Goodness-of-Fit Test for Specification of Semiparametric Copula Dependence Models

Shulin Zhang, Ostap Okhrin Qian M. Zhou, Peter X.-K. Song

Southwestern University of Finance and Economics Dresden University of Technology Simon Fraser University University of Michigan http://csr.swufe.edu.cn http://osv.vkw.tu-dresden.de http://stat.sfu.ca/ http://www.sph.umich.edu/

Applications

- 1. medicine (Vandenhende (2003), ...)
- 2. hydrology (Genest and Favre (2006), ...)
- biometrics (Wang and Wells (2000, JASA), Chen and Fan (2006, CanJoS), ...)
- 4. economics
 - portfolio selection (Patton (2004, JoFE), Hennessy and Lapan (2002, MathFin), ...)
 - time series (Chen and Fan (2006a, 2006b, JoE), Fermanian and Scaillet (2003, JoR), Lee and Long (2005, JoE), ...)
 - risk management (Junker and May (2002, EJ), Breyman et.
 al. (2003, QF), ...)

5. ...

GoF Test How to be sure, that one uses a proper copula?

Different tests \Rightarrow Different outcomes

(a) Gaussian copula

(b) year 2004

Figure 1: Sample from Gauss copula with N(0,1) margins, $\theta = 0.71$, N = 250 and residuals transformed to standard normal for Citygroup/BoA for 2004.

Test 1: Gumbel, Test 2: Gauss, Test 3: Gauss

Different tests \Rightarrow Different outcomes

and residuals transformed to standard normal for Citygroup/BoA for 2006.

Test 1: t-copula, Test 2: Gauss, Test 3: t-copula

Different tests \Rightarrow Different outcomes

(a) Gumbel copula

(b) year 2009

Figure 3: Sample from Gumbel copula with N(0,1) margins, $\theta = 2$, N = 250 and residuals transformed to standard normal for Citygroup/BoA for 2009.

Test 1: Gumbel, Test 2: Gumbel, Test 3: Gauss

Outline

- 1. Motivation \checkmark
- 2. Pseudo in-and-out-of-sample (PIOS) Test
- 3. Hybrid Test
- 4. Asymptotic Properties of PIOS Test
- 5. Extension of PIOS Test
- 6. Applications
- 7. Conclusion

PIOS test, I

where
$$C = \{C(\cdot; \theta) : \theta \in \Theta\}.$$

 $\therefore X_1 = (X_{11}, \dots, X_{1d})^\top, \dots, X_n = (X_{n1}, \dots, X_{nd})^\top$ random
sample of size *n* drawn from multivariate distribution
 $H(x) = H(x_1, x_2, \dots, x_d)$
 \therefore Continuous marginal cdf $F(x) = \{F_1(x_1), \dots, F_d(x_d)\}$
 $H(x_1, x_2, \dots, x_d) = C_0\{F(x)\} = C_0\{F_1(x_1), \dots, F_d(x_d)\}.$

 \mathcal{H}_0 : $\mathcal{C}_0 \in \mathcal{C}$ vs. \mathcal{H}_1 : $\mathcal{C}_0 \notin \mathcal{C}$

M

- 2-1

PIOS test, II

Define $\ell\{\tilde{F}(X_i);\theta\} = \log c\{\tilde{F}_1(X_{i1}),\ldots,\tilde{F}_d(X_{id});\theta\}$ and $\hat{\theta}$ be the two-step pseudo maximum likelihood method (PMLE) of θ given by

$$\hat{ heta} = \operatorname*{argmax}_{ heta \in \Theta} \sum_{i=1}^n \ell\{ \tilde{F}(X_i); heta\}.$$

Compute delete-one-block PLMEs $\hat{\theta}_{-b}$, $1 \leq b \leq B$:

$$\hat{\theta}_{-b} = \operatorname*{argmax}_{\theta \in \Theta} \sum_{b' \neq b}^{B} \sum_{i=1}^{m} \ell\{\tilde{F}(X_i^{b'}); \theta\}, \quad b = 1, \dots, B,$$

where

GoF

$$\widetilde{F}_k(x_k) = \frac{1}{n+1} \sum_{t=1}^n I(X_{tk} \leq x_k), \quad k = 1, \dots, d.$$
Test

PIOS test, III

Comparing "in-sample" and "out-of-sample" pseudo-likelihoods with the following test statistic:

$$T_n(m) = \sum_{b=1}^B \sum_{i=1}^m \left[\ell\{\tilde{F}(X_i^b); \hat{\theta}\} - \ell\{\tilde{F}(X_i^b); \hat{\theta}_{-b}\} \right].$$

Challenge: needed $\left[\frac{n}{m}\right]$ dependence parameters Solution: test statistic which is asymptotically equivalent.

PIOS test, IV

□ Under suitable regularity conditions and under assumption, that ∃ $θ^* ∈ Θ$ with $\hat{θ} \xrightarrow{p} θ^*$ for $n \to ∞$:

$$T_n(m) \xrightarrow{p} \operatorname{tr} \{ S(\theta^*)^{-1} V(\theta^*) \}$$

with

$$\begin{split} S(\theta) &= - \operatorname{E}_{0} \left[\frac{\partial^{2}}{\partial \theta \partial \theta^{\top}} \ell\{F(X_{1});\theta\} \right] \,, \\ V(\theta) &= \operatorname{E}_{0} \left[\frac{\partial}{\partial \theta} \ell\{F(X_{1});\theta\} \frac{\partial}{\partial \theta} \ell^{\top}\{F(X_{1});\theta\} \right] \end{split}$$

- 2-4

PIOS test, V

- Under a correct model specification, it holds: V(\(\theta^*\)) = S(\(\theta^*\)).
 Then is tr{S(\(\theta^*\))^{-1}V(\(\theta^*\))} = p.
- Asymptotic test statistic:

$$R_n = \operatorname{tr}\left\{\hat{S}(\hat{ heta})^{-1}\hat{V}(\hat{ heta})
ight\}$$

where $\hat{S}(\hat{\theta})$ and $\hat{V}(\hat{\theta})$ are the empirical counterparts to $S(\theta)$ and $V(\theta)$.

- 2-5

Law of Large Numbers

Theorem

Under assumptions A1 and A2 hold

$$R_n \stackrel{p}{
ightarrow} tr\left\{S(heta^*)^{-1}V(heta^*)
ight\}, \ \ \text{as} \ \ n
ightarrow\infty,$$

where θ^* is the limiting value of PMLE $\hat{\theta}$.

Assumptions

Central Limit Theorem

Theorem

Under the null hypothesis, if A2 and B1 - B3 hold, then

$$\sqrt{n}\left(R_n-p
ight) \stackrel{d}{
ightarrow} N(0,\sigma_R^2), \ \, ext{as } n
ightarrow\infty,$$

where σ_R^2 is the asymptotic variance. \Box Under assumptions A2, B1 - B3 and C1,

$$R_n - T_n(m) = o_p(n^{-1/2}).$$

Simulation Study - Benchmark tests, I

□ S_n from Genest, Rémillard and Beaudoin (2009, IME)

Cramér-von Mises statistic

$$S_n = n \int_{[0,1]^d} \{D_n(u) - C_{\perp}(u)\}^2 du.$$

Based on Rosenblatt's transform, with E_{tk} as pseudo observations:

$$E_{tk} = \frac{\partial^{k-1} C(U_{t,1}, \dots, U_{t,k}, 1, \dots, 1) / \partial U_{t,1} \cdots \partial U_{t,k-1}}{\partial^{k-1} C(U_{t,1}, \dots, U_{t,k-1}, 1, \dots, 1) / \partial U_{t,1} \cdots \partial U_{t,k-1}}, k = 1, 2, \dots, d,$$

with $D_n(u) = \frac{1}{n} \sum_{t=1}^n I(E_t \le u)$ and
 $C_{\perp}(u) = u_1 \times u_2 \times \cdots \times u_d.$

 test has on average one of the best performances among all the existing "blanket tests", see Genest el al. (2009).

Simulation Study - Benchmark tests, II

 \Box J_n from Scaillet (2007, JoMA)

Kernel-based GoF test statistic with fixed smoothing parameter

$$J_n = \int_{[0,1]^d} \{\hat{c}(u) - \mathcal{K}_H * c(u;\hat{\theta})\} w(u) du$$

• The copula density is estimated as

$$\hat{c}(u) = \frac{1}{n} \sum_{t=1}^{n} K_H[u - \{\tilde{F}_1(X_{t1}), \ldots, \tilde{F}_d(X_{td})\}^\top].$$

Residual-based Bootstrap

- Step 1. Generate bootstrap sample $\left\{\epsilon_t^{(k)}, t = 1, ..., n\right\}$ from copula $C(u; \hat{\theta})$ under H_0 with PMLE $\hat{\theta}$ and estimated marginal distribution \check{F} obtained from original data;
- Step 2. Based on $\{\epsilon_t^{(k)}, t = 1, ..., n\}$ from Step 1, estimate θ of the copula under H_0 by the two-step PMLE method, and compute R_n , denoted by R_n^k ;
- Step 3. Repeat Steps 1 2 N times and obtain N statistics $R_n^k, k = 1, ..., N$;

Step 4. Compute empirical *p*-value as $p_e = \frac{1}{N} \sum_{k=1}^{N} I(|R_n^k| \ge |R_n|)$.

Simulation Study - Fixed true model setup

- ☑ Tests used in the study:
 - \succ S_n \triangleright J_n
 - ► R_n
 - $T_n(1)$ and $T_n(3)$
- ⊡ Copulae: Gaussian, t, Clayton and Gumbel
- \Box $\tau \in \{0.25; 0.50; 0.75\}$
- \Box $n \in \{100; 300\}$
- \odot Rounds of simulation N = 1000
- \odot Bootstrap sample paths in every simulation M = 1000

Simulation Study - Results

	True	Ho	Sn	J _n	R _n	$T_n(1)$	$T_n(3)$
	Ga.	Ga.	5.5	4.3	4.4	4.5	4.2
	t	t	4.3	5.1	5.5	4.6	6.2
	CI.	CI.	5.0	5.9	6.6	6.5	5.0
	Gu.	Gu.	4.5	3.3	5.2	5.2	5.2
	Ga.	t	5.1	12.4	66.0	61.7	22.4
	Ga.	CI.	99.1	100.0	77.7	78.8	62.5
0	Ga.	Gu.	60.2	36.3	7.3	6.9	6.3
30	t	Ga.	65.7	12.3	95.6	96.3	88.1
	t	CI.	98.3	100.0	98.0	98.0	86.5
ę	t	Gu.	88.3	24.7	71.4	72.6	52.7
	CI.	Ga.	100.0	100.0	100.00	99.8	97.2
	CI.	t	100.0	98.5	36.6	97.7	75.9
	CI.	Gu.	100.0	100.0	100.0	100.0	100.0
	Gu.	Ga.	26.1	30.9	87.8	84.1	69.4
	Gu.	t	47.0	25.6	5.5	4.3	5.9
	Gu.	CI.	100.0	100.0	100.0	100.0	97.5

Table 1: Percentage of rejection of H_0 by various tests of size n = 300 from different copula models with $\tau = 0.75$, N = 1000, M = 1000.

	True	Ho	Sn	J _n	R _n	$T_n(1)$	$T_n(3)$
	Ga.	Ga.	5.5	4.3	4.4	4.5	4.2
	t	t	4.3	5.1	5.5	4.6	6.2
	CI.	CI.	5.0	5.9	6.6	6.5	5.0
	Gu.	Gu.	4.5	3.3	5.2	5.2	5.2
	Ga.	t	5.1	12.4	66.0	61.7	22.4
	Ga.	CI.	99.1	100.0	77.7	78.8	62.5
o	Ga.	Gu.	60.2	36.3	7.3	6.9	6.3
30	t	Ga.	65.7	12.3	95.6	96.3	88.1
	t	CI.	98.3	100.0	98.0	98.0	86.5
6	t	Gu.	88.3	24.7	71.4	72.6	52.7
	CI.	Ga.	100.0	100.0	100.00	99.8	97.2
	CI.	t	100.0	98.5	36.6	97.7	75.9
	CI.	Gu.	100.0	100.0	100.0	100.0	100.0
	Gu.	Ga.	26.1	30.9	87.8	84.1	69.4
	Gu.	t	47.0	25.6	5.5	4.3	5.9
	Gu.	CI.	100.0	100.0	100.0	100.0	97.5

Table 2: Percentage of rejection of H_0 by various tests of size n = 300 from different copula models with $\tau = 0.75$, N = 1000, M = 1000.

Simulation Study - Results

	True	Ho	Sn	J _n	R _n	$T_n(1)$	<i>T</i> _n (3)
	Ga.	Ga.	5.5	4.3	4.4	4.5	4.2
	t	t	4.3	5.1	5.5	4.6	6.2
	CI.	CI.	5.0	5.9	6.6	6.5	5.0
	Gu.	Gu.	4.5	3.3	5.2	5.2	5.2
	Ga.	t	5.1	12.4	66.0	61.7	22.4
	Ga.	CI.	99.1	100.0	77.7	78.8	62.5
0	Ga.	Gu.	60.2	36.3	7.3	6.9	6.3
30	t	Ga.	65.7	12.3	95.6	96.3	88.1
	t	CI.	98.3	100.0	98.0	98.0	86.5
6	t	Gu.	88.3	24.7	71.4	72.6	52.7
	CI.	Ga.	100.0	100.0	100.00	99.8	97.2
	CI.	t	100.0	98.5	36.6	97.7	75.9
	CI.	Gu.	100.0	100.0	100.0	100.0	100.0
	Gu.	Ga.	26.1	30.9	87.8	84.1	69.4
	Gu.	t	47.0	25.6	5.5	4.3	5.9
	Gu.	CI.	100.0	100.0	100.0	100.0	97.5

Table 3: Percentage of rejection of H_0 by various tests of size n = 300 from different copula models with $\tau = 0.75$, N = 1000, M = 1000.

Simulation Study - Results

	True	Ho	Sn	J _n	R _n	$T_n(1)$	$T_n(3)$
	Ga.	Ga.	5.5	4.3	4.4	4.5	4.2
	t	t	4.3	5.1	5.5	4.6	6.2
	CI.	CI.	5.0	5.9	6.6	6.5	5.0
	Gu.	Gu.	4.5	3.3	5.2	5.2	5.2
	Ga.	t	5.1	12.4	66.0	61.7	22.4
	Ga.	CI.	99.1	100.0	77.7	78.8	62.5
0	Ga.	Gu.	60.2	36.3	7.3	6.9	6.3
30	t	Ga.	65.7	12.3	95.6	96.3	88.1
	t	CI.	98.3	100.0	98.0	98.0	86.5
6	t	Gu.	88.3	24.7	71.4	72.6	52.7
	CI.	Ga.	100.0	100.0	100.00	99.8	97.2
	CI.	t	100.0	98.5	36.6	97.7	75.9
	CI.	Gu.	100.0	100.0	100.0	100.0	100.0
	Gu.	Ga.	26.1	30.9	87.8	84.1	69.4
	Gu.	t	47.0	25.6	5.5	4.3	5.9
	Gu.	CI.	100.0	100.0	100.0	100.0	97.5

Table 4: Percentage of rejection of H_0 by various tests of size n = 300 from different copula models with $\tau = 0.75$, N = 1000, M = 1000.

Hybrid Test, I

- □ Different tests + different situations = Different power
- ⊡ Hybrid test combines several test methods
- : Consider q test statistics $T_n^{(1)}, T_n^{(2)}, \ldots, T_n^{(q)}$
- \boxdot Common H_0 hypothesis and given significance level lpha
- \Box Hybrid test statistic, T_n^{hybrid} , will have p-value

 $p_n^{\text{hybrid}} = \min\{q \times \min\{p_n^{(1)}, \dots, p_n^{(q)}\}, 1\}$

$$\ \ \, \blacksquare \ \ \, \mathsf{Rejection \ rule:} \ \ \, p_n^{\mathsf{hybrid}} \leq \alpha \\$$

Hybrid Test, II

⊡ Type I error:

$$P(p_n^{(hybrid)} \le \alpha | H_0) \le \alpha$$

☑ Type II error:

$$P(p_n^{hybrid} \le \alpha | H_1) \ge \max \left\{ \beta_n^1(\alpha/q), \dots, \beta_n^q(\alpha/q) \right\}$$

- Implication: If at least one test is consistent, hybrid test is consistent as well
- Simulation study shows that the Hybrid Test behaves more desirably than the individual tests

Simulation Study - cont.

- Bootstrap technique to numerically establish the null distribution of the test statistics
- Applied single tests:
 - ► *S*_n
 - \blacktriangleright J_n
 - \triangleright R_n
 - $T_n(1)$ and $T_n(3)$

Applied hybrid tests:

- ► $JT_n(1)$
- ► SJR_n
- ▶ $SJT_n(1)$

- 3-3

Simulation Study - Results

	True	Но	S _n	J _n	R _n	$T_n(1)$	$T_n(3)$	SR _n	$ST_n(1)$	JR _n	$JT_n(1)$	SJR _n	SJT _n (1)
	Ga.	Ga.	5.5	4.3	4.4	4.5	4.2	4.7	4.2	4.3	4.1	5.6	5.7
	t	t	4.3	5.1	5.5	4.6	6.2	5.6	4.5	4.7	5.1	5.1	4.7
	cl.	Cl.	5.0	5.9	6.6	6.5	5.0	5.5	5.5	3.5	3.5	3.2	3.2
	Gu.	Gu.	4.5	3.3	5.2	5.2	5.2	4.4	4.3	4.5	4.3	5.1	5.1
	Ga.	t	5.1	12.4	66.0	61.7	22.4	55.3	46.4	58.3	50.3	51.2	42.9
	Ga.	cl.	99.1	100.0	77.7	78.8	62.5	98.3	98.3	100.0	100.0	100.0	100.0
~	Ga.	Gu.	60.2	36.3	7.3	6.9	6.3	49.5	49.1	26.8	26.9	57.9	57.9
ĕ	t	Ga.	65.7	12.3	95.6	96.3	88.1	92.9	93.7	93.2	94.0	91.9	92.5
	t	Cl.	98.3	100.0	98.0	98.0	86.5	99.6	99.6	100.0	100.0	100.0	100.0
	t	Gu.	88.3	24.7	71.4	72.6	52.7	88.3	88.3	67.9	68.1	83.1	83.1
	cl.	Ga.	100.0	100.0	100	99.8	97.2	100.0	100.0	100.0	100.0	100.0	100.0
	cl.	t	100.0	98.5	36.6	97.7	75.9	100.0	100.0	97.9	99.6	100.0	100.0
	cl.	Gu.	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Gu.	Ga.	26.1	30.9	87.8	84.1	69.4	83.1	80.0	82.8	82.1	79.7	78.4
	Gu.	t	47.0	25.6	5.5	4.3	5.9	32.2	31.8	19.6	19.5	30.4	29.2
	Gu.	Cl.	100.0	100.0	100.0	100.0	97.5	100.0	100.0	100.0	100.0	100.0	100.0

Table 5: Percentage of rejection of H_0 by various tests of size n = 300 from different copula models with $\tau = 0.75$, N = 1000, M = 1000.

GoF Test

Results - Summary, IV

- 1. No significant difference between $T_n(m)$ and R_n over τ , n and copula family;
- 2. $T_n(1)$ performs overall better or equal than $T_n(3)$;
- 3. Mostly when *t*-copula is true under H_0 , R_n ; performs much better than $T_n(1)$ (similar results for hybrid tests);
- 4. Almost no test has power in the case of low correlation;
- PIOS tests superior to benchmarks to differentiate between t and Gaussian copula;
- 6. For $\tau = 0.5$ or $\tau = 0.75$ and n = 300 all tests behave very well and sometimes benchmark tests are superior;

7. Hybrid tests have overall superior performance. GoF Test

Local Power, I

• Asymptotic power of R_n against a local alternative in the Pitman sense for a constant $\delta > 0$:

$$H_{1,n}: P_n^{C_1,\delta}(x) = C_0\{F(x);\theta_0\} + \frac{\delta}{\sqrt{n}} [C_1\{F(x)\} - C_0\{F(x);\theta_0\}]$$

 $\ \ \, \hbox{ In Summe } C_1\{F(x)\}\geq C_0\{F(x);\theta_0\} \ \, \hbox{for all } x\in \mathbb{R}^d$

• Ensures that $P_n^{C_1,\delta}(x)$ is a copula for $0 < \delta \le n^{1/2}$ and the departure from the null $C_0\{F(x); \theta_0\}$ increases as δ increases.

4-1

Local Power, II

Theorem

Suppose D1 holds in addition to the assumptions A2 and B1 - B3. Then under $H_{1,n}$

$$\sqrt{n}(R_n-p) \stackrel{\mathcal{L}}{\longrightarrow} \mathsf{N}\{\delta m(c_0,c_1),\sigma_R^2\}$$

where

$$m(c_0, c_1) = \mathsf{E}_{c_0} \left[W(X_t) g \left\{ F(X_t); \theta_0 \right\} \right],$$

and $E_{c_0}(\cdot)$ denotes the expectation under the null distribution c_0 or P_0 , and $W(\cdot)$ as a weighting function. That is, $m(c_0, c_1)$ is a weighted expectation of $g \{F(X_t); \theta_0\}$ under P_0 .

Local Power, III

⊡ Implication: as long as $m(c_0, c_1) \neq 0$

- $\blacktriangleright R_n \text{ will yield power locally}$
- \blacktriangleright The asymptotic local power increases to 1 as δ increases to infinity
- $\rightarrow R_n$ is a consistent test
- T_n has the same asymptotic local power function as R_n
- \rightarrow T_n is also a consistent test

Local power, Simulation Study I

- \Box Asymptotic power of R_n under alternatives in the Pitman sense
- \boxdot Two settings: Clayton copula under $H_0,$ and Gaussian copula under H_0
- \Box n = 500, N = 1000
- \odot Margins $F(\cdot)$ uniform on [0,1]
- \Box (τ_1, τ_2) = (0.4, 0.8)
- $\boxdot \delta \in [0.0; 0.5]$

4-4

Results

Figure 4: Local Power curves for the R_n test with Clayton copula being under H_0 and four different cases of true mixture copulas.

GoF Test

PIOS for the time series models, I

 Semi-Parametric Copula based Multivariate DYnamic model (SCOMDY), Chen and Fan (2006), for time series data

$$Y_t = \mu_t(\eta_1^0) + \Sigma_t^{1/2}(\eta^0)\epsilon_t,$$

$$\begin{array}{l} \cdot \quad Y_t = (Y_{t1}, \ldots, Y_{td})^\top \\ \hline \quad \mu_t(\eta_1^0) = \left\{ \mu_{t1}(\eta_1^0), \ldots, \mu_{td}(\eta_1^0) \right\}^\top = \mathsf{E}\left(Y_t | \mathcal{F}_{t-1}\right) \\ \hline \quad \mathcal{F}_t \text{ is sigma-field generated by } (Y_{t-1}, Y_{t-2}, \ldots; Z_t, Z_{t-1}, \ldots), \\ \text{ and } Z_t \text{ is a vector of predetermined or exogenous variables.} \\ \hline \quad \Sigma_t(\eta^0) = diag \left\{ \Sigma_{t1}(\eta^0), \ldots, \Sigma_{td}(\eta^0) \right\}, \text{ where} \\ \Sigma_{tj}(\eta^0) = \mathsf{E}\left[\left\{ Y_{tj} - \mu_{tj}(\eta_1^0) \right\}^2 | \mathcal{F}_{t-1} \right], j = 1, \ldots, d, \\ \hline \quad \epsilon_t = (\epsilon_{t1}, \ldots, \epsilon_{td})^\top, t = 1, \ldots, n \text{ with } \epsilon_t \overset{iid}{\sim} \mathcal{L}(0, 1) \end{array}$$

PIOS for the time series models, II

☑ Special cases of SCOMDY:

VAR

Multivariate ARMA

- Multivariate GARCH
- • •

• Estimation:

- Performed with three-stage procedure
- Resulting residuals are used to construct PIOS test to test the specification of a parametric copula.

Estimation, I

1. Univariate quasi ML with $\epsilon \sim N(0, 1)$ to estimate $\eta = (\eta_1^\top, \eta_2^\top)^\top$:

$$\hat{\eta}_{1} = \arg\min_{\eta_{1} \in \Psi_{1}} \left[\frac{1}{n} \sum_{t=1}^{n} \left\{ Y_{t} - \mu_{t}(\eta_{1}) \right\}^{\top} \left\{ Y_{t} - \mu_{t}(\eta_{1}) \right\} \right]$$

and

$$\hat{\eta}_{2} = \arg\min_{\eta_{2} \in \Psi_{2}} \left(\frac{1}{n} \sum_{t=1}^{n} \sum_{j=1}^{d} \left[\Sigma_{tj}^{-1}(\hat{\eta}_{1}, \eta_{2}) \left\{ Y_{t} - \mu_{t}(\hat{\eta}_{1}) \right\}^{2} + \log \Sigma_{tj}(\hat{\eta}_{1}, \eta_{2}) \right] \right)$$

GoF Test

Estimation, II

2. Estimate marginal distribution $F_j(\cdot)$ of $\tilde{\epsilon}_{tj}$

$$\tilde{\epsilon}_{tj} = \Sigma_{tj}^{-1/2}(\hat{\eta}) \{ y_{tj} - \mu_{tj}(\hat{\eta}_1) \}, \quad j = 1, \dots, d; \quad t = 1, \dots, n$$

by

$$\check{F}_j(x) = rac{1}{n+1} \sum_{t=1}^n \mathsf{I}\left\{\widetilde{\epsilon}_{tj} \leq x
ight\}, \ x \in \mathbb{R}, \ j = 1, \dots, d.$$

Estimation, III

3. Estimate θ by

$$\hat{\theta} = \arg \max_{\theta \in \Theta} \frac{1}{n} \sum_{t=1}^{n} \ell\{\check{F}(\tilde{\epsilon}_{t}); \theta\},\$$

where $\ell(\cdot; \cdot) = \log c(\cdot; \cdot)$.

 \Box use residuals to estimate T_n and R_n

Extension of PIOS Test -Theorem

(i) Under conditions A1 - A2 and E1 - E4, we have $\tilde{R}_n \xrightarrow{p} tr \{S(\theta^*)^{-1}V(\theta^*)\}, \quad \text{as} \quad n \to \infty.$

 (ii) Under the null hypothesis, if A2, B1 - B3 and conditions E1 -E4 hold, we have

$$\sqrt{n}\left(\widetilde{R}_n-p
ight) \stackrel{d}{
ightarrow} N(0,\widetilde{\sigma}_R^2), \quad as \quad n
ightarrow\infty,$$

where $\tilde{\sigma}_{R}^{2}$ is the asymptotic variance. (iii) Under assumptions A2, B1 - B3, C1 and E1 - E4, we have

$$\tilde{R}_n - \tilde{T}_n(m) = o_p(n^{-1/2}).$$

• Assumption A1 - A2 • Assumptions B1 - B3 • Assumptions C1 • Assumption E1 - E4GoF Test

PIOS for SCOMDY model

□ True data-generating processes are GARCH(1,1):

$$\begin{aligned} x_{it} &= \sigma_{it} \varepsilon_{it} \\ \sigma_{it}^2 &= \omega + \alpha x_{i,t-1}^2 + \beta \sigma_{i,t-1}^2, \quad \text{for } i = 1,2 \end{aligned}$$

with $\{\varepsilon_{1t}, \varepsilon_{2t}\} \sim C\{F_1(\cdot), F_2(\cdot); \theta\}$, $\varepsilon_{i,t} \perp \varepsilon_{i,t-1}$ for i = 1, 2.

$$\boxdot~\omega=10^{-1},~\alpha=0.8~{\rm and}~\beta=0.1$$

- 1. Simulated *iid* samples in bootstrap loop
- 2. Bootstrap loop with time series structure

Observation-based Bootstrap

- Step 1. Generate time series $\{Y_t^{(k)}, t = 1, ..., n\}$ from SCOMDY model with $\hat{\eta}_1$ and $\hat{\eta}_2$ estimated from original data, and with innovation process generated from assumed copula under H_0 with $\hat{\theta}$ and marginal distribution \check{F} .
- Step 2. Based on $\{Y_t^{(k)}, t = 1, ..., n\}$, estimate $\hat{\eta}_1^{(k)}$ and $\hat{\eta}_2^{(k)}$. Estimate residuals $\tilde{\epsilon}_{tj}^{(k)} = \{y_{tj}^{(k)} \mu_{tj}(\hat{\eta}_1^{(k)})\} / \Sigma_{tj}^{1/2}(\hat{\eta}_2^{(k)})$.
- Step 3. Based on $\{\tilde{\epsilon}_t^{(k)}, t = 1, ..., n\}$, estimate θ of copula under H_0 by two-step PMLE method and compute R_n^k ;
- Step 4. Repeat Steps 1- 3 N times and obtain N statistics R_n^k , k = 1, ..., N;
- Step 5. Compute empirical *p*-value as $p_e = \frac{1}{N} \sum_{k=1}^{N} I(|R_n^k| \ge |R_n|)$.

SCOMDY, I

True	H ₀	$\tau =$	au = 0.25		0.5	au = 0.75	
		R _n	$T_n(1)$	R _n	$T_n(1)$	R _n	$T_n(1)$
Ga	Ga	0.062	0.059	0.058	0.066	0.085	0.088
		0.058	0.061	0.046	0.043	0.042	0.041
CI	CI	0.058	0.052	0.061	0.068	0.113	0.113
		0.053	0.057	0.038	0.039	0.050	0.050
t	t	0.054	0.053	0.048	0.044	0.062	0.043
		0.042	0.043	0.052	0.060	0.049	0.046
Gu	Gu	0.054	0.056	0.055	0.052	0.070	0.069
		0.052	0.055	0.048	0.049	0.046	0.045

Table 6: Percentages of rejection of H_0 by various tests from different copula models for n = 300, N = 300, M = 1000 for the GARCH(1,1) dependent data. Type I errors were obtained using residual-based (in italic) and observation-based bootstrap procedures.

1. Application: Structural changes in the dependency

- ☑ Daily returns of Citigroup and Bank of America
- Period 2004 2013
- \odot Apply GARCH(1,1) to each year separately
- Chosen is the copula dependency with the largest *p*-value for each year

GoF Test —

Scatterplots

Figure 5: Scatterplots of residuals transformed to the standard normal for Citygroup/Bank of America for 2004, 2006 and 2009.

Results

	$T_n(1)$	R _n	Sn	J _n	$ST_n(1)$	SR _n	$JT_n(1)$	JR _n	$SJT_n(1)$	SJR _n
2004	Gu.	Gu.	Ga.	Ga.	Ga.	Ga.	Gu.	Gu.	Ga.	Ga.
2005	Gu.	Gu.	t	t	Gu.	Gu.	Gu.	Gu.	Gu.	Gu.
2006	t	t	Ga.	t	t	t	t	t	t	t
2007	t	t	t	t	t	t	t	t	t	t
2008	t	t	t	t	t	t	t	t	t	t
2009	Gu.	Gu.	Gu.	Ga.	Gu.	Gu.	Gu.	Gu.	Gu.	Gu.
2010	t	t	Gu.	t	Gu.	Gu.	t	t	Gu.	Gu.
2011	t	t	t	t	t	t	t	t	t	t
2012	t	t	t	t	t	t	t	t	t	t
2013	t	t	t	Gu.	t	t	t	t	t	t

Table 7: Copulas that are preferred in each time period by each goodness-of-fit test for the Citigroup / Bank of America.

2. Application: ALAE

Insurance dataset

- □ Losses and Allocated Loss Adjustment Expenses (ALAE)
- Dependence model for 1466 complete available data
- ⊡ GoF tests for Gaussian, *t*, Gumbel and Clayton copula
- Dependence parameter estimated with PMLE

Results

copula	Clayton	Gumbel	Gauss	t
$\hat{ heta}$	0.511	1.428	0.456	0.466
$T_n(1)$	0.000 (1.316)	0.370 (0.954)	0.000 (1.223)	1.000 (0.998)
R _n	0.000 (1.323)	0.315 (0.959)	0.000 (1.274)	1.000 (1.654)
Sn	0.000 (0.407)	0.006 (0.072)	0.000 (0.118)	0.000 (0.163)
J _n	0.000 (0.095)	0.789 (0.023)	0.041 (0.038)	0.296 (0.033)
$ST_n(1)$	0.000	0.012	0.000	0.000
SRn	0.000	0.012	0.000	0.000
$JT_n(1)$	0.000	0.740	0.000	0.592
JRn	0.000	0.630	0.000	0.592
$SJT_n(1)$	0.000	0.018	0.000	0.000
SJR _n	0.000	0.018	0.000	0.000

Table 8: Summary of data analysis results obtained from the four copulas: Gaussian, Student's t, Clayton and Gumbel, including dependence parameter estimates, p-values with test statistics in brackets.

Conclusion

- □ New method based on pseudo likelihood of cross-validation
- □ Comparing "in-sample" and "out-of-sample"
- □ New tests provides a highly competitive performance
- □ Hybrid mechanism to combine several different tests
- Simulation show that tests perform satisfactorily in type I error control
- Comparable to best performer in Genest et al.
- □ Hybrid tests show superior performance

Goodness-of-Fit Test for Specification of Semiparametric Copula Dependence Models

Shulin Zhang, Ostap Okhrin Qian M. Zhou, Peter X.-K. Song

Southwestern University of Finance and Economics Dresden University of Technology Simon Fraser University University of Michigan http://csr.swufe.edu.cn http://osv.vkw.tu-dresden.de http://stat.sfu.ca/ http://www.sph.umich.edu/

Papers

 Genest, C., Rémillard, B., and Beaudoin, D.
 Goodness-of-fit tests for copulas: A review and a power study Insurance: Mathematics and Economics, 44:199–213, 2009

Scaillet, O.

Kernel based goodness-of-fit tests for copulas with fixed smoothing parameters.

Journal of Multivariate Analysis, 98:533-543, 2007

Assumptions - Law of Large Numbers

A1: $\ell_{\theta}(u; \theta)$ and $\ell_{\theta\theta}(u; \theta)$ are continuous with respective to θ for any $u \in [0, 1]^d$; there exist integrable functions $G_1(u)$ and $G_2(u)$ such that $\|\ell_{\theta}(u; \theta)\ell_{\theta}^{\top}(u; \theta)\| \leq G_1(u)$, $\|\ell_{\theta\theta}(u; \theta)\| \leq G_2(u) \ \forall \theta \in \mathcal{N}(\theta^*)$ A2: Matrix $\mathcal{L}(\theta^*) = \sum_{u \in \mathcal{L}} |\ell_u(\mathcal{L}(X))| \theta^*|$ is finite and persingula

A2: Matrix $S(\theta^*) = -E_0[\ell_{\theta\theta}\{F(X_1)\}; \theta^*]$ is finite and nonsingular.

Assumptions - CLT I

Back Local Power

Back Theorem

- B1: Denote $J_i(u) = const \times \prod_{k=1}^d \{u_k(1-u_k)\}^{-\xi_{ik}}$, where
 - $\xi_{ik} > 0$, i = 1, 2, ξ_{ik} are some constants. Suppose that for all $\theta \in \mathbb{N}_{\theta^*}, \|\ell_{\theta}(u;\theta)\ell_{\theta}^{\top}(u;\theta)\| \leq J_1(u), \|\ell_{\theta\theta}(u;\theta)\| \leq J_2(u), \text{ and}$ $\mathsf{E}_0\left[J_i^2\{F(X_1)\}\right] < \infty \; .$
- B2: Suppose that both $\ell_{\theta,k}(u;\theta)$ and $\ell_{\theta,k}(u;\theta)$, $k = 1, 2, \ldots, d$ exist and are continuous. Denote $\tilde{J}_{i}^{k}(u) = const \times \{u_{k}(1-u_{k})\}^{-\xi_{ik}} \prod_{i=1, i \neq k}^{d} \{u_{i}(1-u_{i})\}^{-\xi_{ij}},$ where $\tilde{\xi}_{ii} > \xi_{ii}$ are some constants, such that for all $\theta \in \mathbb{N}(\theta^*)$, $\|\ell_{\theta,k}(u;\theta)\| < \widetilde{J}_1^k(u)$ and $\|\ell_{\theta\theta,k}(u;\theta)\| < \widetilde{J}_2^k(u)$, and furthermore, $\mathsf{E}_0\left[\widetilde{J}_i\{F(X_1)\}\right] < \infty$, i = 1, 2 and $k = 1, 2, \ldots, d$. GoF Test

Assumptions - CLT II

▶ Back CLT ► Back Theorem

B3: Suppose $\frac{\partial \ell_{\theta\theta}(u;\theta)}{\partial \theta_{\ell}}$, $k = 1, 2, \dots, p$ exist and are continuous with $\theta \in \mathbb{N}(\theta^*)$, and there exists an integrable function $G_3(u)$ such that $\left\|\frac{\partial \ell_{\theta\theta}(u;\theta)}{\partial \theta_{\ell}}\right\| \leq G_3(u)$ for all $\theta \in \mathbb{N}(\theta^*)$, $k = 1, \dots, d$. C1: The block size *m* is of order $o(n^a)$ with $0 \le a \le \frac{1}{4}$.

Assumption - Local Power of Evaluation

Back Local Power

D1: Both the copula $C_0(\cdot; \theta_0)$ and $C_1(\cdot)$ in $P_n^{C_1,\delta}(x)$ are absolutely continuous with respective to square integrable densities $c_0(\cdot; \theta_0)$ and $c_1(\cdot)$. Moreover

$$\int_{u\in[0,1]^d}\left[\sqrt{n}\left\{\sqrt{p_n^{c_1,\delta}(u)}-\sqrt{p_0(u)}\right\}-\frac{1}{2}\delta g(u)\sqrt{p_0(u)}\right]^2du\to 0,$$

as
$$n \to \infty$$
, where $p_n^{c_1,\delta}(u) = (1 - \frac{\delta}{\sqrt{n}})c_0(u;\theta_0) + \frac{\delta}{\sqrt{n}}c_1(u)$,
 $p_0(u) = c_0(u;\theta_0)$ and $g(u) = \frac{c_1(u) - c_0(u;\theta_0)}{c_0(u;\theta_0)}$.

Assumptions - Large sample properties I

Back Theorem

E1.
$$\left\{ \left(Y_t^{\top}, Z_t^{\top} \right), t = 1, \dots, n \right\}$$
 is stationary β -mixing with serial decay rate of order $O(t^{-\frac{\xi}{\xi-1}})$ for some $\xi > 1$
E2. $\hat{\eta}$ is a root-*n* consistent estimator of η_0
E3. For all $t \ge 1$ and $j = 1, \dots, d$,
 $\epsilon_{tj} = \sum_{tj}^{-1/2} (\eta^0) \left\{ Y_{tj} - \mu_{tj}(\eta_1^0) \right\}$ is continuously differentiable in the neighbood of η^0 , and
 $\omega_1 = \mathbb{E}_0 \left\{ \sum_{tj}^{-1/2} (\eta^0) \dot{\mu}_{tj}(\eta_1^0) \right\} < \infty$ and
 $\omega_2 = \mathbb{E}_0 \left\{ \sum_{tj}^{-1} (\eta^0) \dot{\Sigma}_{tj}(\eta^0) \right\} < \infty$, where $\dot{\mu}_{tj}(\eta_1^0) = \frac{\partial \mu_{tj}(\eta_1^0)}{\partial \eta_1}$
and $\dot{\Sigma}_{tj}(\eta^0) = \frac{\partial \Sigma_{tj}(\eta^0)}{\partial \eta}$.

Assumptions - Large sample properties II

E4. The PMLE $\hat{\theta}$ has the following asymptotic expansion

$$\hat{\theta} - \theta^* = \frac{1}{n} \sum_{t=1}^n \varphi_{\theta} (U_t; \theta^*) + o_p(n^{-1/2}),$$
where $U_t = (U_{t1}, \dots, U_{td})^\top$, $U_{tj} = F_j(\epsilon_{tj}),$
 $j = 1, \dots, d, t = 1, \dots, n$ and
 $\varphi_{\theta} (U_t; \theta^*) = S(\theta^*)^{-1} (\ell_{\theta} (U_t; \theta^*))$
 $+ \sum_{j=1}^d \mathsf{E}_0 [\ell_{\theta, j} (U_s; \theta^*) \{\mathsf{I}(U_{tj} \le U_{sj}) - U_{sj}\} | U_{tj}]).$

