Systemic Weather Risk and Crop Insurance: The Case of China

Ostap Okhrin ${ }^{1}$
Martin Odening ${ }^{2}$
Wei Xu^{3}
Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics ${ }^{1}$
Department of Agricultural Economics ${ }^{2}$ Humboldt-Universität zu Berlin SCOR SE ${ }^{3}$ Zürich
http://lvb.wiwi.hu-berlin.de
http://www.agrar.hu-berlin.de

Motivation

\square High weather sensitivity of agricultural production
\square Increase of extreme weather events
\square Problems with traditional (re)insurance
\square Emergence of weather markets

Potential demand for weather derivatives in agriculture

Agricultural Insurance Systems

Country	Ins. coverage	Premium subsidies	Catastrophe aid	Participation	Reinsurance
Germany	hail, suppl. ins.	none	only for uninsureable risks	$\begin{gathered} \text { approx. } 35 \% \\ \text { hail } \\ <1 \% \mathrm{MPCI} \end{gathered}$	pri. ins.
France	multiple peril crop ins.	60\%	government aid for natural disasters (drought, earthquake, flooding)	20\%	pri. ins.
Greece Italy	comprehensive ins. hail, frost, drought	50% 60\% for hail 80% for MPCI	n.a. only for uninsureable risks	n.a.	n.a. pri. ins.
$\begin{aligned} & \text { Luxem- } \\ & \text { bourg } \end{aligned}$	comprehensive ins.	up to 50%	n.a.	10\%	n.a.
Austria Spain	comprehensive ins. comprehensive ins.	50% for hailand frost ins. 55%	only for uninsureable risks only for extreme disasters for extreme	$\begin{gathered} 78 \% \text { hail } \\ 56 \% \mathrm{MPCI} \\ \text { approx. } \\ 42 \% \end{gathered}$	priv. ins. exclusively pri.and pub. ins.
Canada	multiple peril crop ins.	50\%	and uninsurable disasters	50\%	pri. and pub. ins.
USA	multiple peril crop ins.	35 up to 100%	only for uninsurable disasters	80\%	pri. and pub. ins.

Table 1: Agricultural Insurances Systems

Pearson Correlation Coefficients vs. Distance: normal yield years

Figure 1: Goodwin, B.K.(2001)

Pearson Correlation Coefficients vs. Distance: extreme yield years

Figure 2: Goodwin, B.K.(2001)

Objectives \& Research Questions

\square Quantification of the dependence structure of weather events at different locations
\square Does the dependence of weather events fade out with increasing distance?
\square Is spatial diversification of systemic weather risk possible?
\square How to measure systemic weather risk correctly?

Outline

1. Motivation \checkmark
2. Model and Methods
3. Application
4. Conclusion

Flow Chart of the Computational Procedure

Buffer Fund

$$
\begin{aligned}
I_{i} & =I_{i}\left(T_{i}\right), L_{i}=f\left(I_{i}, K_{i}\right) \cdot V, \quad \Pi_{i}=E\left(L_{i}\right) \\
N T L & =\sum_{i=1}^{n} w_{i} \cdot\left(L_{i}-\Pi_{i}\right) \\
B F & =V_{a} R_{\alpha}(N T L), B L_{n}=B F / n \\
D E & =n B L_{n} / \sum_{j=1}^{n} B L_{j}
\end{aligned}
$$

\square BF - buffer fund,
\square NTL - net total loss,
\square L - loss,
$\square \Pi$ - fair premium,
\square w - weight,
\square I - weather index,
\square K - trigger level,
\square V - tick size,
$\square \alpha$ - confidence level,
\square i - region.

Indices: Growing Degree Days (GDD)

$$
G D D_{i, t}=\sum_{j=\tau_{B, t}}^{\tau_{E, t}} \max \left(0, T_{i, t, j}-\hat{T}\right),
$$

where $\tau_{B, t}$ is the first of March, $\tau_{E, t}$ is October 31, where \widehat{T} is the triggering temperature and is $5^{\circ} \mathrm{C}$;
\square Loss function for the risk of insufficient temperature

$$
L_{G D_{i, t}}=\max \left(0, K_{i}^{G D D}-G D D_{t}\right) \cdot V,
$$

$K_{i}^{G D D}$ is the strike level being equal to 50% and the 15% quantile of the index distribution.

Indices: Frost Index (FI)

$$
\begin{aligned}
F I_{i, t} & =\sum_{j=\tau_{N}}^{\tau_{M}} \mathbf{I}\left(T_{i, t, j}<\widehat{T}\right) \\
L_{F I_{i, t}} & =\max \left(0, F I_{i, t}-K_{i}^{F I}\right) \cdot V
\end{aligned}
$$

where τ_{N} and τ_{M} denote November 1 and March 31, $\widehat{T}=0^{\circ} \mathrm{C}$ and $K_{i}^{F l}$ is the strike level be equal to 50% and 85%.

Daily average temperature

$$
\begin{aligned}
T_{i, t} & =\Delta_{i, t}+\Psi_{i, t} \\
\Delta_{i, t} & =a_{1, i}+a_{2, i} \cdot t+a_{3, i} \cdot \cos \left(2 \pi \frac{t-a_{4, i}}{365}\right) \\
\Psi_{i, t} & =\sum_{j=1}^{J_{i}} b_{j, i} \cdot \Psi_{t-j, i}+\sigma_{i, t} \cdot \varepsilon_{i, t}
\end{aligned}
$$

time-varying variance:
$\sigma_{i, t}^{2}=d_{1, i}+d_{2, i} \cdot t+\sum_{k=1}^{K_{i}}\left[d_{3, k, i} \cdot \cos \left(2 \pi k \frac{t}{365}\right)+d_{4, k, i} \cdot \sin \left(2 \pi k \frac{t}{365}\right)\right]$

Correlation

Gumbel

Figure 3: Scatterplots for two distributions with $\rho=0.4$
\square same linear correlation coefficient ($\rho=0.4$)
\checkmark same marginal distributions
\square rather big difference

Copula

For a distribution function F with marginals $F_{X_{1}}, \ldots, F_{X_{d}}$, there exists a copula $C:[0,1]^{d} \rightarrow[0,1]$, such that

$$
F\left(x_{1}, \ldots, x_{d}\right)=\mathrm{C}\left\{F_{X_{1}}\left(x_{1}\right), \ldots, F_{X_{d}}\left(x_{d}\right)\right\}
$$

Recall Archimedean Copula

Multivariate Archimedean copula $C:[0,1]^{d} \rightarrow[0,1]$ defined as

$$
\begin{equation*}
C\left(u_{1}, \ldots, u_{d}\right)=\phi\left\{\phi^{-1}\left(u_{1}\right)+\cdots+\phi^{-1}\left(u_{d}\right)\right\} \tag{1}
\end{equation*}
$$

where $\phi:[0, \infty) \rightarrow[0,1]$ is continuous and strictly decreasing with $\phi(0)=1, \phi(\infty)=0$ and ϕ^{-1} its pseudo-inverse.
Example 1

$$
\begin{aligned}
\phi_{\text {Gumbel }}(u, \theta) & =\exp \left\{-u^{1 / \theta}\right\}, \text { where } 1 \leq \theta<\infty \\
\phi_{\text {Clayton }}(u, \theta) & =(\theta u+1)^{-1 / \theta}, \text { where } \theta \in[-1, \infty) \backslash\{0\}
\end{aligned}
$$

Disadvantages: too restrictive: single parameter, exchangeable

Hierarchical Archimedean Copulas

Simple AC with $\mathrm{s}=(1234)$

$$
C\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=C_{1}\left(u_{1}, u_{2}, u_{3}, u_{4}\right)
$$

Fully nested AC with $s=(((12) 3) 4)$
$C\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=C_{1}\left[C_{2}\left\{C_{3}\left(u_{1}, u_{2}\right), u_{3}\right\}, u_{4}\right]$

Systemic Weather Risk

$$
C\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=C_{1}\left\{C_{2}\left(u_{1}, u_{2}, u_{3}\right), u_{4}\right\}
$$

Partially Nested AC with $s=((12)(34))$

$$
C\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=C_{1}\left\{C_{2}\left(u_{1}, u_{2}\right), C_{3}\left(u_{3}, u_{4}\right)\right\}
$$

Recovering the structure (easy practice)

$\max \left\{\hat{\theta}_{12}, \hat{\theta}_{13}, \hat{\theta}_{14}, \hat{\theta}_{23}, \hat{\theta}_{24}, \hat{\theta}_{34}\right\}=\hat{\theta}_{13} \quad \Rightarrow$

$$
\max \left\{\hat{\theta}_{(13) 2}, \hat{\theta}_{(13) 4}, \hat{\theta}_{24}\right\}=\hat{\theta}_{(13) 4} \quad \Rightarrow
$$

Systemic Weather Risk

Estimation Issues - Margins

$$
\begin{aligned}
F_{j}\left(x ; \hat{\alpha}_{j}\right) & =F_{j}\left\{x ; \arg \max _{\alpha} \sum_{i=1}^{n} \log f_{j}\left(X_{j i}, \alpha\right)\right\} \\
\hat{F}_{j}(x) & =\frac{1}{n+1} \sum_{i=1}^{n} \mathbf{l}\left(X_{j i} \leq x\right) \\
\tilde{F}_{j}(x) & =\frac{1}{n+1} \sum_{i=1}^{n} K\left(\frac{x-X_{j i}}{h}\right)
\end{aligned}
$$

for $j=1, \ldots, k$, where $\kappa: \mathbb{R} \rightarrow \mathbb{R}, \int \kappa=1, K(x)=\int_{-\infty}^{x} \kappa(t) d t$ and $h>0$ is the bandwidth.

$$
\check{F}_{j}(x) \in\left\{\hat{F}_{j}(x), \tilde{F}_{j}(x), F_{j}\left(x ; \hat{\alpha}_{j}\right)\right\}
$$

Estimation Issues - Multistage Estimation

$$
\begin{aligned}
& \left(\frac{\partial \mathcal{L}_{1}}{\partial \boldsymbol{\theta}_{1}^{\top}}, \ldots, \frac{\partial \mathcal{L}_{p}}{\partial \boldsymbol{\theta}_{p}^{\top}}\right)^{\top}=\mathbf{0} \\
\text { where } \quad \mathcal{L}_{j}= & \sum_{i=1}^{n} I_{j}\left(\mathbf{X}_{i}\right) \\
I_{j}\left(\mathbf{X}_{i}\right)= & \log \left(c\left(\left\{\phi_{\ell}, \boldsymbol{\theta}_{\ell}\right\}_{\ell=1, \ldots, j} ; s_{j}\right)\left[\left\{\check{F}_{m}\left(x_{m i}\right)\right\}_{m \in s_{j}}\right]\right) \\
& \text { for } j=1, \ldots, p .
\end{aligned}
$$

Theorem
Under regularity conditions, estimator $\hat{\boldsymbol{\theta}}$ is consistent and

$$
n^{\frac{1}{2}}(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \stackrel{a}{\sim} N\left(\mathbf{0}, \mathbf{B}^{-1} \Sigma \mathbf{B}^{-1}\right)
$$

Copula: Goodness-of-Fit Tests

Hypothesis

$$
H_{0}: C_{\theta} \in C_{0} ; \theta \in \Theta \text { vs } H_{1}: C_{\theta} \notin C_{0} ; \theta \in \Theta
$$

Cramér von Mises

$$
S=n \int_{[0,1]^{d}}\left[\widehat{C}\left(u_{1}, \ldots, u_{d}\right)-C\left(u_{1}, \ldots, u_{d} ; \widehat{\theta}\right)\right]^{2} d \widehat{C}\left(u-1, \ldots, u_{d}\right)
$$

Kolmogorov-Smirnov

$$
T=\sqrt{n} \sup _{u_{1}, \ldots, u_{d} \in[0,1]}\left|\widehat{C}\left(u_{1}, \ldots, u_{d}\right)-C\left(u_{1}, \ldots, u_{d} ; \widehat{\theta}\right)\right|
$$

in practice p -values are calculated using the bootstrap methods described in Genest and Remillard (2008)

Simulation

Frees and Valdez, (1998, NAAJ), Whelan, (2004, QF), Marshal and Olkin, (1988, JASA)
Conditional inversion method:
Let $C=C\left(u_{1}, \ldots, u_{k}\right), C_{i}=C\left(u_{1}, \ldots, u_{i}, 1, \ldots, 1\right)$ and $C_{k}=C\left(u_{1}, \ldots, u_{k}\right)$. Conditional distribution of U_{i} is given by
$C_{i}\left(u_{i} \mid u_{1}, \ldots, u_{i-1}\right)=P\left\{U_{i} \leq u_{i} \mid U_{1}=u_{1} \ldots U_{i-1}=u_{i-1}\right\}$
$=\frac{\partial^{i-1} C_{i}\left(u_{1}, \ldots, u_{i}\right)}{\partial u_{1} \ldots \partial u_{i-1}} / \frac{\partial^{i-1} C_{i-1}\left(u_{1}, \ldots, u_{i-1}\right)}{\partial u_{1} \ldots \partial u_{i-1}}$
\square Generate i.r.v. $v_{1}, \ldots, v_{k} \sim U(0,1)$
\square Set $u_{1}=v_{1}$
$\square u_{i}=C_{k}^{-1}\left(v_{i} \mid u_{1}, \ldots, u_{i-1}\right) \forall i=\overline{2, k}$

Location of selected weather stations

Systemic Weather Risk

Flow Chart of the Computational Procedure

Descriptive Statistics

st.		GDD	FI	
1	4114.98	(198.13)	6.26	(6.07)
2	3740.56	(148.25)	19.92	(10.29)
3	3700.36	(146.95)	30.76	(12.23)
4	3517.92	(186.12)	32.22	(12.32)
5	3498.83	(144.03)	5.86	(5.18)
6	2897.29	(140.68)	75.60	(11.64)
7	2623.34	(172.30)	87.44	(12.07)
\ldots		\ldots		\ldots
14	2353.13	(141.53)	117.68	(9.24)
15	2557.45	(103.70)	0.20	(0.64)
16	3113.99	(156.99)	0.26	(0.60)
17	3670.46	(105.20)	0.00	(0.00)

Table 2: Descriptives

Systemic Weather Risk

Illustration of Dependence Cluster

Systemic Weather Risk

BL for Different Aggregation: GDD

Aggregation: $\quad(2) \quad(2,3) \quad(1-3) \quad(1-6,8) \quad(1-8) \quad(1-8,15-17) \quad(1-17)$

BL for Different Aggregation: FI

Aggregation:
$(2)(2,3)$
(1-3) (1-6, 8)
$(1-8) \quad(1-8,11-14)$

Fair Prices, Buffer Loads and Diversification Effects I

Type of Copula	Gaussian	Gumbel	Rotated-Gumbel
GDD Strike Level $\mathbf{5 0 \%}$			
Fair Price	58.047	58.623	58.930
Buffer Load	85.091	94.784	100.839
Diversification Effect	0.481	0.539	0.567
GDD Strike Level 15%			
Fair Price	10.598	10.275	10.332
Buffer Load	31.688	33.476	35.301
Diversification Effect	0.430	0.466	0.488

Fair Prices, Buffer Loads and Diversification Effects II

| Type of Copula | Gaussian Gumbel Rotated-Gumbel |
| :--- | :--- | :--- |

FI Strike Level 50\%

Fair Price	3.082	3.166	3.004
Buffer Load	7.197	7.253	7.238
Diversification Effect	0.742	0.748	0.777

FI Strike Level 15\%

Fair Price	0.611	0.593	0.603
Buffer Load	2.750	2.611	2.838
Diversification Effect	0.658	0.645	0.690

Conclusions

\square Weather risk in China has a systemic component on a state level as well as on a national level
\square The possibility of regional diversification depends on the type of weather index (temperature $<$ drought $<$ flooding)
\square Weather risks should be globally diversified or transferred to the capital market (e.g. weather bonds)
\square Linear correlation may under- or overestimate systemic weather risk
\square Copulas allow a flexible modeling of the dependence structure of joint weather risks
\square But: risk of misspecification

Systemic Weather Risk and Crop Insurance: The Case of China

Ostap Okhrin ${ }^{1}$
Martin Odening ${ }^{2}$
Wei Xu^{3}
Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics ${ }^{1}$
Department of Agricultural Economics ${ }^{2}$ Humboldt-Universität zu Berlin SCOR SE ${ }^{3}$ Zürich
http://lvb.wiwi.hu-berlin.de
http://www.agrar.hu-berlin.de

