Valuation of Collateralized Debt Obligations with Hierarchical Archimedean Copulae

Barbara Choroś-Tomczyk
Wolfgang Karl Härdle
Ostap Okhrin

Ladislaus von Bortkiewicz
Chair of Statistics
C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
Motivation

Collateralized Debt Obligation

Triggered the financial crisis.

CDO and HAC
CDO Dynamics

Figure 1: Spreads of iTraxx tranches, Series 8, maturity 5 years, data from 20070920-20081022. Left panel: mezzanine junior (dashed black), mezzanine (dashed red), senior (solid black), super senior (solid red). Right panel: upfront fee of the equity tranche.
Dependence Matters!

The normal world is not enough.

![Graph Illustrating Correlation Smile](image)

Figure 2: Implied correlation smile in the homogeneous large pool Gaussian copula model. Data from 20071022.
Research Goals

- How to model the smiles?
- How to catch the dependency?
- How to go beyond the normal world?
Outline

1. Motivation ✓
2. CDOs
3. HAC Models
4. Empirical Study
5. Conclusions
Risk Transfer

CDO and HAC
Tranching

<table>
<thead>
<tr>
<th>Tranche name</th>
<th>Attachment points (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower l</td>
</tr>
<tr>
<td>Super Super Senior</td>
<td>22</td>
</tr>
<tr>
<td>Super Senior</td>
<td>12</td>
</tr>
<tr>
<td>Senior</td>
<td>9</td>
</tr>
<tr>
<td>Mezzanine</td>
<td>6</td>
</tr>
<tr>
<td>Mezzanine Junior</td>
<td>3</td>
</tr>
<tr>
<td>Equity</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1: iTraxx tranches.
iTraxx Europe

- A static portfolio of 125 equally weighted CDS on European entities;
- Sectors: Consumer (30), Financial (25), TMT (20), Industrials (20), Energy (20), Auto (10);
- New series of iTraxx Europe issued every 6 months (March and September) and the underlying reference entities are reconstituted;
- Maturities: 3Y, 5Y, 7Y, 10Y.
Default

Consider a CDO with a maturity of T years, J tranches, and a pool of d entities. Define a loss variable of i-th obligor until $t \in [t_0, T]$ as

$$l_i(t) = 1(\tau_i < t), \; i = 1, \ldots, d,$$

where τ_i is a time to default variable

$$F_i(t) = P(\tau_i \leq t)$$

$$= 1 - \exp \left\{ - \int_{t_0}^{t} \lambda_i(u) du \right\}$$

and λ_i is a deterministic intensity function.
Portfolio Loss

The proportion of defaulted entities in the portfolio at time t is given by

$$\tilde{L}(t) = \frac{1}{d} \sum_{i=1}^{d} l_i(t), \quad t \in [t_0, T].$$

The portfolio loss at time t is defined as

$$L(t) = \text{LGD} \tilde{L}(t),$$

where LGD is a common loss given default.
Tranche Loss

The tranche loss at time t is defined as

$$L_j(t) = \frac{1}{u_j - l_j} \{ L^u(t, u_j) - L^u(t, l_j) \},$$

where

$$L^u(t, x) = \min\{ L(t), x \} \text{ for } x \in [0, 1].$$

The outstanding notional of the tranche j is given by

$$\Gamma_j(t) = \frac{1}{u_j - l_j} \{ \Gamma^u(t, u_j) - \Gamma^u(t, l_j) \},$$

where

$$\Gamma^u(t, x) = x - L^u(t, x) \text{ for } x \in [0, 1].$$
Valuation of CDO

1. Premium leg

\[PL_j(t_0) = \sum_{t=t_1}^{T} \beta(t_0, t)s_j(t_0) \Delta t \mathbb{E}\{\Gamma_j(t)\} \]

2. Default leg

\[DL_j(t_0) = \sum_{t=t_1}^{T} \beta(t_0, t) \mathbb{E}\{L_j(t) - L_j(t - \Delta t)\} \]

This leads to:

\[s_j(t_0) = \frac{\sum_{t=t_1}^{T} \beta(t_0, t) \mathbb{E}\{L_j(t) - L_j(t - \Delta t)\}}{\sum_{t=t_1}^{T} \beta(t_0, t) \Delta t \mathbb{E}\{\Gamma_j(t)\}}. \]
Equity Tranche

The equity tranche is quoted in two parts:

1. an upfront fee α payed at t_0,
2. a running spread of 500 BPs.

The premium leg is calculated as

$$ PL_1(t_0) = \alpha(t_0) + \sum_{t=t_1}^{T} \beta(t_0, t) \cdot 500 \cdot \Delta t \, E\{\Gamma_1(t)\}. $$

The upfront payment given in percent is equal

$$ \alpha(t_0) = 100 \sum_{t=t_0}^{T} (\beta(t, t_0) [E\{L_1(t) - L_1(t-\Delta t)\} - 0.05\Delta t \, E\{\Gamma_1(t)\}]). $$
Copula

For a distribution function F with marginals F_{X_1}, \ldots, F_{X_d}. There exists a copula $C : [0, 1]^d \to [0, 1]$, such that

$$F(x_1, \ldots, x_d) = C\{F_{X_1}(x_1), \ldots, F_{X_d}(x_d)\}$$

for all $x_i \in \mathbb{R}$, $i = 1, \ldots, d$.
Copula for CDOs

The vector of default times \((\tau_1, \ldots, \tau_d)^\top\) has a (risk-neutral) joint cdf

\[
F(t_1, \ldots, t_d) = P(\tau_1 \leq t_1, \ldots, \tau_d \leq t_d) \quad \text{for all} \quad (t_1, \ldots, t_d)^\top \in \mathbb{R}_+^d,
\]

where \(\tau_i \sim F_i\). From the Sklar theorem, there exists a copula such that

\[
F(t_1, \ldots, t_d) = C\{F_1(t_1), \ldots, F_d(t_d)\}
\]

and determines the default dependency of the credits.
Monte Carlo Simulation Approach

Define a trigger variable as

\[U_i = \bar{p}_i(\tau_i) \sim U[0, 1], \quad i = 1, \ldots, d. \]

The \textit{i}th obligor survives until \(t < T \) if and only if

\[\tau_i \geq t \quad \text{or} \quad U_i \leq \bar{p}_i(t). \]

The joint and marginal distributions of the triggers satisfy:

\[C\{\bar{p}_1(t), \ldots, \bar{p}_d(t)\} = P\{U_1 \leq \bar{p}_1(t), \ldots, U_d \leq \bar{p}_d(t)\}, \]

\[P\{U_i \leq \bar{p}_i(t)\} = \bar{p}_i(t). \]
Monte Carlo Simulation Approach

The time to default variable

$$\tau_i = \inf \{ t \geq t_0 : \bar{p}_i(t) \leq U_i \}$$

is calculated as

$$\tau_i = \bar{p}_i^{-1}(U_i).$$

Assuming constant intensities compute

$$\tau_i = -(\log U_i)/\lambda_i.$$
Industry Sectors

iTraxx pool industry sectors: Consumer (30), Financial (25), TMT (20), Industrials (20), Energy (20), Auto (10).

A cluster analysis applied to the daily log-returns of the CDS spreads (20071022-20081128) returns six clusters: 38, 30, 17, 16, 14, 10.

The ratio between correctly assigned CDS to their industries and the total number of entities is 0.704.

Goal: Construct a joint distribution of the default times that imposes different intra- and inter-industry dependencies.
Hierarchical Archimedean Copulae

- A Hierarchical Archimedean Copula (HAC) is a generalisation of a multivariate Archimedean copula.
- HACs join bivariate or higher-dimensional Archimedean copulae by another Archimedean copula which allows for non-exchangeable dependency structures.
- HACs are useful when the composition of data is known and where each level of the hierarchy has a natural interpretation.
HAC Model

Partially nested hierarchical Archimedean copula

\[
C(u_1, \ldots, u_d; \theta) = C_1\{ C_2(u_1, \ldots, u_{m_1}; \theta_2), C_2(u_{m_1+1}, \ldots, u_{m_1+m_2}; \theta_2), \\
\quad \ldots, C_2(u_{m_1+\ldots+m_5+1}, \ldots, u_d; \theta_2); \theta_1\},
\]

where \(\theta = (\theta_1, \theta_2)^\top \) and \(m_k, k = 1, \ldots, 6 \), indicates a number of the companies in \(k \)th industry sector.

- \(C_2 \) models the dependency in the industry sector,
- \(C_1 \) models the dependency between the industry sectors.
Construct HACs composed of Gumbel copulae.

Figure 3: Partially nested 125-dimensional HAC.
Gaussian Model with Industry Sectors

\[
\Sigma = \begin{pmatrix}
1 & \ldots & \rho_2 \\
\vdots & \ddots & \vdots \\
\rho_2 & \ldots & 1 \\
\rho_1 & \ldots & \rho_1 \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \vdots \\
\rho_1 & \ldots & \rho_1 \\
\end{pmatrix}
\]
Loss Given Default

- Spreads are calculated on the fraction of the losses that cannot be recovered.

- Altman et al. (2005) and Hamilton et al. (2004) show that the LGD is stochastic and positively correlated with the default probabilities.

- Krekel (2008), Bennani & Maetz (2009) and other studies show that a stochastic LGD fattens the right tail of the portfolio loss distribution.
LGD Modelling

Consider one and two-factor models with random

1. Common LGD,

2. Sectorial LGDs.

Assume that LGD $\sim U[0, 1]$.

One-factor Model with a Random Bottom-Level LGD

\[C(u_1, \ldots, u_d, u_{d+1}; \theta_1) = C_1(u_1, \ldots, u_d, u_{d+1}; \theta_1), \]

where \(u_{d+1} \) is the common LGD variable.
One-factor Model with a Random Top-Level LGD

\[C(u_1, \ldots, u_d, u_{d+1}; \theta) = C_1\{u_{d+1}, C_2(u_1, \ldots, u_d; \theta_2); \theta_1\}, \]

where \(\theta = (\theta_1, \theta_2)^T \) and \(u_{d+1} \) is the common LGD variable.
Two-factor Model with Random Bottom-Level LGDs

\[C(u_1, \ldots, u_{d+6}; \theta) = C_1 \{ \begin{array}{c} C_2(u_1, \ldots, u_{m_1}, u_{d+1}; \theta_2), \\ C_2(u_{m_1+1}, \ldots, u_{m_1+m_2}, u_{d+2}; \theta_2), \ldots, \\ C_2(u_{m_1+\ldots+m_5+1}, \ldots, u_d, u_{d+6}; \theta_2) \end{array} \}, \]

where \(\theta = (\theta_1, \theta_2)^T \) and \(u_{d+1}, \ldots, u_{d+6} \) are sectorial LGD variables.
Two-factor Model with Random Middle-Level LGDs

\[
C(u_1, \ldots, u_{d+6}; \theta) = C_1 \left[\begin{array}{c}
C_2 \{ C_3(u_1, \ldots, u_m; \theta_3), u_d; \theta_2 \}, \\
C_2 \{ C_3(u_{m+1}, \ldots, u_{m+m_2}; \theta_3), u_{d+1}; \theta_2 \}, \\
\vdots \\
C_2 \{ C_3(u_{m+\ldots+m_5+1}, \ldots, u_d; \theta_3), u_{d+6}; \theta_2 \}\end{array} \right],
\]

where \(\theta = (\theta_1, \theta_2, \theta_3)^\top \) and \(u_{d+1}, \ldots, u_{d+6} \) are sectorial LGDs.
Two-factor Model with a Random Top-Level LGD

\[C(u_1, \ldots, u_d, u_{d+1}; \theta) = C_1[u_{d+1}, C_2\{C_3(u_1, \ldots, u_{m_1}; \theta_3), C_3(u_{m_1+1}, \ldots, u_{m_1+m_2}; \theta_3), \ldots, C_3(u_{m_1+\ldots+m_5+1}, \ldots, u_d; \theta_3); \theta_2\}; \theta_1] \]

where \(\theta = (\theta_1, \theta_2, \theta_3)^T \) and \(u_{d+1} \) is the common LGD variable.
Data

Figure 4: Spreads of iTraxx tranches, Series 8, maturity 5 years, data from 20070920-20081022. Left panel: mezzanine junior (dashed black), mezzanine (dashed red), senior (solid black), super senior (solid red). Right panel: upfront fee of the equity tranche.

CDO and HAC
Calibration

Look for the parameters θ of Gaussian and HAC copulae that provide the best fit to market data.

Minimize relative deviations from the market spreads s_j^m

$$D(t_0) \overset{\text{def}}{=} \min_{\theta} \sum_{j=1}^{J} \frac{|s_j^c(t_0; \theta) - s_j^m(t_0; \theta)|}{s_j^m(t_0; \theta)},$$

(1)

where s_j^c is a calculated spread of the tranche $j = 1, \ldots, 5$.

s_j^c computed from generated $N = 10^6$ times Monte Carlo vectors. Constant LGD = 0.6.
Calibration of Gaussian Models with the Constant LGD

Figure 5: Measure D as a function of the correlation ρ for the number of simulations N: 10^3 (thin black), 10^4 (thick red), 10^5 (thick black) (left) and as a function of ρ_1 and ρ_2 for $N = 10^4$ (right). Data from 20071022.
Intensity Parameters

Assume constant but heterogeneous intensities λ_i, $i = 1, \ldots, 125$. Calibrate λ_i from the historical spreads of 125 CDS.

Figure 6: Default times of Kingfisher and Deutsche Bank based on the samples generated from Gumbel copula with the constant LGD and the calibrated parameters. Data from 20071022.
Measure D for the Gumbel Copula Models

<table>
<thead>
<tr>
<th>Date</th>
<th>constant LGD</th>
<th>random LGD</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>bottom</td>
<td>top</td>
<td>bottom</td>
<td>middle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>level</td>
<td>level</td>
<td>level</td>
<td>level</td>
</tr>
<tr>
<td>1-fac.</td>
<td>2-factor</td>
<td>1-factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20071022</td>
<td>0.2987</td>
<td>0.2168</td>
<td>0.1098</td>
<td>0.0444</td>
<td>0.1606</td>
<td>0.1448</td>
</tr>
<tr>
<td>20071025</td>
<td>0.3605</td>
<td>0.3481</td>
<td>0.2795</td>
<td>0.0878</td>
<td>0.2554</td>
<td>0.2644</td>
</tr>
<tr>
<td>20071116</td>
<td>1.3065</td>
<td>1.2876</td>
<td>1.3147</td>
<td>0.5704</td>
<td>1.0313</td>
<td>0.1581</td>
</tr>
<tr>
<td>20071205</td>
<td>1.1457</td>
<td>1.1153</td>
<td>1.1897</td>
<td>0.5060</td>
<td>0.8672</td>
<td>0.2286</td>
</tr>
<tr>
<td>20080110</td>
<td>1.0741</td>
<td>1.0581</td>
<td>1.0719</td>
<td>0.1805</td>
<td>0.8289</td>
<td>0.2665</td>
</tr>
<tr>
<td>20080227*</td>
<td>1.8529</td>
<td>1.8037</td>
<td>2.1974</td>
<td>0.5997</td>
<td>1.8177</td>
<td>0.8902</td>
</tr>
<tr>
<td>20080313*</td>
<td>1.8892</td>
<td>1.8858</td>
<td>2.7821</td>
<td>0.7743</td>
<td>2.4859</td>
<td>1.9754</td>
</tr>
<tr>
<td>20080404</td>
<td>1.8309</td>
<td>1.8236</td>
<td>1.7136</td>
<td>0.6294</td>
<td>1.4580</td>
<td>0.2871</td>
</tr>
<tr>
<td>20080423</td>
<td>2.0350</td>
<td>2.0279</td>
<td>1.5179</td>
<td>0.8769</td>
<td>1.2842</td>
<td>0.3564</td>
</tr>
<tr>
<td>20080529</td>
<td>1.6679</td>
<td>1.6361</td>
<td>1.4661</td>
<td>0.7067</td>
<td>1.1636</td>
<td>0.3799</td>
</tr>
<tr>
<td>20080630</td>
<td>1.8005</td>
<td>1.7821</td>
<td>2.2130</td>
<td>0.5664</td>
<td>1.8131</td>
<td>0.3279</td>
</tr>
</tbody>
</table>

CDO and HAC
Measure D for the Gaussian Copula Models

<table>
<thead>
<tr>
<th>Date</th>
<th>constant LGD</th>
<th>random LGD</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-fac.</td>
<td>2-factor</td>
<td>bottom</td>
<td>top</td>
<td>bottom</td>
<td>top</td>
</tr>
<tr>
<td>20071022</td>
<td>2.2971</td>
<td>2.2767</td>
<td>2.2717</td>
<td>1.5921</td>
<td>2.2543</td>
<td>2.0973</td>
</tr>
<tr>
<td>20071025</td>
<td>2.7750</td>
<td>2.7136</td>
<td>2.4977</td>
<td>1.8167</td>
<td>2.5436</td>
<td>2.4087</td>
</tr>
<tr>
<td>20071116</td>
<td>3.9309</td>
<td>3.9106</td>
<td>3.4996</td>
<td>2.6108</td>
<td>3.5777</td>
<td>3.4831</td>
</tr>
<tr>
<td>20071205</td>
<td>4.1684</td>
<td>3.9603</td>
<td>3.5419</td>
<td>2.5980</td>
<td>3.5349</td>
<td>3.6268</td>
</tr>
<tr>
<td>20080227*</td>
<td>2.0559</td>
<td>3.0295</td>
<td>2.4398</td>
<td>2.3170</td>
<td>4.4093</td>
<td>4.1220</td>
</tr>
<tr>
<td>20080313*</td>
<td>2.3416</td>
<td>2.3483</td>
<td>2.9543</td>
<td>1.8788</td>
<td>5.0172</td>
<td>4.7947</td>
</tr>
<tr>
<td>20080404</td>
<td>4.1553</td>
<td>4.1141</td>
<td>3.5936</td>
<td>2.2642</td>
<td>3.6229</td>
<td>3.4107</td>
</tr>
<tr>
<td>20080423</td>
<td>4.4135</td>
<td>4.3862</td>
<td>3.3379</td>
<td>1.9269</td>
<td>3.3241</td>
<td>3.1535</td>
</tr>
</tbody>
</table>

CDO and HAC
Calibrated Parameters for the Gumbel Models

<table>
<thead>
<tr>
<th>Date</th>
<th>constant LGD</th>
<th>random LGD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-fac.</td>
<td>2-factor</td>
</tr>
<tr>
<td></td>
<td>θ₁</td>
<td>θ₁</td>
</tr>
<tr>
<td>20071022</td>
<td>1.1448</td>
<td>1.1340</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>20071025</td>
<td>1.1160</td>
<td>1.1108</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>20071116</td>
<td>1.1523</td>
<td>1.1637</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>20071205</td>
<td>1.1337</td>
<td>1.1339</td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>20080110</td>
<td>1.1877</td>
<td>1.1838</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>20080227</td>
<td>1.6654</td>
<td>1.6429</td>
</tr>
<tr>
<td></td>
<td>(0.116)</td>
<td>(0.049)</td>
</tr>
<tr>
<td>20080313</td>
<td>1.5704</td>
<td>1.5647</td>
</tr>
<tr>
<td></td>
<td>(0.086)</td>
<td>(0.167)</td>
</tr>
<tr>
<td>20080404</td>
<td>1.1854</td>
<td>1.1842</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>20080423</td>
<td>1.1749</td>
<td>1.1735</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>20080529</td>
<td>1.1462</td>
<td>1.1478</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>20080630</td>
<td>1.1843</td>
<td>1.1849</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.024)</td>
</tr>
</tbody>
</table>

Table 1: Parameters and corresponding empirical standard deviations (in brackets).
Calibrated Parameters for the Gaussian Models

<table>
<thead>
<tr>
<th>Date</th>
<th>constant LGD</th>
<th>random LGD</th>
<th>1-fac.</th>
<th>2-factor</th>
<th>1-fac.</th>
<th>2-factor</th>
<th>1-fac.</th>
<th>2-factor</th>
<th>1-fac.</th>
<th>2-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-fact.</td>
<td>2-factor</td>
<td>bottom</td>
<td>top</td>
<td>bottom</td>
<td>top</td>
<td>bottom</td>
<td>top</td>
</tr>
<tr>
<td>20071022</td>
<td>0.2355</td>
<td>0.2348</td>
<td>0.2396</td>
<td>0.0899</td>
<td>0.0028</td>
<td>0.2279</td>
<td>0.1324</td>
<td>0.1325</td>
<td>0.1164</td>
<td>0.1173</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.014)</td>
<td>(0.023)</td>
<td>(0.018)</td>
<td>(0.005)</td>
<td>(0.011)</td>
<td>(0.007)</td>
<td>(0.020)</td>
<td>(0.004)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>20071025</td>
<td>0.1459</td>
<td>0.2048</td>
<td>0.2275</td>
<td>0.0839</td>
<td>0.0088</td>
<td>0.2045</td>
<td>0.1303</td>
<td>0.1312</td>
<td>0.1132</td>
<td>0.1142</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.010)</td>
<td>(0.013)</td>
<td>(0.011)</td>
<td>(0.005)</td>
<td>(0.011)</td>
<td>(0.007)</td>
<td>(0.018)</td>
<td>(0.004)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>20071116</td>
<td>0.1930</td>
<td>0.1794</td>
<td>0.2514</td>
<td>0.0465</td>
<td>0.0088</td>
<td>0.1808</td>
<td>0.1220</td>
<td>0.1231</td>
<td>0.1043</td>
<td>0.1061</td>
</tr>
<tr>
<td></td>
<td>(0.047)</td>
<td>(0.004)</td>
<td>(0.008)</td>
<td>(0.022)</td>
<td>(0.008)</td>
<td>(0.012)</td>
<td>(0.008)</td>
<td>(0.025)</td>
<td>(0.004)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>20071205</td>
<td>0.1459</td>
<td>0.1635</td>
<td>0.2246</td>
<td>0.0952</td>
<td>0.0023</td>
<td>0.1646</td>
<td>0.1157</td>
<td>0.1211</td>
<td>0.1122</td>
<td>0.1131</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.004)</td>
<td>(0.009)</td>
<td>(0.020)</td>
<td>(0.008)</td>
<td>(0.011)</td>
<td>(0.007)</td>
<td>(0.025)</td>
<td>(0.004)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>20080110</td>
<td>0.2997</td>
<td>0.2785</td>
<td>0.4015</td>
<td>0.0916</td>
<td>0.0010</td>
<td>0.3149</td>
<td>0.1251</td>
<td>0.1252</td>
<td>0.1168</td>
<td>0.1173</td>
</tr>
<tr>
<td></td>
<td>(0.088)</td>
<td>(0.008)</td>
<td>(0.013)</td>
<td>(0.011)</td>
<td>(0.013)</td>
<td>(0.017)</td>
<td>(0.008)</td>
<td>(0.027)</td>
<td>(0.006)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>20080227</td>
<td>0.9874</td>
<td>0.8433</td>
<td>0.9985</td>
<td>0.9917</td>
<td>0.0027</td>
<td>0.5484</td>
<td>0.1318</td>
<td>0.1318</td>
<td>0.1184</td>
<td>0.1185</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.005)</td>
<td>(0.010)</td>
<td>(0.032)</td>
<td>(0.014)</td>
<td>(0.025)</td>
<td>(0.013)</td>
<td>(0.028)</td>
<td>(0.009)</td>
<td>(0.030)</td>
</tr>
<tr>
<td>20080313</td>
<td>0.9988</td>
<td>0.9964</td>
<td>0.9997</td>
<td>0.9950</td>
<td>0.0139</td>
<td>0.8765</td>
<td>0.1298</td>
<td>0.1299</td>
<td>0.1116</td>
<td>0.1133</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.005)</td>
<td>(0.010)</td>
<td>(0.032)</td>
<td>(0.014)</td>
<td>(0.025)</td>
<td>(0.013)</td>
<td>(0.028)</td>
<td>(0.009)</td>
<td>(0.030)</td>
</tr>
<tr>
<td>20080404</td>
<td>0.2382</td>
<td>0.2299</td>
<td>0.2501</td>
<td>0.0607</td>
<td>0.0064</td>
<td>0.2177</td>
<td>0.1299</td>
<td>0.1300</td>
<td>0.1259</td>
<td>0.1269</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.005)</td>
<td>(0.009)</td>
<td>(0.024)</td>
<td>(0.010)</td>
<td>(0.013)</td>
<td>(0.011)</td>
<td>(0.027)</td>
<td>(0.007)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>20080423</td>
<td>0.2361</td>
<td>0.2300</td>
<td>0.2416</td>
<td>0.0943</td>
<td>0.0035</td>
<td>0.2514</td>
<td>0.1298</td>
<td>0.1299</td>
<td>0.1193</td>
<td>0.1209</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.016)</td>
<td>(0.018)</td>
<td>(0.022)</td>
<td>(0.007)</td>
<td>(0.010)</td>
<td>(0.010)</td>
<td>(0.028)</td>
<td>(0.007)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>20080529</td>
<td>0.2363</td>
<td>0.2207</td>
<td>0.3168</td>
<td>0.0698</td>
<td>0.0013</td>
<td>0.2254</td>
<td>0.1298</td>
<td>0.1299</td>
<td>0.1177</td>
<td>0.1198</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.007)</td>
<td>(0.012)</td>
<td>(0.020)</td>
<td>(0.007)</td>
<td>(0.009)</td>
<td>(0.010)</td>
<td>(0.027)</td>
<td>(0.007)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>20080630</td>
<td>0.2326</td>
<td>0.2326</td>
<td>0.2453</td>
<td>0.0978</td>
<td>0.0051</td>
<td>0.4074</td>
<td>0.1330</td>
<td>0.1333</td>
<td>0.0019</td>
<td>0.0035</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.005)</td>
<td>(0.009)</td>
<td>(0.021)</td>
<td>(0.010)</td>
<td>(0.013)</td>
<td>(0.010)</td>
<td>(0.027)</td>
<td>(0.006)</td>
<td>(0.023)</td>
</tr>
</tbody>
</table>

Table 2: Parameters and corresponding empirical standard deviations (in brackets).

CDO and HAC
Implied Parameters Over Time

Figure 7: Gumbel (solid) and Gaussian (dashed) copula models. One-factor models (upper left), two-factor models with dependence between (upper right) and inside (lower) the sectors. **Constant LGD**, bottom-level random LGDs, middle-level random LGDs, top-level random LGD.
Boxplots of Parameters

Figure 8: One-factor Gumbel (top) and Gaussian (bottom) copula model with the constant LGD with $N = 10^5$. The final values obtained with $N = 10^6$ simulations are marked with stars.
Implied Parameters Curves

Figure 9: Gaussian (top) & Gumbel (bottom). Left: one and two-factor models with the constant LGD. Middle: one-factor models with the random top-level LGD. Right: two-factor models with the random middle-level LGDs. One-parameter models ρ^K_1, two and three-parameter models $\rho^K_1, \rho^K_2, \rho^K_3$. CDO and HAC
Conclusions

- Introduced CDO pricing models that use HACs to describe the dependency structure between default times and LGDs.
- The models specify distinct dependencies within the industry sector and between them and incorporate either a common random LGD or sectorial random LGDs.
- Default intensities are calibrated to historical spreads of 125 CDS.
- The one-factor Gumbel copula model with the random top-level LGD and the two-factor Gumbel copula model with the random middle-level LGDs reveal the best fit to the market spreads.
- Gumbel copula models flatten the implied parameter curves.
- Calibration of HAC models requires enormous computing power.
References

C. Bluhm and L. Overbeck
Structured Credit Portfolio Analysis, Baskets and CDOs
Chapman & Hall/Crc Financial Mathematics Series, 2006

D. Duffie and N. Gârleanu
Risk and valuation of Collateralized Debt Obligations
Financial Analysts Journal, 2005

J. Gregory and J. Laurent
In the Core of Correlation
RISK, 2004

M. Hofert and M. Scherer
CDO pricing with nested Archimedean copulas
Quantitative Finance, 2011

J. Hull and A. White
Valuing Credit Derivatives Using an Implied Copula Approach
Journal of Derivatives, 2006

D. X. Li
On Default Correlation: A Copula Function Approach
The Journal of Fixed Income, 2000
Valuation of Collateralized Debt Obligations with Hierarchical Archimedean Copulae

Barbara Choroś-Tomczyk
Wolfgang Karl Härdle
Ostap Okhrin

Ladislaus von Bortkiewicz
Chair of Statistics
C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin