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Motivation 1-1

Vector autoregressive model

Application: Impulse response analysis.
Example 1

Let X; denote a (d x 1) vector of random variables, i =1,...,n.

Xi= w + A Xi_1+¢;,
(dx1) (dxd)

is known as VAR(1). Efficient estimation is based on ¢; ~ N(0, ¥;).

Parameter vector ¥ = {w, vec(A), diag(X.), vech(X.)}.
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Motivation 1-2
Dynamic conditional correlation model
Application: Value at Risk estimation.
Example 2
Let X; denote a (d x 1) vector of returns, i =1,...,n.
X; = Dje; with 6,‘|‘F,',1 ~ N(O, R,‘),
with R; = diag(Q,-)_1 Q,-diag(Q,-)_l,
Q=S0(1l4l) —A-B)+AGec 16/ 1 +BOQ; 1,
and D?=Q+KoX_1 X', +ANo D%

is known as DCC-model, with S = n! Dy a;eiT.

Parameter vector ¥ = {diag(K), diag(A), vec(A), vec(B), diag(Q2)}.
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Motivation 1-3

Multivariate probit model

Applications: Health-care and unemployment analysis.
Example 3

The multivariate probit model has the data generating process
Y,-j:l{e,-j g[;’JTZ,-j}, for i=1,...,n, and j=1,...,d,

where Zj; is a rj-dimensional vector of covariates including intercept
and (gj1,...,i9) " ~ N(0,R) with diag(R) = 1 for identification.

Parameter vector ¢ = {B1, ..., B4, vech(R)}.
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Motivation 1-4

Stochastic volatility model
Applications: Option pricing.
Example 4

Let X; denote a (d x 1) vector of returns, i =1,...,n. The
standard stochastic volatility model is

Xi = exp(0i/2)ei
o =a+ foj-1+ i,

iid - . .
where £, ~ H(ey, ..., e4;0) denote idiosyncratic shocks, o; is the

latent log-volatility and #; i N(0, /).
Parameter vector ¥ = {6, o, 3,7}
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Motivation 1-5

Related to practitioners

(] Asset and option pricing

[J Estimation of VaR and ES

[ Forecasting of macroeconomic variables
[ Discrete choice models

Cl...

(1 Volatility contagion via connectedness measures
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Motivation 1-6

Challenges

[ log-likelihood is often complicated in non-linear models
especially if number of parameters is large.

» Large-dimensional times series models, see Engle (2002,
JBES).

n

5(191, 792) = —% Z [dlog(27r) + |og {‘ D,'(791) R,’(??z) D;(?91)|}
i=1

+ X,-T D,‘(ﬁl)fl R,’(??Q)fl D,'(??l)flx,}

where 91 = vec(A, B), ¥, = {diag(Q) ", diag(K) T, diag(A)"} "
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Motivation 1-7

Challenges

[ log-likelihood is often complicated in non-linear models
especially if number of parameters is large.
» Large-dimensional times series models, see Engle (2002,
JBES).
» High-dimensional copulae, see Aas et al. (2009, IMaE) and
Okhrin et al. (2013, JoE).
[0 Derivatives (numerical) of the entire log-likelihood are not
available (unstable) or difficult to derive.
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Motivation 1-8

Classical optimization techniques

[] Simulated annealing, genetic algorithm, downhill simplex

» Robust, non-differentiable functions, ...
» Slow convergence, few parameters, . ..

(1 Conjugate-gradient

» Low memory-footprint, large number of parameters, ...
» Slow convergence, first derivatives, ...

(] Newton and quasi-Newton methods

» Fast convergence, ...
» First and second derivatives, ...
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Motivation 1-9

Proposed solution

(] Iterative maximization of the log-likelihood.
(] GauB-Seidel scheme for non-linear equation.

] Decomposition of the parameter space in order to update the
estimator.

[ Alternatives inappropriate for “large p".
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Efficient estimation 2-1

An iterative estimation procedure

[ Let X = (X{',..., X, )" be the finite history of the
d-dimensional stochastic process {Xi};_;, .
[ log-likelihood contribution of X;

f,’(ﬁl, ceey 19@) = |og in‘fi—l(X’.l’ e ,X,'d; 19),

where ¥ = (9 ,...,95)".
[ Build £(9) = (01, ...,06) = > 11 Li(P1,...,9¢) and use
shorthand notation, e.g.,

{(90) = 82(1;9) .
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Efficient estimation
Algorithm
h=1: 9lcoO

h>1:
(1) 0%, =arg n29?x£(191,193;1, )

(2) Wb, =arg r%ixe(ﬁ;n, 9o, 08 Lot

(G) 19’&7,, = arg rgixﬁ(ﬁ’l’m, . ,19’(’;71’”, U6)
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Efficient estimation 2-3

Assumptions

(1) Model is identifiable and correctly specified; parameter space ©
is compact, Y9 € © and information equality holds.

(2) Asymptotic information matrix and negative Hessian are
positive definite.

1/2

(3) Starting value is n'/“-consistent.

(4) Score converges to a multivariate normal distribution.
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Efficient estimation 2-4

Triangular structure

[] Decompose the Hessian () into D(-), £(:) and U(-), such
that H (V) = D(V) + L(V) + U(V).

[ Spectral radius of iteration matrix
F(¥) = {-D() — L(9)} () is strictly smaller than one,
i.e., p{l'(¥)} < 1, see Reich (1949) and Ostrowski (1954).

] T(9) is a convergent matrix: lim;, . I'(9)" = 0.
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Efficient estimation 2-5
Asymptotic properties
Theorem

Let the random vectors of the sequence X have an identical
conditional density f;(-; ) for which Assumptions 1-4 hold. Then,

298 —99) SN {O’Bh(ﬁO)M(ﬁo)Bh(ﬁO)T} ’

Bi(d) = [F(0)" {=# (@)} {-H )}~ T H{-H(0)} ]
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Efficient estimation 2-6

Convergence

[ lim, o0 Var(n'/209h) iteratively decreases as h — oo.

[J Convergence of ¥/ to the ML estimator 9, as h — oc.

Theorem
Let the random vectors of the sequence X have an identical
conditional density f;(-; 1) for which Assumptions 1-4 hold. Then,

nt/2¢
h>1+ {I:)ogg{(p(rn))}—‘ with n*/%e € (0,1).
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Efficient estimation 2-7

Figure 1: Approximate h until convergence for pre specified precision € €
{1072,1073,1074,1075}, (u. left, u. right, I. left, I. right), sample size
n and spectral radius p(I',,).
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Simulation | 3-1

Setup |

Similar to Kascha (2012, Econometric Reviews):

Xi=AXi_1+¢ei+Bej-1.

[ d =5, n=100, r =17 and ¢; ~ N(0, X).
[] Consistent & inconsistent starting values.
[] Replication: 5000.

[] 20 decomposition, e.g., 1 = vec(A), U, = vec(B),
Y3 = vech(X).
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Simulation | 3-2
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Figure 2: Based on consistent estimates as starting values, graphic shows
the average number of iterations h until |97 —,[|; < 0.1. Gray area refers
to the empirical sd of h. Boxplot shows the average number of iterations
until £(9h) = £(9h+1), if |97 — 9,]l1 > 0.1.
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Simulation | 3-3
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Figure 3: Based on inconsistent estimates as starting values, graphic shows
the average number of iterations h until |97 —,[|; < 0.1. Gray area refers
to the empirical sd of h. Boxplot shows the average number of iterations
until £(9h) = £(9h+1), if |97 — 9,]l1 > 0.1.
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Practical issues 4-1

Boosting convergence

(] Increasing n helps merely marginally to speed up the algorithm.
[J Reduce p(I',) by

» ruling out dependence among the estimators 1927,,.
» simplifying the model.

Example 5

For G =2 and #H11(9) = I,,, estimator 19{’7,, obeys the recursion

(97, — V1) = n Mg, (9) + g, 9, (91,92) (95,1 — 2).
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Practical issues 4-2

Assume a model simplification such that ¥1 , = 0.

Algorithm
Iteration h > 1:
(1) {blank step}

(2) 193’,, = arg rr:gax€(0,192,19/3’;1, . ,0/&_”1)
2 b b

(G) ﬂ’ém = arg n1193GX£(07 195’”, ce ’192—1»”’ 196)
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Practical issues 4-3

Theory for simplified models

Parameter shrinkage via nonconcave penalized likelihood, see Fan
and Li (2001, JASA). Formulate the penalized log-likelihood

ri+ra
Q) = () —n Y px, (1V4])
k=1
where py, (] - |) is the SCAD penalty with
Pha(x) = Al (x <A) + max(aX —x,0) /(a—1)1(x > A).

with a > 2 and x > 0.
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Practical issues 4-4

Corollary

Let the random vectors of the sequence X have an identical
conditional density f;(-; ) for which Assumptions 1-2, 4—6 hold.
Then,

n2B L (T0) | (T — o) + T (Jo)"
{Ba(To) — H'(F0)} " ba(do)| 5 N {0, M(00) .
Bha(9) = [T(0)"{Ba(d) = H (@)} 1T (D) H(D) " = (D)7
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Simulation 1l

Setup |l

[ R-vine, see Kurowicka and Joe (2011).

» Decomposition of a d-dimensional copula density into
d(d — 1)/2 (conditional) bivariate copula densities.

(1 Natural decomposition 4.
[0 d =15, n = 250, r = 105.
[ Replications: 5000.
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5-2

Simulation 1l
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Figure 4: R-vine: Solid line shows the average error ||, — ¥"||; and the
dashed line the difference £(9,) — £(9"). The gray area refers to the
respective empirical standard deviation.
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5-3

Simulation 1l

1.0

error/difference
= o o
SN ()] [00]
| | |

o
N
|

o
o
|

1

Figure 5: Simplified R-vine: Solid line shows the average error ||J, — 9|1
and the dashed line the difference £(1,) — £(9"). The gray area refers to
the respective empirical standard deviation.
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Simulation 1l 5-4
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Figure 6: Left boxplots illustrate the computational time (in minutes)
needed to compute the ML estimator 9, and our estimator ¥/. Right
boxplots refer to the computational times for the simplified R-vine model.
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Applications

VAR model

Consider the time series model

q
Xi=c+ Y AXi +ei
=1

where ¢ = (c1,...,¢cq)" and A is a (d x d) matrix. Given
standard assumptions like

[ E(eie/ ) = Z. and E(ge] ;) = 04g for [ >0
[l e= VeC(e’;‘l, - ,Ed) ~ N(O, Ih ® ZE)

the parameters can be efficiently estimated by OLS. But
(1 r > n especially for a large q!
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Applications

Define Y = vec(X1,..., Xy), Zi = (1, X;[q,..., X[ )T and
Z=(Z,...,Zy) and rewrite the model in matrix notatlon

Y = (2" @ly)B +e,

where 3 = vec(c, A1, ..., Aq). We assume £ ~ N(0, ), with
> #1,® X, but the GLS estimator

Bn = {(z @l Yz @z)/d)}_1 (Zol)Z 7Y

is not feasible.
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Applications 6-3

Algorithm

[teration h = 1:
1) =L
(2) Br=1{@ZZ")zel)Y
[teration h > 1:
(1) h={Y —(Z7 @ly)pr 1 {Y —( zT ®1g)81) "
(2) 8= {(Z@l)(Z)NZ @)} (Z@l)(Zh) 1Y

Penalization of 3 can be embedded in [teration 1!
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Applications 6-4

DCC model

For a d-dimensional vector of returns X;, the DCC model follows

X; = Dje; with 6,".7,'_1 ~ N(O, R,‘),
with R; = diag(Q;) " Q; diag(Q;) ",
Q=S0(141] —A—B)+A®ci_1¢] 1+ BO®Qj_1,
and D?=Q+KoXi1X!; +AN®D?
where A and B are (d x d)-matrices, 1, is a d-dimensional vector

of ones, ©, K and A are quadratic diagonal matrices,
_ -l T
S=n"") " ¢cig; .
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Applications 6-5

log-likelihood can be decomposed into a correlation part /€ (1, 1>)
and a volatility part ¢¥(9)5), such that
0(91,92) = £Y(92) + £ (91,72), with

1< -
(€(01,0,) = 3 Z {Iog(\ Ril)+¢/ Rite — 575,-}
i=1

where | - | computes the determinant, ¥; = vec(A, B),

¥ = {diag(Q) ", diag(K) T, diag(A) T} T and

n

1
M(2) = -5 {d log(27) + log(| D; 2) + X;” D; 2 x,-}.
i=1
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Applications

Algorithm

Iteration h = 1:
(1) ¥1,=0
(2) 93, = arg mﬂaxﬁv(ﬁz)
2

Iteration h > 1:
(1) 97, = arg T?axf(ﬁlaﬁé’.}l)
| ,

(2) 03, = arg max (¥, V)
2
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Applications 6-7

Bivariate probit model

The bivariate probit model has the data generating process
Y,-j:l{e,-j SﬂJTZ,-j}, for i=1,...,n, and j=1,2,

where Zj; is a rj-dimensional vector of covariates including intercept
T .
and (6,’1,8,‘2) N¢(X1,X2,p).

Assume sparse model, i.e.,

Bio= (Bi10,---+Bir0) " = (Bjro:-Bino) | with Bjog=0.
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Applications 6-8

[ Full log-likelihood: ¢(p, B1,82).
[] “Sparse” log-likelihood:

U(p, B11,B21) = £{p, (B11,0), (B21,0)}.

Ignoring the dependence between Yj; and Yo, i.e., p =0, the
marginal penalized log-likelihoods are

0,(8) = 3 [Vilog {687 2} + (1 - Vilog {1 - 0(87 2p))]

i=1

;
—n > oy (1Bigl) for j=1,2.
k=1
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Applications

Algorithm

[teration h = 1:
(1) pp=0
(2) Bi,=arg max Qs (1)
1

(3) B3, =arg max Qs (B2)

Iteration h > 1:
(1) Ph = arg maxé(p :311 n’lB21 n)

(2) lBll,n = arg n';axg(pnﬂﬂllaﬂzlm)
11

(3) ﬂgl,n =arg ”l;flxg(P#ﬂlfLmﬂzl)
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Applications 6-10

SV model

The standard stochastic volatility model is discrete-time
counterpart of continuous-time models and given by

Xi=exp(0i/2)e;
o= a+ Boi_1+ i,

where ¢; id H(e1,...,eq4) denote idiosyncratic shocks,

X = (X1,...,X,)" is the return process, o = (01,...,0,)" is the

univariate latent log-volatility process and ; e N(0,1).
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Applications 6-11

[ Full log-likelihood: ¢f (1,192,193, 0) = log {fx » (X, c;7)}.
[ “Observed” log-likelihood:

L°(191,192,193):/fx|g(X,S;191,192,193)&(5;193)(/5,

(1 fx o(+; U1, 92,73) equals the density of a Gaussian model
8x o (+; U2,03) for a specific V7.
[J 9 = vech(R) and 93 = (o, 3,7) .

Rewrite L°(-) as

fX‘o’(X7 S; 191; 1927 193)
gx|o (X, 5;72,03)

Lo(ﬁl,’l92,193) = Lg(ﬁz,’l%,)/ gg‘X(X,s; 192,’[93)0’5.
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Applications 6-12

log-likelihood under Gaussian assumption ¢8(12,3).

Algorithm

[teration h = 1:
(2) = (3) (93, 93,) = arg max (&(1),13)
’ (92,93)
[teration h > 1:
(1) 191’7,, = arg maxﬁf(ﬁl, 192’7,1, 19’377,1, ahfl)

(2) 193 =arg n:gaxﬁf(&{’n,ﬁg,z?“, h=1)

(3) 195”,1 = arg rrgxﬁo(ﬁfn, 195’”,193)
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7-1

Empirical illustration

Measuring volatility connectedness

[J Daily realized volatilities (RVs) from January 2007 - December
2008.
[J 30 U.S. blue chip companies similar to the DJIA.

[J VMEM(1, 1) with R-vine based on bivariate t-copulae.
O r/n=17
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Empirical illustration 7-2

Assuming a stationary VMEM(1, 1) for the RVs {x;}7_,, whose
zero-mean MA(oo) representation is

yi=ni+ Y Vmi,
I=1
with E(n;) = 0,E(nin) = ¥, and y; = x; — {l4 — (A+ B)} ' w.
(Un)conditional H-step prediction error:
) vi(H) = 215 Wimin— and
H vio(H) = St dnicn — EMismilneion—r = 0)}.
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Empirical illustration

Connectedness measures

Diebold and Yilmaz (2014, JoE) suggest aggregating elements
Vie 1 of the generalized variance decomposition matrix V4 to

[] the effect from others to k by Cyi o y = Z#k Ve H,
[] the effect to others from £ by Cor ¢y = Z#k Vel,H,
[ the total connectedness Cy = 3, ./ Vi H-
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Empirical illustration 7-4
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Figure 7: Upper panel: log-likelihood values and total systemic connect-
edness Cyp in dependence of h. Lower panel: volatility contagion from
Google Cor—Goog,12 and Goldman Sachs Cogs,12 in dependence of h.
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Summary 8-1

Conclusion

[J Maximization strategy for complicated and high-parameterized
log-likelihood functions.

[] Asymptotic properties of the estimator are established.
[ Accuracy of the procedure is illustrated in a simulation study.
(1 Algorithm is broadly applicable.

[J Application emphasizes the importance of efficiency.

Future research:
[] Non-parametric components
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Appendix 9-1

Assumptions

(1) The model is identifiable and the true value ¥y is an interior
point of the compact parameter space ©. We assume that the

model is correctly specified in the sense that Eﬂ{é,’ﬂgg(ﬁ)} =0
and information equality holds,

Tig(9) = Eo { Lo, i(0)0.(0) " } = —Ey {000}

forg,/=1,....,Gandi=1,...,n
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Appendix 9-2

(2) The information matrix is Z(J) = >_7_; Z;(¢9), with
Z;(Y) = {Z; g1 (") g,/:r Let the limit of n™1Z(99) 5 J (V) be
the asymptotic information matrix, which is finite and positive

definite at 1y and n~1/(9) 5 () be the asymptotic Hessian,
which is finite and negative definite for
Ve {v:||9—1o|| <}, 0>0.
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Appendix 9-3

(3) The starting value is a consistent estimator ¥}, — g = 0p(1)
with 91 = arg mgxél(ﬁ) and 1(09) # £(9).

(4) The “joint" score s(1) = {/*(9)7,4(0)T}" obeys
n~1/25(19) 5 N{0, M(o)}, where

C{TW) TR
M”)‘{Jﬂw) Jw)}'
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Appendix 9-4

(5) The starting value of % (V5 ,...,95)" is a consistent
estimator 9% — g = 0p(1), for Ay — 0 as n — oo, with
V) = arg max Q(¥9) and £1(V9) # £(0).

(6) If ¥10=0, Ay = 0 and n'/2)\, — oo as n — oo, the estimator
19%7,, satisfies 19%7,, = 0 with probability tending to one.
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Appendix 9-5

Lemma
Let the random vectors of the sequence X have an identical
conditional density fx. .z, ,(-;0) for which Assumptions 1-2 hold. If

9L B 9y, then vt B 9o, Vv h=2,3,.. ..

Lemma
Under the assumptions of Corollary 1, if A, — 0 as n — oo,

Gh B §ovh =23, .. ComEEmmy
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Appendix 9-6

Definitions

ba(9) = {ph,(|921]) sign(¥21), - .. ,Ph (|02r,]) sign(¥ar,), 0} ",
Bn(9) = diag {p,(|921]), ..., P, (|92-),0} .

» Asymptotic Normality
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