CDO Surfaces Dynamics

Barbara Choroś-Tomczyk
Wolfgang Karl Härdle
Ostap Okhrin

Ladislaus von Bortkiewicz
Chair of Statistics
C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
Motivation

iTraxx over Time

Figure 1: Spreads of iTraxx tranches, Series 5, maturity 5 (left) and 10 (right) years, data from 20060407-20081103. Tranches: 1, 2, 3, 4, 5.
iTraxx Spread Surface

Figure 2: Spreads of tranches of all series observed on 20080909 (left) and 20090119 (right).
Research Goals

- Modelling the dynamics of CDO surfaces
 - spread surfaces
 - base correlation surfaces
- Applications in trading
Dynamic Semiparametric Factor Model

Applications:

Outline

1. Motivation ✓
2. CDOs
3. DSFM
4. Empirical Study
5. Applications
6. Conclusions
Risk Transfer

22% → 12% → 9% → 6% → 3%
iTraxx Europe

- A static portfolio of 125 equally weighted CDS on European entities;
- Sectors: Consumer (30), Financial (25), TMT (20), Industrials (20), Energy (20), Auto (10);
- New series of iTraxx Europe issued every 6 months (March and September) and the underlying reference entities are reconstituted;
- Maturities: 3Y, 5Y, 7Y, 10Y.
Large Pool Gaussian Copula Model

Default times are modelled from the Gaussian vector \((X_1, \ldots, X_d)^\top\):

\[
X_i = \sqrt{\rho} Y + \sqrt{1 - \rho} Z_i,
\]

where \(Y\) (systematic risk factor), \(\{Z_i\}_{i=1}^d\) (idiosyncratic risk factors) are i.i.d. \(N(0, 1)\). Assume that:

- obligors have the same default probability \(p\) and LGD,
- one dependence parameter \(\rho\),
- \(d\) is large.

The cdf of the portfolio loss equals

\[
P(\tilde{L} \leq x) = \Phi \left\{ \frac{\sqrt{1 - \rho} \Phi^{-1}(x) - \Phi^{-1}(p)}{\sqrt{\rho}} \right\}.
\]
Correlation’s Types

Compound correlation $\rho(l_j, u_j), j = 1, \ldots, J$.

Figure 3: Implied correlation smile in the Gaussian one factor model, 20071022.
Correlation’s Types

Base correlation (BC) $\rho(0, u_j)$, $j = 1, \ldots, J$.

Represent the expected loss $E\{L_{(l_j,u_j)}\}$ as a difference:

$$E\{L_{(l_j,u_j)}\} = E_{\rho(0,u_j)}\{L_{(0,u_j)}\} - E_{\rho(0,l_j)}\{L_{(0,l_j)}\}, \; j = 2, \ldots, J.$$

of the expected losses of two fictive tranches $(0, u_j)$ and $(0, l_j)$.

Bootstrapping process: $E\{L_{(0,3\%)}\}$ is traded on the market,

$$E\{L_{(3\%,6\%)}\} = E_{\rho(0,6\%)}\{L_{(0,6\%)}\} - E_{\rho(0,3\%)}\{L_{(0,3\%)}\},$$

$$E\{L_{(6\%,9\%)}\} = E_{\rho(0,9\%)}\{L_{(0,9\%)}\} - E_{\rho(0,6\%)}\{L_{(0,6\%)}\}, \ldots$$
Figure 4: BC of iTraxx tranches, Series 5, maturity 5 (left) and 10 (right) years, data from 20060510-20081023. Tranches: 1, 2, 3, 4, 5.
Base Correlation Surfaces

Figure 5: Implied base correlations on day 20080909 (left) and 20090119 (right).
Dynamic Semiparametric Factor Model

\[
Y_{t,k} = m_0(X_{t,k}) + \sum_{l=1}^{L} Z_{t,l} m_l(X_{t,k}) + \varepsilon_{t,k} = Z_t^\top A\psi(X_{t,k}) + \varepsilon_{t,k}
\]

- \(Y_{t,k} \): log-spreads and Z-transformed BC on day \(t \), \(t = 1, \ldots, T \)
- \(k \): intra-day numbering of BCs on day \(t \), \(k = 1, \ldots, K_t \)
- \(X_{t,k} \): two-dimensional vector of the tranche seniority and the time-to-maturity
- \(m_l \): factor functions, time invariant, nonparametric estimation
- \(Z_{t,l} \): time series, \(l = 0, \ldots, L \), dynamic behavior
- \(\psi(X_{t,k}) \): tensor B-spline basis
- \(A \): coefficient matrix
Estimation

Using an iterative algorithm:

\[
(\hat{Z}_t, \hat{A}) = \arg \min_{Z_t, A} \sum_{t=1}^{T} \sum_{k=1}^{K_t} \left\{ Y_{t,k} - Z_t^T A \psi(X_{t,k}) \right\}^2
\]

Selection of \(L \), the numbers of spline knots \(R_1, R_2 \) and the orders of splines \(k_1, k_2 \) by maximising the explained variance criterion:

\[
EV(L, R_1, r_1, R_2, r_2) = 1 - \frac{\sum_{t=1}^{T} \sum_{k=1}^{K_t} \left\{ Y_{t,k} - \sum_{l=1}^{L} Z_{t,l} m_l(X_{t,k}) \right\}^2}{\sum_{t=1}^{T} \sum_{k=1}^{K_t} \left\{ Y_{t,j} - \tilde{m}_0(X_{t,k}) \right\}^2},
\]

where \(\tilde{m}_0 \) is an empirical mean surface.
DSFM without the Mean Factor

Reduce the number of factors estimated in the iterative algorithm by first subtracting the empirical mean \tilde{m}_0 and then fitting the DSFM:

$$Y_{t,k} = \tilde{m}_0(X_{t,k}) + \sum_{l=1}^{L} Z_{t,l} m_l(X_{t,k}) + \varepsilon_{t,k} = \tilde{m}_0(X_{t,k}) + Z_t^T A\psi(X_{t,k}) + \varepsilon_{t,k},$$

where m_l are new factor functions, $l = 1, \ldots, L$.

CDO Surfaces Dynamics
Data

- Series 2-10
- Maturities 5, 7, 10Y
- 1004 days between 20050330-20090202
- 49,502 data points

<table>
<thead>
<tr>
<th>Year</th>
<th>3Y</th>
<th>5Y</th>
<th>7Y</th>
<th>10Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>0</td>
<td>1478</td>
<td>715</td>
<td>1532</td>
</tr>
<tr>
<td>2006</td>
<td>181</td>
<td>3998</td>
<td>3739</td>
<td>4005</td>
</tr>
<tr>
<td>2007</td>
<td>75</td>
<td>5155</td>
<td>5170</td>
<td>5172</td>
</tr>
<tr>
<td>2008</td>
<td>232</td>
<td>5904</td>
<td>5916</td>
<td>5932</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>260</td>
<td>263</td>
<td>263</td>
</tr>
<tr>
<td>All</td>
<td>488</td>
<td>16740</td>
<td>15803</td>
<td>16840</td>
</tr>
</tbody>
</table>

Table 1: Number of observed values of iTraxx tranches in the period 20050330-20090202.
DSFM for Z-transformed-BC

Figure 6: Proportion of the explained variance as a function of R_2 (up left) with $r_2 = 2$, as a function of r_2 (up right) with $R_2 = 10$, as a function of L (down) for $L = 1, L = 2, L = 3$, $r_1 = 2$ and $R_1 = 5$.
DSFM w/o Mean F. for Z-transformed-BC

Figure 7: Estimated factor functions and loadings ($\hat{Z}_{t,1}$, $\hat{Z}_{t,2}$).
DSFM Estimation Results

For DSFM for both data types

- $\hat{Z}_{t,1}$ is a slope-curvature factor
- $\hat{Z}_{t,2}$ is a shift factor

<table>
<thead>
<tr>
<th>Model</th>
<th>Log-Spr</th>
<th>Z-BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSFM</td>
<td>0.016</td>
<td>0.004</td>
</tr>
<tr>
<td>DSFM w/o mean f.</td>
<td>0.045</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Table 2: Mean squared error of the in-sample fit.
DSFM without the mean factor Fit

Figure 8: In-sample fit of the models to data on 20080909 and 20090119.
Curve Trades

So, how can I make money with this?

Combine tranches of different time to maturity, see Felsenheimer et al. (2004) and Kakodkar et al. (2006):

- Flattener – sell protection on a long-term tranche, buy protection on a short-term tranche
 Example: sell protection on 10Y 3-6% and buy on 5Y 6-9%
 Outlook: bullish long-term, bearish short-term

- Steepener – opposite trade
Curve Trades

Figure 9: Mechanism of a flattener and a steepener strategy. **Current spread curve**, expectation of the future spread curve, indication of the direction of change.

CDO Surfaces Dynamics
JP Morgan Trading Loss, May 2012

J.P. Morgan’s flattener – bought 5Y CDX IG 9 index, sold 10Y CDX IG 9 index in a 3:1 ratio. The final loss reached $6.2 billion.
Flattener

Sell protection at $s_1(t_0)$ for the period $[t_0, T_1]$ and buy protection at $s_2(t_0)$ for $[t_0, T_2]$, $T_1 > T_2$. At t_0 for $\ell = 1, 2$:

$$\text{MTM}_\ell(t_0) = \sum_{t=t_1}^{T_\ell} \beta(t_0, t) \left[s_\ell(t_0) \Delta t \mathbb{E}\{F_\ell(t)\} - \mathbb{E}\{L_\ell(t) - L_\ell(t - \Delta t)\} \right] = 0.$$

At $\tilde{t} > t_0$, the market quotes $s_\ell(\tilde{t})$ and

$$\text{MTM}_\ell(\tilde{t}) = \left\{ s_\ell(t_0) - s_\ell(\tilde{t}) \right\} \sum_{t=\tilde{t}_1}^{T_\ell} \beta(\tilde{t}, t) \Delta t \mathbb{E}\{F_\ell(t)\}.$$
Curve Trade

- A positive MTM means a positive value to the protection seller.
- If the protection seller closes the position at time \tilde{t}, then receives from the protection buyer $\text{MTM}_\ell(\tilde{t})$.
- Flattener-trader aims to maximize the total MTM value
 \[
 \text{PL}(\tilde{t}) = \text{MTM}_1(\tilde{t}) - \text{MTM}_2(\tilde{t}).
 \]
Risk in Curve Trades

- If one buys 5Y 6-9% and sells 10Y 6-9%, then the trade is hedged for default until the maturity of the 5Y tranche. Defaults that emerge from 10Y 6-9% are covered by 5Y 6-9% till it expires.
- Series differ in the composition of the collateral.
- If one buys 5Y 6-9% and sells 10Y 3-6%, then these tranches provide protection of different portion of portfolio risk. If there is any default in 10Y 3-6%, then we must deliver a payment obligation and incur a loss.
Empirical Study

Idea
- Use DSFM to forecast spread and BC surfaces
- Calculate forecasted MTM surfaces
- Recover those tranches that maximise P&L

Remarks
- Because of many missing data and short data histories, the standard econometric methods cannot be used for the forecasting.
- Consider trades that generate no or a positive carry – the spread of the long tranche doesn’t exceed the spread of the short tranche.
- Do not account for default payments (no data of historical defaults in iTraxx), do not account for the positive carry.
Forecasting with DSFM in Rolling Windows

Let Y_t be log-spreads or Z-transformed-BC.

- Consider a rolling window of $w = 250$.
- Estimate the DSFMs using $\{Y_\nu\}_{\nu=t-w+1}^t$ for $t = w, \ldots, T - h$.
- As a result, we get $T - w + 1$ times $\hat{m} = (\hat{m}_0, \ldots, \hat{m}_L)^\top$ and $\hat{Z}_t = (\hat{Z}_{t,0}, \ldots, \hat{Z}_{t,L})^\top$ of length w.
- Compute h-day forecast of the factor loadings using VAR.
- Due to the fixed issuing scheme, $X_{t+h,k}$ is not forecasted.
- Calculate the forecast \hat{Y}_{t+h} from the forecast \hat{Z}_{t+h}.
- Transform \hat{Y}_{t+h} suitably to get $\hat{s}(t + h)$ or $\hat{\rho}(t + h)$.
Forecasting MTM Surfaces

For predicted \(\{ \hat{s}_k(t), \hat{\rho}_k(t) \} \), \(t = w + h, \ldots, T \), \(k = 1, \ldots, K_t \), compute \(\hat{\text{MTM}}_k(t) \), where the initial spread \(s_k(t_0) \) is observed on \(t_0 = t - h \).

Figure 10: MTM surfaces on 20080909 (left) and 20090119 (right) calculated using one-day spread and BC predictions obtained with the DSFM.
Transaction Costs

Calculate the ask (bid) spread by increasing (reducing) the observed spread by the following percentage:

<table>
<thead>
<tr>
<th>Maturity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5Y</td>
<td>1.88</td>
<td>1.78</td>
<td>2.52</td>
<td>3.77</td>
<td>6.28</td>
</tr>
<tr>
<td>7Y</td>
<td>1.49</td>
<td>1.65</td>
<td>2.31</td>
<td>2.97</td>
<td>4.87</td>
</tr>
<tr>
<td>10Y</td>
<td>1.41</td>
<td>1.66</td>
<td>1.83</td>
<td>2.52</td>
<td>4.09</td>
</tr>
</tbody>
</table>

Table 3: Average bid-ask spread excess over the mid spread as a percentage of the mid spread for Series 8 during the period 20070920-20090202.
Trading Strategies

Construct a curve trade

1. Fit and forecast the DSFM models to spreads and BC.
2. Calculate h-day forecasts of the MTM surfaces.
3. Recover which two tranches optimize a given strategy.

Strategies – restrict the choice to a flattener (or a steepener) with

1. a fixed tranche and fixed maturities,
2. a fixed tranche and all maturities,
3. all tranches and fixed maturities,
4. all tranches and all maturities (no restrictions),

or allow to combine flatteners and steepeners.
Backtesting

- Consider the time horizons $h = 1, 5, 20$ days.
- For the tranches that optimize a given strategy, check the corresponding historical market spreads, calculate the resulting MTM values, and the realised P&L.
Mean of Daily Gains in Percent

<table>
<thead>
<tr>
<th>Strategy</th>
<th>1 day</th>
<th>1 week</th>
<th>1 month</th>
<th>1 day</th>
<th>1 week</th>
<th>1 month</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LZ</td>
<td>Z</td>
<td>LZ</td>
<td>Z</td>
<td>LZ</td>
<td>Z</td>
</tr>
<tr>
<td>DSFM</td>
<td>0.29</td>
<td>0.35</td>
<td>0.10</td>
<td>0.13</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>DSFM without the mean factor</td>
<td>0.30</td>
<td>0.30</td>
<td>0.11</td>
<td>0.13</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>FS-AII-T-AIIIM</td>
<td>0.29</td>
<td>0.33</td>
<td>0.13</td>
<td>0.14</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.33</td>
<td>0.28</td>
<td>0.12</td>
<td>0.13</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>FS-T2-AIIIM</td>
<td>0.19</td>
<td>0.22</td>
<td>0.07</td>
<td>0.08</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>0.23</td>
<td>0.07</td>
<td>0.07</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>FS-T3-AIIIM</td>
<td>0.14</td>
<td>0.17</td>
<td>0.04</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>0.18</td>
<td>0.04</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>FS-T5-AIIIM</td>
<td>0.09</td>
<td>0.11</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>0.11</td>
<td>0.03</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>FS-T2-AIIIM</td>
<td>0.30</td>
<td>0.34</td>
<td>0.12</td>
<td>0.12</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.28</td>
<td>0.32</td>
<td>0.12</td>
<td>0.11</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>F-T2-AIIIM</td>
<td>0.16</td>
<td>0.20</td>
<td>0.06</td>
<td>0.07</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.16</td>
<td>0.20</td>
<td>0.06</td>
<td>0.07</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>F-T3-AIIIM</td>
<td>0.10</td>
<td>0.15</td>
<td>0.03</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>0.15</td>
<td>0.03</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>F-T5-AIIIM</td>
<td>0.09</td>
<td>0.10</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>0.10</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>S-T2-AIIIM</td>
<td>0.39</td>
<td>0.43</td>
<td>0.15</td>
<td>0.17</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>0.45</td>
<td>0.46</td>
<td>0.13</td>
<td>0.16</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>S-T3-AIIIM</td>
<td>0.27</td>
<td>0.31</td>
<td>0.09</td>
<td>0.10</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>0.35</td>
<td>0.09</td>
<td>0.09</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>S-T4-AIIIM</td>
<td>0.20</td>
<td>0.25</td>
<td>0.06</td>
<td>0.07</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>0.24</td>
<td>0.05</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>S-T5-AIIIM</td>
<td>0.12</td>
<td>0.15</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>0.16</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>F-AII-T-105</td>
<td>0.20</td>
<td>0.21</td>
<td>0.07</td>
<td>0.09</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.19</td>
<td>0.21</td>
<td>0.06</td>
<td>0.08</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>F-AII-T-107</td>
<td>0.22</td>
<td>0.26</td>
<td>0.07</td>
<td>0.08</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0.25</td>
<td>0.08</td>
<td>0.08</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>F-AII-T-75</td>
<td>0.15</td>
<td>0.15</td>
<td>0.04</td>
<td>0.06</td>
<td>0.01</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>0.14</td>
<td>0.15</td>
<td>0.04</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>S-AII-T-510</td>
<td>0.16</td>
<td>0.17</td>
<td>0.05</td>
<td>0.08</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.16</td>
<td>0.18</td>
<td>0.05</td>
<td>0.08</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>S-AII-T-710</td>
<td>0.17</td>
<td>0.23</td>
<td>0.05</td>
<td>0.10</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>0.25</td>
<td>0.07</td>
<td>0.09</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>S-AII-T-57</td>
<td>0.11</td>
<td>0.13</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>0.13</td>
<td>0.03</td>
<td>0.03</td>
<td>0.00</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

Table 4: Calculations based on predictions of log-spreads and Z-transformed BCs marked as LZ; based only on Z-transformed BCs marked as Z.
Investor’s Strategy

Follow a certain strategy over a year and constantly rebalance the portfolio. At t_0 enter an optimal (according to the DSFM) curve trade for h-day horizon. At $t_0 + h$ chose:

1. keep the current position for the next h-days,
2. close the current position and enter a new one.

Assume a margin of 10% of your notional. Every time the position is closed, add to the margin the realized P&L. If margin ≤ 0, quit the trade.
Investor’s Strategy

Figure 11: Daily cumulated P&L over one year 20070614–20080529. Rebalancing after: 1 day (upper left), 1 week (upper right), 1 month (lower). Calculations based on the DSFM predictions of log-spreads and Z-transformed BCs.
Conclusions

- Investigated evolution over time of tranche spread surfaces and base correlation surfaces using the DSFM.
- Empirical study is conducted using an extensive data set of 49,502 observations of iTraxx Europe tranches in 2005-2009.
- Proposed a modification to the classic DSFM.
- Both DSFMs successfully reproduce the dynamics in data.
- Used DSFM in constructing the curve trades.
- Analysed the performance of 43 strategies that combine different positions, tranches, and maturities.
- Backtesting showed high daily gains of the resulting curve trades.
References

C. Bluhm and L. Overbeck
Structured Credit Portfolio Analysis, Baskets and CDOs
Chapman & Hall/Crc Financial Mathematics Series, 2006

J. Felsenheimer, P. Gisdakis, and M. Zaiser
DJ iTraxx: Credit at its best!
Credit derivatives special HVB Corporates & Markets, 2004

M. R. Fengler, W. K. Härdle, and E. Mammen
A semiparametric factor model for implied volatility surface dynamics
Journal of Financial Econometrics, 2007

C. Gourieroux and J. Jasiak
Dynamic factor models
Econometric Reviews, 2001

A. Kakodkar, S. Galiani, J. G. Jónsson, and A. Gallo
Credit derivatives handbook, A guide to the exotics credit derivatives market
Technical report Merrill Lynch, 2006

B. Park, E. Mammen, W. K. Härdle, and S. Borak
Dynamic Semiparametric Factor Models
Journal of the American Statistical Association, 2009
CDO Surfaces Dynamics

Barbara Choroś-Tomczyk
Wolfgang Karl Härdle
Ostap Okhrin

Ladislaus von Bortkiewicz
Chair of Statistics
C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
Default

Consider a CDO with a maturity of T years, J tranches, and a pool of d entities. Define a loss variable of i-th obligor until $t \in [t_0, T]$ as

$$ l_i(t) = 1(\tau_i < t), \ i = 1, \ldots, d, $$

where τ_i is a time to default variable

$$ F_i(t) = P(\tau_i \leq t) $$

$$ = 1 - \exp \left\{ - \int_{t_0}^{t} \lambda_i(u) du \right\} $$

and λ_i is a deterministic intensity function.
Portfolio Loss

The proportion of defaulted entities in the portfolio at time t is given by

$$\tilde{L}(t) = \frac{1}{d} \sum_{i=1}^{d} l_i(t), \quad t \in [t_0, T].$$

The portfolio loss at time t is defined as

$$L(t) = \text{LGD} \tilde{L}(t),$$

where LGD is a common loss given default.
Tranche Loss

The tranche loss at time \(t \) is defined as

\[
L_j(t) = \frac{1}{u_j - l_j} \{ L^u(t, u_j) - L^u(t, l_j) \},
\]

where

\[
L^u(t, x) = \min \{ L(t), x \} \quad \text{for } x \in [0, 1].
\]

The outstanding notional of the tranche \(j \) is given by

\[
\Gamma_j(t) = \frac{1}{u_j - l_j} \{ \Gamma^u(t, u_j) - \Gamma^u(t, l_j) \},
\]

where

\[
\Gamma^u(t, x) = x - L^u(t, x) \quad \text{for } x \in [0, 1].
\]
Valuation of CDO

1. Premium leg

\[PL_j(t_0) = \sum_{t=t_1}^{T} \beta(t_0, t) s_j(t_0) \Delta t \, \mathbb{E}\{\Gamma_j(t)\} \]

2. Default leg

\[DL_j(t_0) = \sum_{t=t_1}^{T} \beta(t_0, t) \, \mathbb{E}\{L_j(t) - L_j(t - \Delta t)\} \]

This leads to:

\[s_j(t_0) = \frac{\sum_{t=t_1}^{T} \beta(t_0, t) \, \mathbb{E}\{L_j(t) - L_j(t - \Delta t)\}}{\sum_{t=t_1}^{T} \beta(t_0, t) \Delta t \, \mathbb{E}\{\Gamma_j(t)\}}. \]
Equity Tranche

The equity tranche is quoted in two parts:
1. an upfront fee α payed at t_0,
2. a running spread of 500 BPs.

The premium leg is calculated as

$$PL_1(t_0) = \alpha(t_0) + \sum_{t=t_1}^{T} \beta(t_0, t) \cdot 500 \cdot \Delta t \mathbb{E}\{\Gamma_1(t)\}.$$

The upfront payment given in percent is equal

$$\alpha(t_0) = 100 \sum_{t=t_0}^{T} (\beta(t, t_0) [\mathbb{E}\{L_1(t) - L_1(t - \Delta t)\} - 0.05\Delta t \mathbb{E}\{\Gamma_1(t)\}]).$$
Copula

For a distribution function F with marginals F_{X_1}, \ldots, F_{X_d}. There exists a copula $C : [0, 1]^d \to [0, 1]$, such that

$$F(x_1, \ldots, x_d) = C\{F_{X_1}(x_1), \ldots, F_{X_d}(x_d)\}$$

for all $x_i \in \mathbb{R}$, $i = 1, \ldots, d$.
Copula for CDOs

The vector of default times \((\tau_1, \ldots, \tau_d)^\top\) has a (risk-neutral) joint cdf
\[
F(t_1, \ldots, t_d) = P(\tau_1 \leq t_1, \ldots, \tau_d \leq t_d) \quad \text{for all } (t_1, \ldots, t_d)^\top \in \mathbb{R}_+^d,
\]
where \(\tau_i \sim F_i\). From the Sklar theorem, there exists a copula such that
\[
F(t_1, \ldots, t_d) = C\{F_1(t_1), \ldots, F_d(t_d)\}
\]
and determines the default dependency of the credits.
Monte Carlo Simulation Approach

Define a trigger variable as

\[U_i = \bar{p}_i(\tau_i) \sim U[0, 1], \quad i = 1, \ldots, d. \]

The \(i \)th obligor survives until \(t < T \) if and only if

\[\tau_i \geq t \]

or \(U_i \leq \bar{p}_i(t) \).

The joint and marginal distributions of the triggers satisfy:

\[
C\{\bar{p}_1(t), \ldots, \bar{p}_d(t)\} = P\{U_1 \leq \bar{p}_1(t), \ldots, U_d \leq \bar{p}_d(t)\},
\]

\[
P\{U_i \leq \bar{p}_i(t)\} = \bar{p}_i(t).
\]
Monte Carlo Simulation Approach

The time to default variable

\[\tau_i = \inf \{ t \geq t_0 : \bar{p}_i(t) \leq U_i \} \]

is calculated as

\[\tau_i = \bar{p}_i^{-1}(U_i). \]

Assuming constant intensities compute

\[\tau_i = -(\log U_i)/\lambda_i. \]
Large Pool Approach for Linear Factor Models

Default times are calculated from a vector \((X_1, \ldots, X_d)^\top\)

\[X_i = \sqrt{\rho} Y + \sqrt{1 - \rho} Z_i, \]

where \(Y\) (systematic risk factor), \(\{Z_i\}_{i=1}^d\) (idiosyncratic risk factors) are i.i.d. Assume that

- obligors have the same default probability \(p\) and LGD,
- one dependence parameter \(\rho\),
- \(d\) is large.
Large Pool Approximation

Computations are simplified significantly when the portfolio loss distribution is approximated:

\[
P(L \leq x) = 1 - F_Y \left\{ \frac{F_X^{-1}(p) - \sqrt{\rho}F_Z^{-1}(x)}{\sqrt{1-\rho}} \right\},
\]

where \(X_i \sim F_X, Z_i \sim F_Z, Y \sim F_Y \).
Gaussian Copula Model

The factors Y and $\{Z_i\}_{i=1}^d$ are i.i.d. $N(0, 1)$. Thus, $X_i \sim N(0, 1)$
The cdf of the portfolio loss equals

$$P(\tilde{L} \leq x) = \Phi \left\{ \frac{\sqrt{1 - \rho} \Phi^{-1}(x) - \Phi^{-1}(p)}{\sqrt{\rho}} \right\}.$$

Default times are given by $\tau_i = F_i^{-1}\{\Phi(X_i)\}$.
NIG Model

Factors:

\[Y \sim \text{NIG}\left(\alpha, \beta, -\frac{\beta \gamma^2}{\alpha^2}, \frac{\gamma^3}{\alpha^2}\right), \quad \gamma = \sqrt{\alpha^2 - \beta^2}, \]

\[Z_i \sim \text{NIG}\left(\frac{\sqrt{1 - \rho}}{\sqrt{\rho}} \alpha, \frac{\sqrt{1 - \rho}}{\sqrt{\rho}} \beta, -\frac{\sqrt{1 - \rho}}{\sqrt{\rho}} \frac{\beta \gamma^2}{\alpha^2}, \frac{\sqrt{1 - \rho}}{\sqrt{\rho}} \frac{\gamma^3}{\alpha^2}\right). \]

Because of the stability under convolution

\[X_i \sim \text{NIG}\left(\frac{\alpha}{\sqrt{\rho}}, \frac{\beta}{\sqrt{\rho}}, -\frac{1}{\sqrt{\rho}} \frac{\beta \gamma^2}{\alpha^2}, \frac{1}{\sqrt{\rho}} \frac{\gamma^3}{\alpha^2}\right) = \text{NIG}(1/\sqrt{\rho}). \]

Default times are given by \(\tau_i = F_i^{-1}\{\text{NIG}(1/\sqrt{\rho})(X_i)\} \).
Double-\(t \) Model

Define

\[
X_i = \sqrt{\rho} \sqrt{\frac{\nu_Y - 2}{\nu_Y}} Y + \sqrt{1 - \rho} \sqrt{\frac{\nu_Z - 2}{\nu_Z}} Z_i, \quad i = 1, \ldots, d,
\]

where \(Y \) and \(Z_i \) are \(t \) distributed with \(\nu_Y \) and \(\nu_Z \) DoF respectively.

The \(t \) distribution is not stable under convolution: \(X_i \) are not \(t \) distributed and the copula is not a \(t \) copula, \(X_i \sim F_X \) has to be computed numerically. Default times are computed as

\[
\tau_i = F_i^{-1}\{F_X(X_i)\}.
\]
Large Pool Approach for Archimedean Copulae

d-dimensional Archimedean copula $C : [0, 1]^d \rightarrow [0, 1]$ is

$$C(u_1, \ldots, u_d) = \phi\{\phi^{-1}(u_1) + \cdots + \phi^{-1}(u_d)\}, \quad u_1, \ldots, u_d \in [0, 1],$$

where $\phi \in \{ \phi : [0; \infty) \rightarrow [0, 1] \mid \phi(0) = 1, \phi(\infty) = 0; (-1)^j \phi^{(j)} \geq 0; j = 1, \ldots, \infty \}$ is a copula generator.

Each ϕ is a Laplace transform of a cdf of a positive random variable $Y \sim F_Y$

$$\phi(t) = \int_0^\infty e^{-tw} dF_Y(w), \quad t \geq 0.$$
Large Pool Approach for Archimedean Copulae

If $X_i, i = 1, \ldots, d$, i.i.d. $U[0,1]$ and Y’s Laplace transform is ϕ, then the Archimedean Copula C is a joint cdf of $U_i = \phi \left(-\frac{\log X_i}{Y} \right)$.

Conditional on the realisation of Y, U_i are independent.

The large pool approximation of the loss distribution is

$$P(\tilde{L} \leq x) = F_Y \left\{ -\frac{\log(1 - x)}{\phi^{-1}(\bar{p})} \right\}.$$

For the Gumbel copula

$$C(u_1, \ldots, u_d; \theta) = \exp \left[-\left\{ \sum_{i=1}^{d} (-\log u_i)^\theta \right\}^{\theta^{-1}} \right],$$

F_Y is an α-stable distribution with $\alpha = 1/\theta$.
Correlation’s Types

Compound correlation $\rho(l_j, u_j)$, $j = 1, \ldots, J$.

Figure 12: Implied correlation smile in the Gaussian one factor model, 20071022.
Correlation’s Types

Base correlation (BC) $\rho(0, u_j)$, $j = 1, \ldots, J$.

Represent the expected loss $E\{L(l_j, u_j)\}$ as a difference:

$$E\{L(l_j, u_j)\} = E_{\rho(0, u_j)}\{L(0, u_j)\} - E_{\rho(0, l_j)}\{L(0, l_j)\}, \ j = 2, \ldots, J.$$ of the expected losses of two fictive tranches $(0, u_j)$ and $(0, l_j)$.

Bootstrapping process: $E\{L(0,3\%)\}$ is traded on the market,

$$E\{L(3\%, 6\%)\} = E_{\rho(0, 6\%)}\{L(0, 6\%)\} - E_{\rho(0, 3\%)}\{L(0, 3\%)\},$$

$$E\{L(6\%, 9\%)\} = E_{\rho(0, 9\%)}\{L(0, 9\%)\} - E_{\rho(0, 6\%)}\{L(0, 6\%)\}, \ldots$$
Appendix A. CDO Modelling Introduction

Base Correlations

![Graph](image)

Figure 13: Expected loss of the equity tranche calculated using the Gaussian copula model with a one-year default probability computed from the iTraxx index Series 8 with 5 years maturity (left) and the base correlation smile (right) on 20071022.
DSFM for Log-Spreads

Figure 14: Estimated factor functions and loadings ($\hat{Z}_{t,1}, \hat{Z}_{t,2}$).
DSFM without the Mean Factor for Log-Spreads

Figure 15: Estimated factor functions and loadings ($\hat{Z}_{t,1}, \hat{Z}_{t,2}$).
Appendix B

DSFM for Z-transformed-BC

Figure 16: Estimated factor functions and loadings ($\hat{Z}_{t,1}$, $\hat{Z}_{t,2}$).
Investor’s Strategy

Figure 17: Combined flatteners and steepeners from all tranches and all maturities. Closing profits after one year. Rebalancing after: 1 day (upper left), 1 week (upper right), 1 month (lower). Calculations based on the DSFM predictions of log-spreads and Z-transformed BCs.