t+1)} - X_{1(t)} &=& X_{2(t)} dt \\ X_{2(t+1)} - X_{2(t)} &=& X_{3(t)} dt \\ X_{3(t+1)} - X_{3(t)} &=& -\alpha_1 X_{1(t)} dt - \alpha_2 X_{2(t)} dt - \alpha_3 X_{3(t)} dt + \sigma_t \varepsilon_t \\ X_{1(t+2)} - X_{1(t+1)} &=& X_{2(t+1)} dt \\ X_{2(t+2)} - X_{2(t+1)} &=& X_{3(t+1)} dt \\ X_{3(t+2)} - X_{3(t+1)} &=& -\alpha_1 X_{1(t+1)} dt - \alpha_2 X_{2(t+1)} dt \\ && -\alpha_3 X_{3(t+1)} dt + \sigma_{t+1} \varepsilon_{t+1} \\ X_{1(t+3)} - X_{1(t+2)} &=& X_{2(t+2)} dt \\ X_{2(t+3)} - X_{2(t+2)} &=& X_{3(t+2)} dt \\ X_{3(t+3)} - X_{3(t+2)} &=& -\alpha_1 X_{1(t+2)} dt - \alpha_2 X_{2(t+2)} dt \\ -\alpha_3 X_{3(t+2)} dt + \sigma_{t+2} \varepsilon_{t+2} \end{array}$$

Appendix

Temperature: $T_t = X_t + \Lambda_t$ Seasonal function with trend:

$$\hat{\Lambda}_{t} = \mathbf{a} + \mathbf{b}t + \sum_{l=1}^{L} \hat{c}_{l} \cdot \cos\left\{\frac{2\pi l(t - \hat{d}_{i})}{l \cdot 365}\right\} + \mathcal{I}(t \in \omega) \cdot \sum_{i=l}^{p} \hat{c}_{i} \cdot \cos\left\{\frac{2\pi (i - 4)(t - \hat{d}_{i})}{i \cdot 365}\right\}$$
(8)

 \hat{a} : average temperature, \hat{b} : global Warming. $\mathcal{I}(t\in\omega)$ an indicator for Dec., Jan. and Feb

City	Period	â	ĥ	ĉ1	\hat{d}_1
Tokyo	19730101-20081231	15.76	7.82e-05	10.35	-149.53
Osaka	19730101-20081231	15.54	1.28e-04	11.50	-150.54
Beijing	19730101-20081231	11.97	1.18e-04	14.91	-165.51
Taipei	19920101-20090806	23.21	1.68e-03	6.78	-154.02

 Table 5: Seasonality estimates of daily average temperatures in Asia. All coefficients

 arecnonzero tet 1% significance level. Data source: Bloomberg

5 - 10

City(Period)	â	ĥ	ĉ1	â1	ĉ2	â2	ĉ3	â3
Tokyo								
(730101-081231)	15.7415	0.0001	8.9171	-162.3055	-2.5521	-7.8982	-0.7155	-15.0956
(730101-821231)	15.8109	0.0001	9.2855	-162.6268	-1.9157	-16.4305	-0.5907	-13.4789
(830101-921231)	15.4391	0.0004	9.4022	-162.5191	-2.0254	-4.8526	-0.8139	-19.4540
(930101-021231)	16.4284	0.0001	8.8176	-162.2136	-2.1893	-17.7745	-0.7846	-22.2583
(030101-081231)	16.4567	0.0001	8.5504	-162.0298	-2.3157	-18.3324	-0.6843	-16.5381
Taipei								
(920101-081231)	23.2176	0.0002	1.9631	-164.3980	-4.8706	-58.6301	-0.2720	39.1141
(920101-011231)	23.1664	0.0002	3.8249	-150.6678	-2.8830	-68.2588	0.2956	-41.7035
(010101-081231)	24.1295	-0.0001	1.8507	-149.1935	-5.1123	-67.5773	-0.3150	22.2777
Osaka								
(730101-081231)	15.2335	0.0002	10.0908	-162.3713	-2.5653	-7.5691	-0.6510	-19.4638
(730101-821231)	15.9515	-0.0001	9.7442	-162.5119	-2.1081	-17.9337	-0.5307	-18.9390
(830101-921231)	15.7093	0.0003	10.1021	-162.4248	-2.1532	-10.7612	-0.7994	-24.9429
(930101-021231)	16.1309	0.0003	10.3051	-162.4181	-2.0813	-21.9060	-0.7437	-27.1593
(030101-081231)	16.9726	0.0002	10.5863	-162.4215	-2.1401	-14.3879	-0.8138	-17.0385
Kaohsiung								
(730101-081231)	24.2289	0.0001	0.9157	-145.6337	-4.0603	-78.1426	-1.0505	10.6041
(730101-821231)	24.4413	0.0001	2.1112	-129.1218	-3.3887	-91.1782	-0.8733	20.0342
(830101-921231)	25.0616	0.0003	2.0181	-135.0527	-2.8400	-89.3952	-1.0128	20.4010
(930101-021231)	25.3227	0.0003	3.9154	-165.7407	-0.7405	-51.4230	-1.1056	19.7340
Beijing								
(730101-081231)	11.8904	0.0001	14.9504	-165.2552	0.0787	-12.8697	-1.2707	4.2333
(730101-821231)	11.5074	0.0003	14.8772	-165.7679	0.6253	15.8090	-1.2349	1.8530
(830101-921231)	12.4606	0.0002	14.9616	-165.7041	0.5327	14 3488	-1.2630	4.8809
(930101-021231)	13.6641	-0.0003	14.8970	-166.1435	0.9412	16.9291	-1.1874	-4.5596
(030101-081231)	12.8731	0.0003	14.9057	-165.9098	0.7266	16.5906	-1.5323	1.8984

Table 6: Seasonality estimates $\hat{\lambda}_t$ of daily average temperatures in Asia. All coefficients are nonzero at 1% significance level. Data source: Bloomberg.

$\mathsf{AR}(p) \to \mathsf{CAR}(p)$

City	ADF	KPSS	AR(3)			CAR(3)				
	$\hat{\tau}$	ƙ	β_1	β_2	β_3	α_1	α_2	α_3	$\tilde{\lambda}_1$	$\tilde{\lambda}_{2,3}$
Portland	-45.13+	0.05*	0.86	-0.22	0.08	2.13	1.48	0.26	-0.27	-0.93
Atlanta	-55.55+	0.21***	0.96	-0.38	0.13	2.03	1.46	0.28	-0.30	-0.86
New York	-56.88+	0.08*	0.76	-0.23	0.11	2.23	1.69	0.34	-0.32	-0.95
Houston	-38.17+	0.05*	0.90	-0.39	0.15	2.09	1.57	0.33	-0.33	-0.87
Berlin	-40.94+	0.13**	0.91	-0.20	0.07	2.08	1.37	0.20	-0.21	-0.93
Essen	-23.87+	0.11*	0.93	-0.21	0.11	2.06	1.34	0.16	-0.16	-0.95
Tokyo	-25.93+	0.06*	0.64	-0.07	0.06	2.35	1.79	0.37	-0.33	-1.01
Osaka	-18.65+	0.09*	0.73	-0.14	0.06	2.26	1.68	0.34	-0.33	-0.96
Beijing	-30.75+	0.16***	0.72	-0.07	0.05	2.27	1.63	0.29	-0.27	-1.00
Kaohsiung	-37.96+	0.05*	0.73	-0.08	0.04	2.26	1.60	0.29	-0.45	-0.92
Taipei	-32.82+	0.09*	0.79	-0.22	0.06	2.20	1.63	0.36	-0.40	-0.90

Table 7: ADF and KPSS-Statistics, coefficients of AR(3), CAR(3) and eigenvalues $\lambda_{1,2,3}$, for the daily average temperatures time series. + 0.01 critical values, * 0.1 critical value, **0.05 critical value (0.14), ***0.01 critical value. Historical data: 19470101-20091210.

