Pricing Tranches of Credit Default Swap Index: A Mixed Copula Approach

Ostap Okhrin Yafei Xu

Chair of Econometrics and Statistics, esp Transportation Institute for Transport and Economics Technische Universität Dresden http://osv.vkw.tu-dresden.de/

CDS Index - Credit Default Swap Index

Figure 1: The structure of CDS Index.

Advantages of CDS Index

- □ Credit risk hedging or investment of a basket of credit entities.
- □ Standardised credit security over the counter.
- □ More liquid trading than the single-name CDS and CDO.

Yearly Issuance of CDOs

Figure 2: Yearly issuance of CDOs. Data: SIFMA.

Quarterly Issuance of CDOs

Figure 3: Quarterly issuance of CDOs. Data: SIFMA.

Pricing Tranches of CDX: A Mixed Copula Approach

1 - 4

Problems in Pricing Study

- The standard pricing model in industry is the Gaussian copula model introduced in Li (1999) and Li (2000).
- It has drawbacks in destitution of modeling the heterogeneous dependence and the asymmetrical tail-dependence of multivariate defaults.

Correlation Smile by Li's Model

Figure 4: Implied correlation of iTraxx Europe Series 8 on 20071102.

Highlights of Our Study

- First time employing the mixed copula in the pricing of CDS index tranches.
- Extensive comparison of pricing performance between 21 mixed copula based pricing models against 22 benchmark models.

Outline

- 1. Motivation \checkmark
- 2. CDS Index Pricing
- 3. Copula
- 4. Empirics
- 5. Conclusion

An Example of CDS Index Tranches

Interval	0-3%	3-6%	6-9%	9-12%	12-22%
spreads 5y					17.50
spreads 7y	26.43	166.72	80.16	45.90	29.58

Table 1: Spreads of tranches of the iTraxx Europe Series 8 on 2007-10-23 with maturities of 5 years and 7 years sourced from Bloomberg.

Marginal Default

Let $\tau_k, k = 1, \ldots, d$ be the random variable of the default time for the k-th entity in the reference pool, then the CDF of τ_k is defined as follows,

$$\begin{array}{lll} F_k(z) &=& \mathsf{P}(\tau_k \leq z), \\ &=& 1 - \exp\left[-\int_0^z h_k(s) \mathrm{d}s\right], \end{array}$$

where $z \in [0, T]$ and $h_k(s)$ is the intensity function.

Single Entity Loss and Portfolio Loss

For the default counting, Λ_{k,t_j} is defined as the single default variable of the *k*-th entity at the point t_j as follows,

 $\Lambda_{k,t_j} = \mathbf{1}_{\{\tau_k \leq t_j\}}, \ k = 1, \ldots, d.$

Then the portfolio loss process can be given,

$$L_{t_j}=\frac{1}{d}\sum_{k=1}^d(1-R)\Lambda_{k,t_j},\ j=1,\ldots,J,$$

where 1 - R is the constant loss given default (LGD).

Tranche Loss and Outstanding Notional

The *q*-th tranche loss L_{q,t_i} at the time point t_j ,

$$L_{q,t_j} = \begin{cases} 0 & \text{if } L_{t_j} \leq A_q, \\ L_{t_j} - A_q & \text{if } A_q \leq L_{t_j} \leq D_q, \\ D_q - A_q & \text{if } L_{t_j} > D_q, \end{cases}$$

where A_q and D_q , q = 1, ..., Q are correspondingly the attachment and detachment point of the *q*-th tranche. The outstanding notional P_{q,t_i} can be represented as follows,

$$P_{q,t_j} = D_q - A_q - L_{q,t_j}.$$

Default Leg and Premium Leg

The default leg DL_q of the q-th tranche can be given as follows,

$$DL_q = \mathbb{E}\left\{\sum_{j=1}^J Y_{t_j} N(L_{q,t_j} - L_{q,t_{j-1}})\right\},$$

where Y_{t_j} is the discount factor and N is the notional of the portfolio.

The non-equity tranche premium leg PL_q can be given as follows,

$$PL_q = \mathbb{E}\left\{\sum_{j=1}^{J} Y_{t_j}S_q(t_j - t_{j-1})(P_{q,t_j} + P_{q,t_{j-1}})N/2\right\}, \ q \geq 2.$$

Tranche Spread

The main idea of CDO pricing is to imply tranche spreads under the following equation,

$$PL_q = DL_q, \tag{1}$$

where PL_q and DL_q are respectively the premium leg and the default leg of the *q*-th tranche.

The non-equity q-th $(q \ge 2)$ tranche spread can be given,

$$S_{q} = \frac{\mathbb{E}\left\{\sum_{j=1}^{J} Y_{t_{j}}(L_{q,t_{j}} - L_{q,t_{j-1}})\right\}}{\mathbb{E}\left\{\sum_{j=1}^{J} Y_{t_{j}}(t_{j} - t_{j-1})(P_{q,t_{j}} + P_{q,t_{j-1}})/2\right\}}.$$
(2)

CDO and Copula

Figure 5: $\Pr[\tau_A < 1, \tau_B < 1] = \Phi_2(\Phi^{-1}(F_A(1)), \Phi^{-1}(F_B(1)), \gamma)$. Source: TORONTO STAR, 18.03.2009. Pricing Tranches of CDX: A Mixed Copula Approach

Copula

Theorem (Sklar's Theorem) Given a d-dimensional joint CDF F such that $F(x_1,...,x_d) = \mathbb{P}(X_1 \le x_1,...,X_d \le x_d)$ of a random vector $(X_1,X_2,...,X_d)^\top$ with margins $F_k(x) = \mathbb{P}(X_k \le x)$, there exists a d-dimensional copula C such that

$$F(x_1,\ldots,x_d)=C\{F_1(x_1),\ldots,F_d(x_d)\}.$$

The copula C is unique if every F_k , k = 1, 2, ..., d, is continuous, otherwise C is uniquely defined on $\prod_{k=1}^{d} Range(F_k)$.

Copula and CDO Pricing

Let the random variable τ_k as

$$au_k = \inf\left\{z \mid U_k \ge \exp\left(-\int_0^z h_k(s) \mathrm{d}s\right)\right\}, \ k = 1, \dots, d,$$

and the random vector $(\tau_1, \ldots, \tau_d)^\top \sim F(z_1, \ldots, z_d)$, then the joint default CDF of d entities at the respective time points $(z_1, \ldots, z_d)^\top$ can be given as follows,

$$F(z_1,\ldots,z_d) = \mathbb{P}(\tau_1 \leq z_1,\ldots,\tau_d \leq z_d),$$

= $C \{F_1(z_1),\ldots,F_d(z_d)\},$

where $F_k(z) = 1 - \exp \left\{-\int_0^z h_k(s) ds\right\}$ and $h_k(s)$ is the intensity function.

Copula and CDO Pricing

For simplicity we set here the intensity function $h_k(s)$ as a constant such that $h_k(s) = h$, therefore we have

$$F_k(z) = 1 - \exp\left\{-\int_0^z h_k(s) \mathrm{d}s\right\},$$

= 1 - exp(-hz). (3)

Then under $au_k \sim F_k$ it can be obtained that

$$\exp(-h\tau_k) \sim \mathcal{U}[0,1]. \tag{4}$$

Copula and CDO Pricing

Let us define a random vector $(U_1, \ldots, U_d)^{\top}$, where

$$U_k = \exp(-h\tau_k), \ k = 1, \dots, d.$$
(5)

As it has been given that $U_k \sim \mathcal{U}[0, 1]$, therefore the joint CDF of $(U_1, \ldots, U_d)^\top$ can be given as follows,

 $\mathbb{P}(U_1 \leq u_1, \ldots, U_d \leq u_d) = C\{\exp(-hz_1), \ldots, \exp(-hz_d)\}(6)$

Algorithm of Sampling of Joint Default Times

- □ Step 1: Sample $(u_1^m, \ldots, u_d^m)^\top$ using $(U_1, \ldots, U_d)^\top$, where $m = 1, \ldots, M$ is the runs of Monte Carlo simulation and $(U_1, \ldots, U_d)^\top \sim C(u_1, \ldots, u_d)$.
- Step 2: Compute $(\tau_1, \ldots, \tau_d)^{\top} = (\frac{-\log U_1}{h}, \ldots, \frac{-\log U_d}{h})^{\top}$ according to $U_k = \exp(-h\tau_k)$.

Pricing CDO with Empirical Samples

1. Calculate the q-th tranche loss at the point $t_j, j \in \{0, \dots, J\}$,

$$\hat{\mathbb{E}}[L_{q,t_j}] = \frac{1}{M} \sum_{m=1}^{M} \left[\min\{\max\{L_{t_j} - A_q, 0\}, D_q - A_q\} \right].$$
(7)

2. Calculate the q-th non equity tranche spread, $q \in \{2, \ldots, Q\}$,

$$\hat{S}_{q\geq 2} = \frac{\hat{\mathbb{E}}\left\{\sum_{j=1}^{J} Y_{t_j}(L_{q,t_j} - L_{q,t_{j-1}})\right\}}{\hat{\mathbb{E}}\left\{\sum_{j=1}^{J} Y_{t_j}(t_j - t_{j-1})(P_{q,t_j} + P_{q,t_{j-1}})/2\right\}}.$$
(8)

Gaussian Copula

Definition (Gaussian Copula)

For a *d*-dimensional uniform vector $u = (u_1, \ldots, u_d) \in [0, 1]^d$ the Gaussian copula can be represented as follows,

$$C_{gs}(u;\rho) = \Phi_d \left\{ \Phi^{-1}(u_1), \ldots, \Phi^{-1}(u_d); \rho \right\},\$$

where ρ is a $(d \times d)$ correlation matrix, Φ_d is a *d*-dimensional standard normal distribution function and Φ is a one dimensional standard normal distribution function.

Model 1 (Li 1999, 2000):

$$C(u_1,\ldots,u_d;\theta) = \Phi_d \left\{ \Phi^{-1}(u_1),\ldots,\Phi^{-1}(u_d);\rho \right\}.$$

Exchangeable Gaussian Copula

Figure 6: 10000 Monte Carlo simulations for 3-dimensional Gaussian copula $C_{gs}(u_1, u_2, u_3; \rho_P)$ with an exchangeable correlation matrix, where from left to right $\rho_P = 0.1, 0.5, 0.9$.

Exchangeable Gaussian Copula

Figure 7: 10000 Monte Carlo simulations for 3-dimensional Gaussian copula $C_{gs}(u_1, u_2, u_3; \rho_P)$ with an exchangeable correlation matrix, where from left to right $\rho_P = 0.1, 0.5, 0.9$.

Figure 8: Plot left 1 is a 2-dimensional scatter plot drawing from Gaussian copula $C_{gs}(u_1, u_2; \rho_{\mathcal{P}})$. Plot left 2 is a 2-dimensional contour plot of copula density. Plot left 3 is a 2-dimensional copula density plot. The Gaussian copula is employed here with $\rho_{\mathcal{P}} = 0.7$.

Scatterplot of 2-dimensional Copulas

Mixed Copula

Definition (Mixed Copula)

Let $w_l \in [0, 1]$, $l \in \{1, 2\}$ be the weight for the *l*th component copula, then the mixed copula model can be given as follows,

$$C_{e1-e2}(u_1,...,u_d;\theta) = w_1 C_{e1}(u_1,...,u_d;\theta_1) + w_2 C_{e2}(u_1,...,u_d;\theta_2),$$

where the component copulas e1 and $e2 \in \{ga, t, fr, cl, gu, jo\}$ and parameters θ_1 and θ_2 belong correspondingly to the component e1 and e2.

Papers: Hu (2006), Wang (2008), Cai et al. (2009).

Examples of Mixed Copula Models

Model 24 :

$$C_{ga-t}(u_1,\ldots,u_d;\theta)$$

$$= w_1 C_t(u_1,\ldots,u_d;\theta_1) + w_2 C_{ga}(u_1,\ldots,u_d;\theta_2).$$

Model 35 :

$$C_{fr-cl}(u_1,\ldots,u_d;\theta)$$

= $w_1 C_{fr}(u_1,\ldots,u_d;\theta_1) + w_2 C_{cl}(u_1,\ldots,u_d;\theta_2).$

Model 42 :

$$C_{gu-jo}(u_1,\ldots,u_d;\theta)$$

= $w_1 C_{gu}(u_1,\ldots,u_d;\theta_1) + w_2 C_{jo}(u_1,\ldots,u_d;\theta_2).$

Data Set: CDX NA IG Series 19

- □ CDX NA IG Series 19 from the Bloomberg .
- 125 names distributed in 5 sectors including Industry (23, 18%), Consumer (44, 35%), Energy (16, 13%), Finance (19, 15%) and TMT (23, 18%).
- □ Maturity of 5 years with the period of 20120920-20171220.
- 10 evaluation dates: 20140601, 20140703, 20140815, 20140923, 20141011, 20141117, 20141201, 20150107, 20150210, 20150315.
- 4 standard tranches with intervals [0%, 3%), [3%, 7%), [7%, 15%), [15%, 100%].

4 - 1

Calibration

$$RMSE = \sqrt{rac{1}{Q}\sum_{q=1}^{Q}\left(\widehat{S}_{q}^{CDO} - S_{q}^{Market}
ight)^{2}}$$

 \widehat{S}_q^{CDO} : the *q*-th estimated tranche spread; S_q^{Market} : the market tranche spread;

M = 10000, the runs of the Monte Carlo simulation;

R = 0.4, the constant recovery rate.

4-2

Table of Employed 43 Models

Model	Notation	Model	Notation	Model	Notation	Model	Notation
1	Cga	12	C_{t4}	23	C _{ga-ga}	34	C _{fr-fr}
2	C_t	13	C_{t5}	24	C_{ga-t}	35	C_{fr-cl}
3	Cgal	14	C_{t6}	25	C_{ga-fr}	36	C_{fr-gu}
4	C_{ga2}	15	C _{fr}	26	C _{ga-cl}	37	C_{fr-jo}
5	C_{ga3}	16	C_{cl}	27	C _{ga-gu}	38	C_{cl-cl}
6	C _{ga4}	17	Cgu	28	C _{ga-jo}	39	C_{cl-gu}
7	C_{ga5}	18	Cjo	29	C_{t-t}	40	C_{cl-jo}
8	Cga6	19	C_{ng2}	30	C_{t-fr}	41	C_{gu-gu}
9	C_{t1}	20	C_{ng3}	31	C_{t-cl}	42	C_{gu-jo}
10	C_{t2}	21	Cng4	32	C_{t-gu}	43	C _{jo-jo}
11	C _{t3}	22	C _{ng5}	33	C_{t-jo}		

Table 2: Abbr.: *ga*: Gaussian, *t*: Student-*t*, *fr*: Frank, *cl*: Clayton, *gu*: Gumbel, *jo*: Joe, $\{gai\}_{i=1}^{6}$: Gaussian with the correlation matrix $\{R_{gai}\}_{i=1}^{6}$, $\{tj\}_{j=1}^{6}$: Student-*t* with the same correlation matrix structure as $\{gai\}_{i=1}^{6}$, *ng*: HAC with the Gumbel generator function.

Table of Ranking of Mean of RMSEs

Rank	Notation	Rank	Notation	Rank	Notation	Rank	Notation
1	C_{cl-jo}	12	C_{ga-ga}	23	Cjo	34	C _{t4}
2	C _{fr-gu}	13	C_{cl-cl}	24	C _{ng3}	35	C _{ga2}
3	C_{cl-gu}	14	C_{fr-cl}	25	C_{ng2}	36	C_{t1}
4	C_{t-cl}	15	C_{t-gu}	26	C_{fr-fr}	37	C _{ga4}
5	C_{ga-jo}	16	C _{gu-gu}	27	C_t	38	C_{gal}
6	C_{fr-jo}	17	C_{t-jo}	28	C_{ga6}	39	C_{t4}
7	C_{t-fr}	18	C _{ng5}	29	C_{t6}	40	C _{fr}
8	C_{ga-cl}	19	C_{ng4}	30	C_{ga5}	41	C_{t-t}
9	C_{ga-t}	20	C_{gu-jo}	31	C_{t5}	42	C _{cl}
10	C _{ga-gu}	21	Cgu	32	C_{t2}	43	Cga
11	C _{ga-fr}	22	C _{jo-jo}	33	C _{ga3}		_

Table 3: Abbr.: *ga*: Gaussian, *t*: Student-*t*, *fr*: Frank, *cl*: Clayton, *gu*: Gumbel, *jo*: Joe, $\{gai\}_{i=1}^{6}$: Gaussian with the correlation matrix $\{R_{gai}\}_{i=1}^{6}$, $\{tj\}_{j=1}^{6}$: Student-*t* with the same correlation matrix structure as $\{gai\}_{i=1}^{6}$, *ng*: HAC with the Gumbel generator function.

RMSE Comparison of Models

Figure 9: RMSEs of 3 best models and 3 worst models at 10 date points

Pricing Tranches of CDX: A Mixed Copula Approach

4-5

RMSE Comparison of Models

Figure 10: RMSEs of 43 models at 10 date points.

4-6

RMSEs of 43 Models in 3D

Figure 11: 3D illustration of RMSEs of 43 models at 10 date dates.

RMSEs of 43 Models in 3D

Figure 12: 3D illustration of RMSEs of 43 models at 10 date dates.

Conclusion

- Apply 21 mixed copulae in CDO pricing compared with 14 elliptical copulae, 5 exchangeable Archimedean copulae, 3 HACs.
- Mixed copula models outperformed benchmark models based on the mean of 10 RMSEs.
- Asymmetrical tail-dependence matters. Mixed copulae which own at least one component copula coming from the Gumbel, Joe or Clayton copula, show top performance.

Conclusion

- □ In elliptical family, the Student-*t* copula models performed similar to the Gaussian copula models.
- In exchangeable Archimedean family, the right tail-dependent copula models such as the Joe and the Gumbel outperform the Frank and the Clayton copula models.
- The mixed family performs best, and Archimedean and HAC families are in the middle. Most elliptical members belong to the worst ten models.

For Further Reading

- B. Choroś-Tomczyk, W. Härdle and O. Okhrin Valuation of Collateralized Debt Obligations with Hierarchical Archimedean Copulae Journal of Empirical Finance, 2013
- Z. Cai and X. Wang Selection of Mixed Copula Model via Penalized Likelihood Journal of the American Statistical Association, 2014

┣ H. Joe

Dependence Modeling with Copulas *Chapman & Hall/CRC*, 2014

Pricing Tranches of Credit Default Swap Index: A Mixed Copula Approach

Ostap Okhrin Yafei Xu

Chair of Econometrics and Statistics, esp Transportation Institute for Transport and Economics Technische Universität Dresden http://osv.vkw.tu-dresden.de/

