Copulae in Practice

Ostap Okhrin

Chair of Econometrics and Statistics, esp. Transportation
Faculty of Transportation
Dresden University of Technology
http://osv.vkw.tu-dresden.de
with contributions by
W. Härdle, Y. Okhrin, A. Ristig, S. Trimborn, P. Song, M. Zhou, S. Zhang,

Recipe for Disaster: The Formula That Killed Wall Street

In the mid-'80s, Wall Street turned to the quants - brainy financial engineers - to invent new ways to boost profits.
Their methods for minting money worked brilliantly...
until one of the them devastated the global economy.

Here's what killed your 401(k). David X. Li's Gaussian copula function as first published in 2000. Investors exploited it as a quick and fatally flawed way to assess risk.

$$
\operatorname{Pr}\left[T_{A}<1, T_{3}<1\right]=\phi_{2}\left(\phi^{1}\left(\mathrm{~F}_{A}(\mathbf{1}), \phi^{1}\left(\mathrm{~F}_{n}(\mathbf{1})\right), \gamma\right)\right.
$$

Probability - Specifically, this is a joint default probability-the likelihood that any two members of the pool (A and B) will both default. It's what investors are looking for, and the rest of the formula provides the answer.

Here's what killed your 401(k). David X. Li's Gaussian copula function as first published in 2000. Investors exploited it as a quick and fatally flawed way to assess risk.

$$
\operatorname{Pr}\left[\mathrm{T}_{\mathrm{A}}<\mathbf{1}, \mathrm{T}_{\mathrm{B}}<\mathbf{1}\right]=\phi_{2}\left(\phi^{-1}\left(\mathrm{~F}_{\mathrm{A}}(\mathbf{1})\right), \phi^{-1}\left(\mathrm{~F}_{\mathrm{B}}(\mathbf{1})\right), \gamma\right)
$$

Survival times - The amount of time between now and when A and B can be expected to default. Li took the idea from a concept in actuarial science that charts what happens to someone's life expectancy when their spouse dies.

Here's what killed your 401(k). David X. Li's Gaussian copula function as first published in 2000. Investors exploited it as a quick and fatally flawed way to assess risk.

$$
\operatorname{Pr}\left[\mathrm{T}_{\mathrm{A}}<\mathbf{1}, \mathrm{T}_{\mathrm{B}}<\mathbf{1}\right]=\phi_{2}\left(\phi^{-1}\left(\mathrm{~F}_{\mathrm{A}}(\mathbf{1})\right), \phi^{-1}\left(\mathrm{~F}_{\mathrm{B}}(\mathbf{1})\right), \gamma\right)
$$

Distribution functions - The probabilities of how long A and B are likely to survive. Since these are not certainties, they can be dangerous: Small miscalculations may leave you facing much more risk than the formula indicates.

Here's what killed your 401(k). David X. Li's Gaussian copula function as first published in 2000. Investors exploited it as a quick and fatally flawed way to assess risk.

$$
\operatorname{Pr}\left[\mathrm{T}_{\mathrm{A}}<\mathbf{1}, \mathrm{T}_{\mathrm{B}}<\mathbf{1}\right]=\phi_{2}\left(\phi^{-1}\left(\mathrm{~F}_{\mathrm{A}}(\mathbf{1})\right), \phi^{-1}\left(\mathrm{~F}_{\mathrm{B}}(1)\right), \gamma\right)
$$

Copula - This couples (hence the Latine term copula) the individual probabilities associated with A and B to come up with a single number. Errors here massively increase the risk of the whole equation blowing up.

Here's what killed your 401(k). David X. Li's Gaussian copula function as first published in 2000. Investors exploited it as a quick and fatally flawed way to assess risk.

Gamma - The all-powerful correlation parameter, which reduces correlation to a single constant-something that should be highly improbable, if not impossible. This is the magic number that made Li's copula function irresistible.

Example

\square we pay 200 EUR for the chance to win 1000 EUR, if DAX returns decrease by 2%

$$
P_{D A X}\left(r_{D A X} \leq-0.02\right)=F_{D A X}(-0.02)=0.2
$$

\square we pay 200 EUR for the chance to win 1000 EUR, if DJ returns decrease by 1%

$$
P_{D J}\left(r_{D J} \leq-0.01\right)=F_{D J}(-0.01)=0.2
$$

Example

\checkmark we get 1000 EUR if DAX and DJ indices decrease simultaneously by 2% and 1% respectively. how much are we ready to pay in this case?

$$
\begin{aligned}
P & \left\{\left(r_{D A X} \leq-0.02\right) \wedge\left(r_{D J} \leq-0.01\right)\right\} \\
& =F_{D A X, D J}(-0.02,-0.01) \\
& =C\left\{F_{D A X}(-0.02), F_{D J}(-0.01)\right\} \\
& =C(0.2,0.2) .
\end{aligned}
$$

with C being the copula.

Outline

1. Motivation \checkmark
2. Challenges of Statistical modelling
3. Copula
4. Goodness-of-Fit Tests
5. Hierarchical Archimedean copulae
6. Theory of the HAC
7. Adaptive Estimation
8. Hidden Markov Models
9. Appendix

Univariate Case

Let x_{1}, \ldots, x_{n} be realizations of the random variable X $X \sim F$, where F is unknown

Example

$\square x_{i}$ are returns of the asset for one firm at the day t_{i}
$\square x_{i}$ are numbers of sold albums The Man Who Sold the World by David Bowie at day t_{i}

What is a good approximation of F ?
traditional or modern approach

DAX Index Levels $\left(\mathrm{P}_{\mathrm{t}}\right)$

O.COPdaxtimeseries

Histogram of DAX Index Levels

Q.COPdaxhistogram

DAX returns $\left(r_{t}=\log \frac{P_{t}}{P_{t-1}}\right)$

Histogram of DAX Returns

Q COPdaxreturnhist

Traditional approach:

F_{0} - known distribution
\square parameters of F_{0} are estimated from the sample x_{1}, \ldots, x_{n}

- $F_{0}=\mathrm{N}\left(\mu, \sigma^{2}\right) \Rightarrow(\mu, \sigma)$, here $\widehat{\mu}=\bar{x}, \widehat{\sigma}^{2}=\hat{s}^{2}$
- $F_{0}=\operatorname{St}\left(\alpha, \beta, \mu, \sigma^{2}\right) \Rightarrow(\alpha, \beta, \mu, \sigma)$ are estimated by Hull Estimator, Tail Exponent Estimation, etc.
\square check the appropriateness of F_{0} by a test (KS type)

$$
H_{0}: F=F_{0} \quad \text { vs } \quad H_{1}: F \neq F_{0}
$$

\checkmark if test confirm F_{0}, use \widehat{F}_{0}

Fit of the Normal distribution to DAX returns

$$
\left(\widehat{\mu}=0.0002113130, \widehat{\sigma}^{2}=0.0002001865\right)
$$

Modern approach: calculate the edf

$$
\widehat{F}(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{I}\left\{x_{i} \leq x\right\}
$$

or the nonparametric kernel smoother

$$
\widehat{f}_{h}(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right)
$$

name	$K(u)$
Uniform	$\left.\frac{1}{2} \right\rvert\,\{\|u\| \leq 1\}$
Epanechnikov	$\frac{3}{4}\left(1-u^{2}\right) \mathbf{I}\{\|u\| \leq 1\}$
Gaussian	$\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} u^{2}\right\}$

with \mathbf{I} as indicator function.

Kernel smoothing with UNI kernel $x=(-0.475,-1.553,-0.434,-1.019,0.395)$

Kernel smoothing with GAU kernel $x=(-0.475,-1.553,-0.434,-1.019,0.395)$

The estimated density of DAX returns

OCOPdensitydaxreturn

Multivariate Case

$\left\{x_{1 i}, \ldots, x_{d i}\right\}_{i=1, \ldots, n}$ is the realization of the vector $\left(X_{1}, \ldots, X_{d}\right) \sim F$, where F is unknown.

Example
$\square\left\{x_{1 i}, \ldots, x_{d i}\right\}_{i=1, \ldots, n}$ are returns of the d assets in the portfolio at day t_{i}
$\square\left(x_{1 i}, x_{2 i}\right)^{\top}$ are numbers of sold albums The Man Who Sold The World by David Bowie and singles I Saved The World Today by Eurythmics at day t_{i}

Multivariate Case

What is a good approximation of F ?

traditional or modern approach

Very flexible approximation to F is challenging in high dimension due to curse of dimensionality.

Traditional approach: Mainly restricted to the class of elliptical distributions: Normal or t distributions

$$
f_{N}\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{\sqrt{|\Sigma|(2 \pi)^{d}}} \exp \left\{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right\}
$$

Drawbacks of the elliptical distributions:

1. does not often describe financial data properly
2. huge number of parameters to be estimated
f.e. for Normal distribution: $\underbrace{\frac{d(d-1)}{2}}_{\text {in dependency }}+\underbrace{2 d}_{\text {in margins }}$
3. ellipticity

Simulate $X \sim N(\mu, \Sigma)$ with the sample size $n=1000$ and estimate the parameters $(\widehat{\mu}, \widehat{\Sigma})$
$\Sigma=\left(\begin{array}{rrr}1.5 & 0.7 & 0.2 \\ 0.7 & 1.3 & -0.4 \\ 0.2 & -0.4 & 0.3\end{array}\right) \Rightarrow \widehat{\Sigma}=\left(\begin{array}{rrr}1.461 & 0.726 & 0.181 \\ 0.726 & 1.335 & -0.408 \\ 0.181 & -0.408 & 0.301\end{array}\right)$
$\mu=(0,0,0) \Rightarrow \widehat{\mu}=(0.0175,-0.0022,0.0055)$
$\widehat{\Sigma}$ and Σ are not close to each other for only 3 dimensions and quiet big sample
"Extreme, synchronized rises and falls in financial markets occur infrequently but they do occur. The problem with the models is that they did not assign a high enough chance of occurrence to the scenario in which many things go wrong at the same time

- the "perfect storm" scenario"
(Business Week, September 1998)

Correlation

1. 19.10 .1987

Black Monday
2. 09.11.1989

Berlin Wall
3. 19.08.1991

Kremlin
4. 17.03.2008, 19.09.2008, 10.10.2008, 13.10.2008, 15.10.2008, 29.10.2008

Crisis

Correlation

Figure 1: Scatterplots for two distributions with $\rho=0.4$
\square same linear correlation coefficient $(\rho=0.4)$
\square same marginal distributions
\square rather big difference

Copula

Books:

Joe, H. (1997). Multivariate Models and Dependence Concepts, Chapman \& Hall, London.

Nelsen, R. B. (2006). An Introduction to Copulas, Springer Verlag, New York.

Copula

For a distribution function F with marginals $F_{X_{1}}, \ldots, F_{X_{d}}$, there exists a copula $C:[0,1]^{d} \rightarrow[0,1]$, such that

$$
F\left(x_{1}, \ldots, x_{d}\right)=\mathrm{C}\left\{F_{X_{1}}\left(x_{1}\right), \ldots, F_{X_{d}}\left(x_{d}\right)\right\}
$$

A little bit of history

\square 1940s: Wassilij Hoeffding studies properties of multivariate distributions

1914-91, b. Mustamäki, Finland; d. Chapel Hill, NC gained his PhD from U Berlin in 1940 1924-45 work in U Berlin

Wassilij Hoeffding

A little bit of history

\checkmark 1940s: Wassilij Hoeffding studies properties of multivariate distributions
\square 1959: The word copula appears for the first time (Abe Sklar)
\square 1999: Introduced to financial applications (Paul Embrechts, Alexander McNeil, Daniel Straumann in RISK Magazine)
\square 2000: Paper by David Li in Journal of Derivatives on application of copulae to CDO
\square 2006: Several insurance companies, banks and other financial institutions apply copulae as a risk management tool

Applications

Practical Use:

1. medicine (Vandenhende (2003), ...)
2. hydrology (Genest and Favre (2006), Durante and O2 (2015), ...)
3. biometrics (Wang and Wells (2000, JASA), Chen and Fan (2006, CanJoS), ...)
4. economics

- portfolio selection (Patton (2004, JoFE), Hennessy and Lapan (2002, MathFin), ...)
- time series (Chen and Fan (2006a, 2006b, JoE), Fermanian and Scaillet (2003, JoR), Lee and Long (2005, JoE), ...)
- risk management (Junker and May (2002, EJ), Breyman et. al. (2003, QF), ...)

Special Copulae

Theorem
Let C be a copula. Then for every $\left(u_{1}, u_{2}\right) \in[0,1]^{2}$

$$
\max \left(u_{1}+u_{2}-1,0\right) \leq C\left(u_{1}, u_{2}\right) \leq \min \left(u_{1}, u_{2}\right),
$$

where bounds are called lower and upper Fréchet-Hoeffdings bounds. When they are copulae they represent perfect negative and positive dependence respectively.
The simplest copula is the product copula

$$
\Pi\left(u_{1}, u_{2}\right)=u_{1} u_{2}
$$

characterize the case of independence.

Copula Classes

1. elliptical

- implied by well-known multivariate df's (Normal, t), derived through Sklar's theorem
- do not have closed form expressions and are restricted to have radial symmetry

2. Archimedean

$$
C\left(u_{1}, u_{2}\right)=\phi^{-1}\left\{\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right\}
$$

- allow for a great variety of dependence structures
- closed form expressions
- several useful methods for multivariate extension
- not derived from mv df's using Sklar's theorem

Copula Examples 1

Gaussian copula

$$
\begin{aligned}
C_{\delta}^{G}\left(u_{1}, u_{2}\right) & =\Phi_{\delta}\left\{\Phi^{-1}\left(u_{1}\right), \Phi^{-1}\left(u_{2}\right)\right\} \\
& =\int_{-\infty}^{\Phi^{-1}\left(u_{1}\right) \Phi^{-1}\left(u_{2}\right)} \int_{-\infty}^{2 \pi \sqrt{1-\delta^{2}}} \exp \left\{\frac{-\left(s^{2}-2 \delta s t+t^{2}\right)}{2\left(1-\delta^{2}\right)}\right\} d s d t
\end{aligned}
$$

\square Gaussian copula contains the dependence structure
\square normal marginal distribution + Gaussian copula = multivariate normal distributions
\square non-normal marginal distribution + Gaussian copula $=$ meta-Gaussian distributions
\square allows to generate joint symmetric dependence, but no tail dependence

Copula Examples 2

Gumbel (1960) copula
$C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\exp \left[-\left\{\left(-\log u_{1}\right)^{1 / \theta}+\left(-\log u_{2}\right)^{1 / \theta}\right\}^{\theta}\right], 1 \leq \theta<\infty$.
$\square \phi(x, \theta)=\exp \left\{-x^{1 / \theta}\right\}, x \in[0, \infty)$
\square independence for $\theta=1$
\square upper Frèchet-Hoeffding for $\theta \rightarrow \infty$
\square asymmetric dependence and upper tail dependence, but no lower tail dependence
\square the only extreme value Archimedean copula

Copula Examples 3

Clayton (1978) copula $C_{\theta}^{C l}\left(u_{1}, u_{2}\right)=\left\{\max \left(u_{1}^{-\theta}+u_{2}^{-\theta}-1,0\right)\right\}^{-\frac{1}{\theta}},-1 \leq \theta<\infty, \theta \neq 0$
$\square \phi(x, \theta)=(\theta x+1)^{-\frac{1}{\theta}}, x \in[0, \infty)$
\square lower Fréchet-Hoeffding bound for $\theta \rightarrow-1$
\square independence for $\theta=0$
\square upper Fréchet-Hoeffding bound for $\theta \rightarrow \infty$
\square asymmetric dependence and lower tail dependence, but no upper tail dependence
\square the only Archimedean copula with truncated property

Copula Examples 4

Frank (1979) copula

$$
\begin{gathered}
C_{\theta}^{F r}\left(u_{1}, u_{2}\right)=-\frac{1}{\theta} \log \left\{1+\frac{\left(e^{-\theta u_{1}}-1\right)\left(e^{-\theta u_{2}}-1\right)}{e^{-\theta}-1}\right\} \\
-\infty<\theta<\infty, \theta \neq 0
\end{gathered}
$$

$\square \phi(x, \theta)=\theta^{-1} \log \left\{1-\left(1-e^{-\theta}\right) e^{-x}\right\}, x \in[0, \infty)$
\square lower Fréchet-Hoeffding bound for $\theta \rightarrow-\infty$
\square independence for $\theta=0$
\square upper Fréchet-Hoeffding bound for $\theta \rightarrow \infty$
\square the only elliptically contoured Archimedean copula

Dependencies, Pearson's rho

$$
\delta\left(X_{1}, X_{2}\right)=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sqrt{\operatorname{Var}\left(X_{1}\right) \operatorname{Var}\left(X_{2}\right)}}
$$

\square Sensitive to outliers
\square Measures the 'average dependence' between X_{1} and X_{2}
\square Invariant under strictly increasing linear transformations
\square May be misleading in situations where multivariate df is not elliptical
$\square \operatorname{cor}(\mathrm{x}, \mathrm{y}, \mathrm{method}=$ 'pearson') or cor(x, y)

Dependencies, Kendall's tau

Definition

If F is continuous bivariate cdf and let $\left(X_{1}, X_{2}\right),\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ be independent random pairs with distribution F. Then Kendall's tau is

$$
\tau=\boldsymbol{P}\left\{\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)>0\right\}-\boldsymbol{P}\left\{\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)<0\right\}
$$

\square Less sensitive to outliers
\square Measures the 'average dependence' between X and Y
\square Invariant under strictly increasing transformations
\square Depends only on the copula of $\left(X_{1}, X_{2}\right)$
\square For elliptical copulae: $\delta\left(X_{1}, X_{2}\right)=\sin \left(\frac{\pi}{2} \tau\right)$
$\square \operatorname{cor}(\mathrm{x}, \mathrm{y}$, method $=$ 'kendall')

Dependencies, Spearmans's rho

Definition

If F is a continuous bivariate cumulative distribution function with marginal F_{1} and F_{2} and let $\left(X_{1}, X_{2}\right) \sim F$. Then Spearmans's rho is a correlation between $F_{1}\left(X_{1}\right)$ and $F_{2}\left(X_{2}\right)$

$$
\rho=\frac{\operatorname{Cov}\left\{F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right)\right\}}{\sqrt{\operatorname{Var}\left\{F_{1}\left(X_{1}\right)\right\} \operatorname{Var}\left\{F_{2}\left(X_{2}\right)\right\}}} .
$$

\square Less sensitive to outliers
\square Measures the 'average dependence' between X_{1} and X_{2}
\square Invariant under strictly increasing transformations
\square Depends only on the copula of $\left(X_{1}, X_{2}\right)$
\square For elliptical copulae: $\delta\left(X_{1}, X_{2}\right)=2 \sin \left(\frac{\pi}{6} \rho\right)$
$\square \operatorname{cor}(x, y$, method $=$ 'spearman')

$$
\begin{aligned}
\delta & =0.892 \\
\tau & =0.956 \\
\rho & =0.996
\end{aligned}
$$

$$
\begin{aligned}
\delta & =0.659 \\
\tau & =0.888 \\
\rho & =0.982
\end{aligned}
$$

Method of Moments Estimation

Gaussian copula

$$
\begin{aligned}
\rho & =\frac{6}{\pi} \arcsin \frac{\delta}{2}, \\
\tau & =\frac{2}{\pi} \arcsin \delta,
\end{aligned}
$$

where δ is the Pearson linear correlation coefficient.
Gumbel copula with parameter θ.

$$
\begin{aligned}
& \rho-\text { no closed form } \\
& \tau=1-\frac{1}{\theta}
\end{aligned}
$$

Later irho or itau

Multivariate Copula Definition

Definition

The copula is a multivariate distribution with all univariate margins being $U(0,1)$.

Theorem (Sklar, 1959)
Let X_{1}, \ldots, X_{d} be random variables with marginal distribution functions
F_{1}, \ldots, F_{d} and joint distribution function F. Then there exists a
d-dimensional copula $C:[0,1]^{d} \rightarrow[0,1]$ such that
$\forall x_{1}, \ldots, x_{d} \in \overline{\mathbb{R}}=[-\infty, \infty]$

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{d}\right)=C\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right\} \tag{1}
\end{equation*}
$$

If the margins F_{1}, \ldots, F_{d} are continuous, then C is unique. Otherwise C is uniquely determined on $F_{1}(\overline{\mathbb{R}}) \times \cdots \times F_{d}(\overline{\mathbb{R}})$ Conversely, if C is a copula and F_{1}, \ldots, F_{d} are distribution functions, then the function F defined in (1) is a joint distribution function with margins F_{1}, \ldots, F_{d}.

Copula Density

The copula density:

$$
c\left(u_{1}, \ldots, u_{d}\right)=\frac{\partial^{n} C\left(u_{1}, \ldots, u_{d}\right)}{\partial u_{1} \ldots \partial u_{d}} .
$$

Joint density function based on copula

$$
{ }_{c} f\left(x_{1}, \ldots, x_{d}\right)=c\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right\} \cdot f_{1}\left(x_{1}\right) \cdot \ldots \cdot f_{d}\left(x_{d}\right),
$$

where $f_{1}(\cdot), \ldots, f_{d}(\cdot)$ are marginal density functions.

Special Copulae

Theorem
Let C be a copula. Then for every $\left(u_{1}, \ldots, u_{d}\right) \in[0,1]^{d}$

$$
\max \left(\sum_{i=1}^{d} u_{i}+1-d, 0\right) \leq C\left(u_{1}, \ldots, u_{d}\right) \leq \min \left(u_{1}, \ldots, u_{d}\right),
$$

where bounds are called lower and upper Fréchet-Hoeffdings bounds. When they are copulae they represent perfect negative and positive dependence respectively.
The simplest copula is the product copula

$$
\Pi\left(u_{1}, \ldots, u_{d}\right)=\prod_{i=1}^{d} u_{i}
$$

characterize the case of independence.

Archimedean Copula

Multivariate Archimedean copula $C:[0,1]^{d} \rightarrow[0,1]$ defined as

$$
\begin{equation*}
C\left(u_{1}, \ldots, u_{d}\right)=\phi\left\{\phi^{-1}\left(u_{1}\right)+\cdots+\phi^{-1}\left(u_{d}\right)\right\} \tag{2}
\end{equation*}
$$

where $\phi:[0, \infty) \rightarrow[0,1]$ is continuous and strictly decreasing with $\phi(0)=1, \phi(\infty)=0$ and ϕ^{-1} its pseudo-inverse.

Advantages: single parameter, closed form Disadvantages: too restrictive: single parameter, exchangeable

d-dimensional Gumbel copula

The generator function and the copula function are given as follows:

$$
\begin{aligned}
\phi(x, \theta) & =\exp \left\{-x^{\frac{1}{\theta}}\right\}, \quad 1 \leq \theta<\infty, x \in[0, \infty), \\
C_{\theta}^{G u}\left(u_{1}, \ldots, u_{d}\right) & =\exp \left[-\left\{\sum_{j=1}^{d}\left(\log u_{j}\right)^{\theta}\right\}^{\theta^{-1}}\right]
\end{aligned}
$$

d-dimensional Clayton copula

The generator function and the copula function are given as follows:

$$
\begin{aligned}
& \phi(x, \theta)=(\theta x+1)^{-\frac{1}{\theta}}, \\
&-1 /(d-1) \leq \theta<\infty, \theta \neq 0, x \in[0, \infty), \\
& C_{\theta}^{C l}\left(u_{1}, \ldots, u_{d}\right)=\left\{\left(\sum_{j=1}^{d} u_{j}^{-\theta}\right)-d+1\right\}^{-\theta^{-1}} .
\end{aligned}
$$

d-dimensional Frank copula

The generator function and the copula function are given as follows,

$$
\begin{aligned}
& \phi(x, \theta)=\theta^{-1} \log \left\{1-\left(1-e^{-\theta}\right) e^{-x}\right\}, \\
&-\infty<\theta<\infty, \theta \neq 0, x \in[0, \infty), \\
& C_{\theta}^{F r}\left(u_{1}, \ldots, u_{d}\right)=-\frac{1}{\theta} \log \left[1+\frac{\prod_{j=1}^{d}\left\{\exp \left(-\theta u_{j}\right)-1\right\}}{\{\exp (-\theta)-1\}^{d-1}}\right]
\end{aligned}
$$

R packages for copula

\square copula - most powerful copula package (!), Yan (2007), Hofert and Maechler (2011), Kojadinovic and Yan (2010)
\checkmark fCopulae - learning purposes, bivariate, Wuertz et al. (2009a)
\square fgac - generalized Archimedean copulas, Gonzalez-Lopez (2009)
\checkmark gumbel - functions for Gumbel copulas, Caillat et al. (2008)
\square HAC - inference for hierarchical Archimedean copulae, Okhrin and Ristig (2012)
\square VineCopula - inference for vine copulae, Czado et al. (2015)
\square gofCopula - goodness-of-fit tests for copulae, Trimborn, Okhrin, Zhang, Zhou (2015)
\square sbgcop - Gaussian copula with margins being nuisance parameters, Hoff (2010)
\square ...

R packages for copula

\square copula - most powerful copula package (!), Yan (2007), Hofert and Maechler (2011), Kojadinovic and Yan (2010)
\square fCopulae - learning purposes, bivariate, Wuertz et al. (2009a)
\square fgac - generalized Archimedean copulas, Gonzalez-Lopez (2009)
\checkmark gumbel - functions for Gumbel copulas, Caillat et al. (2008)
\square HAC - inference for hierarchical Archimedean copulae, Okhrin and Ristig (2012)
\square VineCopula - inference for vine copulae, Czado et al. (2015)
\square gofCopula - goodness-of-fit tests for copulae, Trimborn, Okhrin, Zhang, Zhou (2015)
\square sbgcop - Gaussian copula with margins being nuisance parameters, Hoff (2010)
\square ...

fCopulae get a feeling using sliders

copula method: 1 - Clayton, 4 - Gumbel, 5 - Frank
\checkmark Generator functions

PhiSlider ()

Phi first and second Derivative
Inv Phi first and second Derivative

fCopulae get a feeling using sliders

copula method: 1 - Clayton, 4 - Gumbel, 5 - Frank
\square Copula density
darchmSlider()

Archimedean Copula No: 1 - Clayton
$[-1 \mid \operatorname{lnf})$ alpha $=0.5$ tau $=0.2$ rho $=0.295$

copula objects

\checkmark Gaussian copula with $\rho=0.75$ and $F_{1}=N(0,2)$ and $F_{2}=\operatorname{Exp}(2)$

```
> ga.c = normalCopula(0.75, dim = 2)
> ga.c
Normal copula family
Dimension: 2
Parameters:
    rho.1 = 0.75
> mvdc.ga.c = mvdc(ga.c, c('norm','exp'),
        paramMargins = list(list(mean=0, sd=2),
        list(rate=2)))
    > mvdc.gauss.n.e
Multivariate Distribution Copula based ("mvdc")
    @ copula:
```


Simulation

Frees and Valdez, (1998, NAAJ), Whelan, (2004, QF), Marshal and Olkin, (1988, JASA), Hofert (2008, CSDA)
Conditional inversion method:
Let $C=C\left(u_{1}, \ldots, u_{d}\right), C_{i}=C\left(u_{1}, \ldots, u_{i}, 1, \ldots, 1\right)$ and
$C_{d}=C\left(u_{1}, \ldots, u_{d}\right)$. Conditional distribution of U_{i} is given by

$$
\begin{aligned}
C_{i}\left(u_{i} \mid u_{1}, \ldots, u_{i-1}\right) & =\boldsymbol{P}\left\{U_{i} \leq u_{i} \mid U_{1}=u_{1} \ldots U_{i-1}=u_{i-1}\right\} \\
& =\frac{\partial^{i-1} C_{i}\left(u_{1}, \ldots, u_{i}\right)}{\partial u_{1} \ldots \partial u_{i-1}} / \frac{\partial^{i-1} C_{i-1}\left(u_{1}, \ldots, u_{i-1}\right)}{\partial u_{1} \ldots \partial u_{i-1}}
\end{aligned}
$$

\square Generate i.r.v. $v_{1}, \ldots, v_{d} \sim U(0,1)$
\square Set $u_{1}=v_{1}$
$\square u_{i}=C_{d}^{-1}\left(v_{i} \mid u_{1}, \ldots, u_{i-1}\right), \forall i=2, \ldots, d$

fCopulae get a feeling using sliders

copula method: 1 - Clayton, 4 - Gumbel, 5 - Frank
rarchmCopula (1000, alpha $=0.5$, type $=" 4 ")$
rarchmSlider ()

Archimedean Copula No: 1 - Clayton alpha $=3$

copula simulation

\square Simulation from a copula

```
x = rCopula(1000, gauss.c)
plot(x, pch = 19)
```


copula simulation

\square Simulation from a copula-based distribution

```
1 x = rMvdc(1000,mvdc.ga.c)
plot(x, pch=19)
```


Estimation Issues - Margins

$$
\widehat{F}_{j}(x)=\frac{1}{n+1} \sum_{i=1}^{n} \mathbf{l}\left(x_{j i} \leq x\right),
$$

1 apply (x, 2, FUN = rank) / (nrow $(x)+1)$

$$
\widetilde{F}_{j}(x)=\frac{1}{n+1} \sum_{i=1}^{n} K\left(\frac{x-x_{j i}}{h}\right)
$$

for $j=1, \ldots, k$, where $\varkappa: \mathbb{R} \rightarrow \mathbb{R}, \int \varkappa=1, K(x)=\int_{-\infty}^{x} \varkappa(t) d t$ and $h>0$ is the bandwidth.

Estimation Issues - Margins

$$
F_{j}\left(x ; \widehat{\alpha}_{j}\right)=F_{j}\left\{x ; \arg \max _{\alpha} \sum_{i=1}^{n} \log f_{j}\left(x_{j i}, \alpha\right)\right\},
$$

```
1 optimise (
    f = function(a)\{
        sum(log(dexp(x[, 2], rate = a)))
    \},
    interval \(=c(0,10)\),
    maximum = TRUE)
```

$$
\check{F}_{j}(x) \in\left\{\widehat{F}_{j}(x), \tilde{F}_{j}(x), F_{j}\left(x ; \widehat{\alpha}_{j}\right)\right\}
$$

Full maximum likelihood estimation

\checkmark The log-likelihood function:

$$
\begin{aligned}
\ell\left(\alpha ; x_{1}, \ldots, x_{n}\right)= & \sum_{i=1}^{n} \log c\left\{F_{1}\left(x_{1 i} ; \alpha_{1}\right), \ldots, F_{d}\left(x_{d i} ; \alpha_{d}\right) ; \theta\right\} \\
& +\sum_{i=1}^{n} \sum_{j=1}^{d} \log f_{j}\left(x_{j i} ; \alpha_{j}\right)
\end{aligned}
$$

\checkmark The efficient and asymptotically normal estimator:

$$
\widehat{\alpha}_{F M L}=\left(\widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{d}, \widehat{\theta}^{\top}=\arg \min _{\alpha} \ell(\alpha) .\right.
$$

IFM (inference for margins) method

Steps:

1 Estimate the parameter α_{j} from the margins
2 Estimate the dependence parameter θ
\square Maximize the pseudo log-likelihood function over θ to get the dependence parameter estimate $\widehat{\theta}$,

$$
\ell\left(\theta, \widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{d}\right)=\sum_{i=1}^{n} \log c\left\{F_{1}\left(x_{1 i} ; \widehat{\alpha}_{1}\right), \ldots, F_{d}\left(x_{d i} ; \widehat{\alpha}_{d}\right) ; \theta\right\} .
$$

CML (canonical maximum likelihood) method

\square Normalize the empirical cdf not by n but by $n+1$

$$
\widehat{F}_{j}(x)=\frac{1}{n+1} \sum_{i=1}^{n} I\left(x_{j i} \leq x\right) \text { or } \widetilde{F}_{j}(x)=\frac{1}{n+1} \sum_{i=1}^{n} k\left(\frac{x-x_{j i}}{h}\right)
$$

\square The copula parameter estimator $\widehat{\theta}_{C M L}$ is given by:

$$
\begin{aligned}
\widehat{\theta}_{C M L} & =\underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log c\left\{\widehat{F}_{1}\left(x_{1 i}\right), \ldots, \widehat{F}_{d}\left(x_{d i}\right) ; \theta\right\}, \\
& \text { or } \\
\widehat{\theta}_{C M L} & =\underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log c\left\{\widetilde{F}_{1}\left(x_{1 i}\right), \ldots, \widetilde{F}_{d}\left(x_{d i}\right) ; \theta\right\} .
\end{aligned}
$$

Empirical Copula

$$
\begin{aligned}
C_{n}\left(u_{1}, \ldots, u_{d}\right) & =\frac{1}{n} \sum_{i=1}^{n} I\left\{\check{F}_{1}\left(x_{i 1}\right) \leq u_{1}, \ldots, \check{F}_{d}\left(x_{i d}\right) \leq u_{d}\right\} \\
& =\frac{1}{n} \sum_{i=1}^{n} \prod_{j=1}^{d} I\left\{\check{F}_{j}\left(x_{i j}\right) \leq u_{j}\right\}
\end{aligned}
$$

```
emp.copula \(=\) function(u, data) \(\{\)
    \(\mathrm{n}=\operatorname{dim}(\) data) [1]
    \(\mathrm{d}=\mathrm{dim}(\mathrm{u})[2]\)
    embed \(=\) function (u) \{
        comp \(=\) function \((X)\{(X<=u)\}\)
        Comp \(=\) function \((X)\{\operatorname{apply}(X, 1, \quad\) comp \()\}\)
        cumsum (apply (t(Comp (data)), 1, prod)) / n
    \}
    apply (u, 1, embed) [n, ]
```


Estimation in R

\checkmark copula package

```
\(\mathrm{u}=\operatorname{apply}(\mathrm{x}, 2, \mathrm{FUN}=\mathrm{rank}) /(\) nrow \((\mathrm{x})+1)\)
fitCopula(ga.c, u, "mpl")
fitCopula(ga.c, u, "itau")
fitCopula(ga.c, u, "irho")
```

\square fCopulae package
1 ellipticalCopulaFit(u[,1], u[,2], type = "norm")
\square copula package (fits whole distribution)
fitMvdc (x, mvdc.ga.c, start $=c(0.5,3,3,0.5)$, hideWarnings = FALSE)

Goodness-of-Fit Tests

Papers:

Zhang, S., Okhrin, O., Zhou, Q., and Song, P., Goodness-of-fit Test For Specification of Semiparametric Copula Dependence Models, forthcoming in Journal of Econometrics

Trimborn, S., Zhang, S., Okhrin, O., and Zhou, Q., gofCopula package for R

Genest, C., Rémillard, B., and Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44:199-213.

Applications

1. medicine (Vandenhende (2003), ...)
2. hydrology (Genest and Favre (2006), ...)
3. biometrics (Wang and Wells (2000, JASA), Chen and Fan (2006, CanJoS), ...)
4. economics

- portfolio selection (Patton (2004, JoFE), Hennessy and Lapan (2002, MathFin), ...)
- time series (Chen and Fan (2006a, 2006b, JoE), Fermanian and Scaillet (2003, JoR), Lee and Long (2005, JoE), ...)
- risk management (Junker and May (2002, EJ), Breyman et. al. (2003, QF), ...)

5. ...

How to be sure, that one uses a proper copula?

Different tests \Rightarrow Different outcomes

(a) Gaussian copula

(b) year 2004

Figure 2: Sample from Gauss copula with $N(0,1)$ margins, $\theta=0.71, N=250$ and residuals transformed to standard normal for Citygroup/BoA for 2004.

Visually - Gaussian copula
Test 1: Gumbel, Test 2: Gauss, Test 3: Gauss

Different tests \Rightarrow Different outcomes

(a) t-copula

(b) year 2006

Figure 3: Sample from t-copula with $\mathrm{N}(0,1)$ margins, $\theta=0.6, N=250$ and residuals transformed to standard normal for Citygroup/BoA for 2006.
Visually - t-copula

Test 1: t-copula, Test 2: Gauss, Test 3: t-copula

Different tests \Rightarrow Different outcomes

(a) Gumbel copula

(b) year 2009

Figure 4: Sample from Gumbel copula with $\mathrm{N}(0,1)$ margins, $\theta=2, N=250$ and residuals transformed to standard normal for Citygroup/BoA for 2009.

Visually - Gumbel copula
Test 1: Gumbel, Test 2: Gumbel, Test 3: Gauss

Goodness-of-Fit Tests

$$
\mathcal{H}_{0}: C_{0} \in \mathcal{C} \quad \text { vs. } \mathcal{H}_{1}: C_{0} \notin \mathcal{C}
$$

where $\mathcal{C}=\{C(\cdot ; \theta): \theta \in \Theta\}$.
$\square X_{1}=\left(x_{11}, \ldots, x_{d 1}\right)^{\top}, \ldots, X_{n}=\left(x_{1 n}, \ldots, x_{d n}\right)^{\top}$ random sample of size n drawn from multivariate distribution $H(x)=H\left(x_{1}, x_{2}, \ldots, x_{d}\right)$
\square Continuous marginal cdf $F(x)=\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right\}$

$$
H\left(x_{1}, x_{2}, \ldots, x_{d}\right)=C_{0}\{F(x)\}=C_{0}\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right\} .
$$

PIOS test, I

Define $\ell\left\{\widehat{F}\left(X_{i}\right) ; \theta\right\}=\log c\left\{\widehat{F}_{1}\left(x_{1 i}\right), \ldots, \widehat{F}_{d}\left(x_{d i}\right) ; \theta\right\}$ and $\widehat{\theta}$ be the two-step pseudo maximum likelihood method (PMLE) of θ given by

$$
\widehat{\theta}=\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \ell\left\{\widehat{F}\left(X_{i}\right) ; \theta\right\} .
$$

Compute delete-one-block PLMEs $\widehat{\theta}_{-b}, 1 \leq b \leq B$:

$$
\widehat{\theta}_{-b}=\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{b^{\prime} \neq b}^{B} \sum_{i=1}^{m} \ell\left\{\hat{F}\left(X_{i}^{b^{\prime}}\right) ; \theta\right\}, \quad b=1, \ldots, B,
$$

PIOS test, gofPIOSTn

Comparing "in-sample" and "out-of-sample" pseudo-likelihoods with the following test statistic:

$$
T_{n}(m)=\sum_{b=1}^{B} \sum_{i=1}^{m}\left[\ell\left\{\widetilde{F}\left(X_{i}^{b}\right) ; \widehat{\theta}\right\}-\ell\left\{\widetilde{F}\left(X_{i}^{b}\right) ; \widehat{\theta}_{-b}\right\}\right] .
$$

Challenge: needed $\left[\frac{n}{m}\right]$ dependence parameters Solution: test statistic which is asymptotically equivalent.

PIOS test, III

\square Under suitable regularity conditions and under assumption, that $\exists \theta^{*} \in \Theta$ with $\widehat{\theta} \xrightarrow{P} \theta^{*}$ for $n \rightarrow \infty$:

$$
T_{n}(m) \xrightarrow{p} \operatorname{tr}\left\{S\left(\theta^{*}\right)^{-1} V\left(\theta^{*}\right)\right\}
$$

with

$$
\begin{aligned}
S(\theta) & =-\mathrm{E}_{0}\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{\top}} \ell\left\{F\left(X_{1}\right) ; \theta\right\}\right] \\
V(\theta) & =\mathrm{E}_{0}\left[\frac{\partial}{\partial \theta} \ell\left\{F\left(X_{1}\right) ; \theta\right\} \frac{\partial}{\partial \theta} \ell^{\top}\left\{F\left(X_{1}\right) ; \theta\right\}\right]
\end{aligned}
$$

PIOS test, gofPIOSRn

\square Under a correct model specification, it holds: $V\left(\theta^{*}\right)=S\left(\theta^{*}\right)$.
\square Then is $\operatorname{tr}\left\{S\left(\theta^{*}\right)^{-1} V\left(\theta^{*}\right)\right\}=p$.
\square Asymptotic test statistic:

$$
R_{n}=\operatorname{tr}\left\{\widehat{S}(\widehat{\theta})^{-1} \widehat{V}(\widehat{\theta})\right\}
$$

where $\widehat{S}(\widehat{\theta})$ and $\widehat{V}(\widehat{\theta})$ are the empirical counterparts to $S(\theta)$ and $V(\theta)$.

Similar to gofWhite where one tests if $V\left(\theta^{*}\right)-S\left(\theta^{*}\right)=0$, see White (1982)

Law of Large Numbers

Theorem
Under assumptions A1 and A2 hold

$$
R_{n} \xrightarrow{p} \operatorname{tr}\left\{S\left(\theta^{*}\right)^{-1} V\left(\theta^{*}\right)\right\}, \text { as } n \rightarrow \infty,
$$

where θ^{*} is the limiting value of $P M L E \widehat{\theta}$.

- Assumptions

Central Limit Theorem

Theorem
\square Under the null hypothesis, if A2 and B1 - B3 hold, then

$$
\sqrt{n}\left(R_{n}-p\right) \xrightarrow{d} N\left(0, \sigma_{R}^{2}\right), \text { as } n \rightarrow \infty,
$$

where σ_{R}^{2} is the asymptotic variance.
\square Under assumptions A2, B1-B3 and C1,

$$
R_{n}-T_{n}(m)=o_{p}\left(n^{-1 / 2}\right) .
$$

Local Power, I

\square Asymptotic power of R_{n} against a local alternative in the Pitman sense for a constant $\delta>0$:
$H_{1, n}: P_{n}^{C_{1}, \delta}(x)=C_{0}\left\{F(x) ; \theta_{0}\right\}+\frac{\delta}{\sqrt{n}}\left[C_{1}\{F(x)\}-C_{0}\left\{F(x) ; \theta_{0}\right\}\right]$
\square Assume $C_{1}\{F(x)\} \geq C_{0}\left\{F(x) ; \theta_{0}\right\}$ for all $x \in \mathbb{R}^{d}$

- Ensures that $P_{n}^{C_{1}, \delta}(x)$ is a copula for $0<\delta \leq n^{1 / 2}$ and the departure from the null $C_{0}\left\{F(x) ; \theta_{0}\right\}$ increases as δ increases.

Local Power, II

Theorem

Suppose D1 holds in addition to the assumptions A2 and B1-B3.
Then under $H_{1, n}$

$$
\sqrt{n}\left(R_{n}-p\right) \xrightarrow{\mathcal{L}} \mathrm{N}\left\{\delta m\left(c_{0}, c_{1}\right), \sigma_{R}^{2}\right\}
$$

where

$$
m\left(c_{0}, c_{1}\right)=\mathrm{E}_{c_{0}}\left[W\left(X_{t}\right) g\left\{F\left(X_{t}\right) ; \theta_{0}\right\}\right]
$$

and $\mathrm{E}_{c_{0}}(\cdot)$ denotes the expectation under the null distribution c_{0} or P_{0}, and $W(\cdot)$ as a weighting function. That is, $m\left(c_{0}, c_{1}\right)$ is a weighted expectation of $g\left\{F\left(X_{t}\right) ; \theta_{0}\right\}$ under P_{0}.

Local Power, III

\square Implication: as long as $m\left(c_{0}, c_{1}\right) \neq 0$

- R_{n} will yield power locally
- The asymptotic local power increases to 1 as δ increases to infinity
$\rightarrow R_{n}$ is a consistent test
- T_{n} has the same asymptotic local power function as R_{n}
$\rightarrow T_{n}$ is also a consistent test

Local power, Simulation Study I

\square Asymptotic power of R_{n} under alternatives in the Pitman sense
\square Two settings: Clayton copula under H_{0}, and Gaussian copula under H_{0}
$\square n=500, N=1000$
\square Margins $F(\cdot)$ uniform on $[0,1]$
$\square\left(\tau_{1}, \tau_{2}\right)=(0.4,0.8)$
$\square \delta \in[0.0 ; 0.5]$

Results

Figure 5: Local Power curves for the R_{n} test with Clayton copula being under H_{0} and four different cases of true mixture copulas.

PIOS for the time series models, I

\square Semi-Parametric Copula based Multivariate DYnamic model (SCOMDY), Chen and Fan (2006), for time series data

$$
Y_{t}=\mu_{t}\left(\eta_{1}^{0}\right)+\Sigma_{t}^{1 / 2}\left(\eta^{0}\right) \epsilon_{t},
$$

$\square Y_{t}=\left(Y_{t 1}, \ldots, Y_{t d}\right)^{\top}$
$\square \mu_{t}\left(\eta_{1}^{0}\right)=\left\{\mu_{t 1}\left(\eta_{1}^{0}\right), \ldots, \mu_{t d}\left(\eta_{1}^{0}\right)\right\}^{\top}=\mathrm{E}\left(Y_{t} \mid \mathcal{F}_{t-1}\right)$
$\square \mathcal{F}_{t}$ is sigma-field generated by $\left(Y_{t-1}, Y_{t-2}, \ldots ; Z_{t}, Z_{t-1}, \ldots\right)$, and Z_{t} is a vector of predetermined or exogenous variables.
$\square \Sigma_{t}\left(\eta^{0}\right)=\operatorname{diag}\left\{\Sigma_{t 1}\left(\eta^{0}\right), \ldots, \Sigma_{t d}\left(\eta^{0}\right)\right\}$, where $\Sigma_{t j}\left(\eta^{0}\right)=\mathrm{E}\left[\left\{Y_{t j}-\mu_{t j}\left(\eta_{1}^{0}\right)\right\}^{2} \mid \mathcal{F}_{t-1}\right], j=1, \ldots, d$,
$\square \epsilon_{t}=\left(\epsilon_{t 1}, \ldots, \epsilon_{t d}\right)^{\top}, t=1, \ldots, n$ with $\epsilon_{t} \stackrel{\text { iid }}{\sim} \mathcal{L}(0,1)$

PIOS for the time series models, II

\checkmark Special cases of SCOMDY:

- VAR
- Multivariate ARMA
- Multivariate GARCH
- ...
\square Estimation:
- Performed with three-stage procedure
\square Resulting residuals are used to construct PIOS test to test the specification of a parametric copula.

Estimation, I

$$
\begin{aligned}
& \text { 1. Univariate quasi ML with } \epsilon \sim \mathrm{N}(0,1) \text { to estimate } \eta=\left(\eta_{1}^{\top}, \eta_{2}^{\top}\right)^{\top} \text { : } \\
& \widehat{\eta}_{1}=\arg \min _{\eta_{1} \in \psi_{1}}\left[\frac{1}{n} \sum_{t=1}^{n}\left\{Y_{t}-\mu_{t}\left(\eta_{1}\right)\right\}^{\top}\left\{Y_{t}-\mu_{t}\left(\eta_{1}\right)\right\}\right] \\
& \text { and } \\
& \widehat{\eta}_{2}=\arg \min _{\eta_{2} \in \Psi_{2}}\left(\frac{1}{n} \sum_{t=1}^{n} \sum_{j=1}^{d}\left[\Sigma_{t j}^{-1}\left(\widehat{\eta}_{1}, \eta_{2}\right)\left\{Y_{t}-\mu_{t}\left(\widehat{\eta}_{1}\right)\right\}^{2}+\log \Sigma_{t j}\left(\widehat{\eta}_{1}, \eta_{2}\right)\right]\right)
\end{aligned}
$$

Estimation, II

2. Estimate marginal distribution $F_{j}(\cdot)$ of $\widetilde{\epsilon}_{t j}$

$$
\tilde{\epsilon}_{t j}=\Sigma_{t j}^{-1 / 2}(\widehat{\eta})\left\{y_{t j}-\mu_{t j}\left(\widehat{\eta}_{1}\right)\right\}, \quad j=1, \ldots, d ; \quad t=1, \ldots, n
$$

by

$$
\check{F}_{j}(x)=\frac{1}{n+1} \sum_{t=1}^{n} \mathbf{I}\left\{\widetilde{\epsilon}_{t j} \leq x\right\}, x \in \mathbb{R}, j=1, \ldots, d
$$

Estimation, III

3. Estimate θ by

$$
\widehat{\theta}=\arg \max _{\theta \in \Theta} \frac{1}{n} \sum_{t=1}^{n} \ell\left\{\check{F}\left(\widetilde{\epsilon}_{t}\right) ; \theta\right\}
$$

where $\ell(\cdot ; \cdot)=\log c(\cdot ; \cdot)$.
\square use residuals to estimate T_{n} and R_{n}

Theorem

(i) Under conditions A1-A2 and E1-E4, we have

$$
\widetilde{R}_{n} \xrightarrow{p} \operatorname{tr}\left\{S\left(\theta^{*}\right)^{-1} V\left(\theta^{*}\right)\right\}, \quad \text { as } \quad n \rightarrow \infty .
$$

(ii) Under the null hypothesis, if A2, B1-B3 and conditions E1-E4 hold, we have

$$
\sqrt{n}\left(\widetilde{R}_{n}-p\right) \xrightarrow{d} N\left(0, \widetilde{\sigma}_{R}^{2}\right), \quad \text { as } \quad n \rightarrow \infty,
$$

where $\widetilde{\sigma}_{R}^{2}$ is the asymptotic variance.
(iii) Under assumptions A2, B1-B3, C1 and E1-E4, we have

$$
\widetilde{R}_{n}-\widetilde{T}_{n}(m)=o_{p}\left(n^{-1 / 2}\right) .
$$

Other important tests to discuss here

\square gofSn
\square gofRn
\square gofKendallCvM
\square gofKendallKS
\square gofRosenblattSnB
\square gofRosenblattSnC
\square gofADChisq
\square gofADGamma
\square Chen et al. (2004)
\checkmark gofKernel

gof $S n$ and gofRn and $K S$ test

\square Use empirical process

$$
\mathbb{C}_{n}\left(u_{1}, \ldots, u_{d}\right)=\sqrt{n}\left\{C_{n}\left(u_{1}, \ldots, u_{d}\right)-C_{\widehat{\theta}}\left(u_{1}, \ldots, u_{d}\right)\right\}
$$

- Cramér-von Mises (CvM)

$$
S_{n}^{E}=\int_{[0,1]^{d}} \mathbb{C}_{n}\left(u_{1}, \ldots, u_{d}\right)^{2} d C_{n}\left(u_{1}, \ldots, u_{d}\right)
$$

- weighted CvM, with tuning params. $m \geq 0$ and $\zeta_{m} \geq 0$

$$
R_{n}^{E}=\int_{[0,1]^{d}}\left\{\frac{\mathbb{C}_{n}\left(u_{1}, \ldots, u_{d}\right)}{\left[C_{\widehat{\theta}}\left(u_{1}, \ldots, u_{d}\right)\left\{1-C_{\widehat{\theta}}\left(u_{1}, \ldots, u_{d}\right)\right\}+\zeta_{m}\right]^{m}}\right\}^{2} d C_{n}\left(u_{1}, \ldots, u_{d}\right)
$$

- Kolmogorov-Smirnov

$$
T_{n}^{E}=\sup _{\left\{u_{1}, \ldots, u_{d}\right\} \in[0,1]^{d}}\left|\mathbb{C}_{n}\left(u_{1}, \ldots, u_{d}\right)\right|
$$

Tests based on Kendalls's transform

\checkmark Having

$$
\begin{gathered}
\left(X_{1}, \ldots, X_{d}\right) \sim F\left(x_{1}, \ldots, x_{d}\right)=C_{\theta}\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right\}, \\
X_{i} \sim F_{i}(x), F_{i}\left(X_{i}\right) \sim U(0,1) \\
C_{\theta}\left\{F_{1}\left(X_{1}\right), \ldots, F_{d}\left(X_{d}\right)\right\} \sim K_{\theta}(v)
\end{gathered}
$$

where $K_{\theta}(v)$ is the univariate Kendall's distribution.
$\square K_{\theta}(v)$ is the distribution of the copula as the random variable
$\square K$ can be estimated nonparametrically as

$$
K_{n}(v)=\frac{1}{n} \sum_{i=1}^{n} I\left(C_{n}\left\{\check{F}_{1}\left(x_{i 1}\right), \ldots, \check{\digamma}_{d}\left(x_{i d}\right)\right\} \leq v\right), \quad v \in[0,1]
$$

fCopulae get a feeling using sliders

copula method: 1 - Clayton, 4 - Gumbel, 5 - Frank
$\square K$-distribution

KfuncSlider ()

Inverse K

Concordance Measures

gofKendallCvM and gofKendallKS

\square Test $H_{0}^{\prime \prime}: K \in \mathcal{K}_{0}=\left\{K_{\theta}: \theta \in \Theta\right\}$
\boxtimes Use empirical process $\mathbb{K}_{n}=\sqrt{n}\left(K_{n}-K_{\widehat{\theta}}\right)$
\square Note that $H_{0} \subset H_{0}^{\prime \prime} \Rightarrow$ tests are not generally consistent
\square Usual distances

- Cramér- von Mises

$$
S_{n}^{(K)}=\int_{0}^{1} \mathbb{K}_{n}(v)^{2} d K_{\theta_{n}}(v)
$$

- Kolmogorov-Smirnov

$$
T_{n}^{(K)}=\sup _{v \in[0,1]}\left|\mathbb{K}_{n}(v)\right|
$$

\checkmark for bivariate Archimedean copulas $H_{0}^{\prime \prime}$ and H_{0} are equivalent

Tests based on Rosenblatt's transform

Recall conditional inverse simulation method, where conditional distribution of U_{i} is given by

$$
\begin{aligned}
C_{d}\left(u_{i} \mid u_{1}, \ldots, u_{i-1}\right) & =\boldsymbol{P}\left\{U_{i} \leq u_{i} \mid U_{1}=u_{1} \ldots U_{i-1}=u_{i-1}\right\} \\
& =\frac{\partial^{i-1} C\left(u_{1}, \ldots, u_{i}, 1, \ldots, 1\right) / \partial u_{1} \ldots \partial u_{i-1}}{\partial^{i-1} C\left(u_{1}, \ldots, u_{i-1}, 1, \ldots, 1\right) / \partial u_{1} \ldots \partial u_{i-1}}
\end{aligned}
$$

Definition

Rosenblatt's probability integral transform of a copula C is the mapping $\mathfrak{R}:(0,1)^{d} \rightarrow(0,1)^{d}, \mathfrak{R}\left(u_{1}, \ldots, u_{d}\right)=\left(e_{1}, \ldots, e_{d}\right)$ with $e_{1}=u_{1}$ and $e_{i}=C_{d}\left(u_{i} \mid u_{1}, \ldots, u_{i-1}\right), \forall i=2, \ldots, d$

gofRosenblattSnB and gofRosenblattSnC

\square Tests on direct Rosenblatt transformed data, see Genest, Rémillard and Beaudoin (2009, IME)

- Cramér-von Mises I:
$S_{n}=n \int_{[0,1]]^{d}}\left\{D_{n}(u)-\Pi(u)\right\}^{2} d u$-best following Genest et al. (2009)
- Cramér-von Mises II:

$$
S_{n}^{(C)}=n \int_{[0,1]^{d}}\left\{D_{n}(u)-\Pi(u)\right\}^{2} d D_{n}(u)
$$

- where the empirical distribution function

$$
D_{n}(u)=D_{n}\left(u_{1}, \ldots, u_{d}\right)=\frac{1}{n} \sum_{i=1}^{n} \prod_{j=1}^{d} I\left(e_{i j} \leq u_{j}\right)
$$

should be "close" to product copula Π under H_{0}.

gof ADGamma and gofADChisq

\checkmark Anderson-Darling test statistics:

$$
\left.T_{n}=-n-\sum_{i=1}^{n} \frac{2 i-1}{n}\left[\log G_{(i)}+\log \left\{1-G_{(n+1-i)}\right)\right\}\right]
$$

\square where for Gamma

$$
G_{i}=\Gamma_{d}\left\{\sum_{j=1}^{d}\left(-\log e_{i j}\right)\right\},
$$

where $\Gamma_{d}(\cdot)$ is the Gamma distribution with shape d and scale 1
\square where for Chisq

$$
G_{i}=\chi_{d}^{2}\left[\sum_{j=1}^{d}\left\{\Phi^{-1}\left(e_{i j}\right)\right\}^{2}\right]
$$

where χ_{d}^{2} Chi-Squared distribution with d degrees of freedom and Φ is standard normal distribution

Chen et al. (2004)

\square Test statistics (Chen et al., 2004):

$$
C_{n}^{C h}=\frac{n \sqrt{h} \widehat{J}_{n}-c_{n}}{\sigma} \rightarrow \boldsymbol{N}(0,1)
$$

where c_{n} and σ are normalization factors and

$$
\begin{aligned}
\widehat{W}_{i} & =\sum_{j=1}^{d}\left\{\Phi^{-1}\left(e_{j i}\right)\right\}^{2} \\
\widehat{g}_{W}(w) & =\frac{1}{n} \sum_{i=1}^{n} K_{h}\left\{w, F_{\chi_{d}^{2}}\left(\widehat{W}_{i}\right)\right\}, \\
\widehat{J}_{n} & =\int_{0}^{1}\left\{\widehat{g}_{W}(w)-1\right\}^{2} d w
\end{aligned}
$$

gofKernel

$\square J_{n}$ from Scaillet (2007, JoMA)

- Kernel-based GoF test statistic with fixed smoothing parameter

$$
J_{n}=\int_{[0,1]^{d}}\left\{\widehat{c}(u)-K_{H} * c(u ; \widehat{\theta})\right\} w(u) d u,
$$

with $*$ convolution operator and $w(u)$ a weight function.

- $K_{H}(y)=K\left(H^{-1} y\right) / \operatorname{det}(H)$ with K bivariate quadratic kernel
- $H=2.6073 n^{-1 / 6} \widehat{\Sigma}^{1 / 2}$ with $\hat{\Sigma}$ sample covariance matrix
- The copula density is estimated as

$$
\widehat{c}(u)=\frac{1}{n} \sum_{t=1}^{n} K_{H}\left[u-\left\{\widetilde{F}_{1}\left(X_{t 1}\right), \ldots, \widetilde{F}_{d}\left(X_{t d}\right)\right\}^{\top}\right] .
$$

Residual-based Bootstrap

Step 1. Generate bootstrap sample $\left\{\epsilon_{t}^{(k)}, t=1, \ldots, n\right\}$ from copula $C(u ; \widehat{\theta})$ under H_{0} with PMLE $\widehat{\theta}$ and estimated marginal distribution \check{F} obtained from original data;
Step 2. Based on $\left\{\epsilon_{t}^{(k)}, t=1, \ldots, n\right\}$ from Step 1, estimate θ of the copula under H_{0} by the two-step PMLE method, and compute R_{n}, denoted by R_{n}^{k};
Step 3. Repeat Steps $1-2 N$ times and obtain N statistics $R_{n}^{k}, k=1, \ldots, N$;
Step 4. Compute empirical p-value as $p_{e}=\frac{1}{N} \sum_{k=1}^{N} \mathbf{I}\left(\left|R_{n}^{k}\right| \geq\left|R_{n}\right|\right)$.

Simulation Study - Fixed true model setup

\square Tests used in the study:

- S_{n}
- J_{n}
- R_{n}
- $T_{n}(1)$ and $T_{n}(3)$
\square Copulae: Gaussian, t, Clayton and Gumbel
$\square \tau \in\{0.25 ; 0.50 ; 0.75\}$
$\square n \in\{100 ; 300\}$
\square Rounds of simulation $N=1000$
\square Bootstrap sample paths in every simulation $M=1000$

Simulation Study - Results

	True	H_{0}	S_{n}	J_{n}	R_{n}	$T_{n}(1)$	$T_{n}(3)$
$\begin{aligned} & \text { O } \\ & \text { M } \\ & \text { ॥ } \\ & \text { ᄃ } \end{aligned}$	Ga.	Ga.	5.5	4.3	4.4	4.5	4.2
	t	t	4.3	5.1	5.5	4.6	6.2
	CI.	Cl .	5.0	5.9	6.6	6.5	5.0
	Gu .	Gu .	4.5	3.3	5.2	5.2	5.2
	Ga.	t	5.1	12.4	66.0	61.7	22.4
	Ga.	CI.	99.1	100.0	77.7	78.8	62.5
	Ga.	Gu .	60.2	36.3	7.3	6.9	6.3
	t	Ga .	65.7	12.3	95.6	96.3	88.1
	t	CI.	98.3	100.0	98.0	98.0	86.5
	t	Gu.	88.3	24.7	71.4	72.6	52.7
	Cl .	Ga .	100.0	100.0	100.00	99.8	97.2
	CI.	t	100.0	98.5	36.6	97.7	75.9
	CI.	Gu .	100.0	100.0	100.0	100.0	100.0
	Gu .	Ga .	26.1	30.9	87.8	84.1	69.4
	Gu .	t	47.0	25.6	5.5	4.3	5.9
	Gu .	CI.	100.0	100.0	100.0	100.0	97.5

Table 1: Percentage of rejection of H_{0} by various tests of size $n=300$ from different copula models with $\tau=0.75, N=1000, M=1000$.

Simulation Study - Results

	True	H_{0}	S_{n}	J_{n}	R_{n}	$T_{n}(1)$	$T_{n}(3)$	
$\begin{aligned} & \text { O } \\ & \text { M } \\ & \\| \\ & \text { = } \end{aligned}$	Ga.	Ga.	5.5	4.3	4.4	4.5	4.2	
	t	t	4.3	5.1	5.5	4.6	6.2	
	CI.	CI.	5.0	5.9	6.6	6.5	5.0	
	Gu .	Gu .	4.5	3.3	5.2	5.2	5.2	
	Ga .	t	5.1	12.4	66.0	61.7	22.4	
	Ga.	Cl .	99.1	100.0	77.7	78.8	62.5	
	Ga.	Gu .	60.2	36.3	7.3	6.9	6.3	
	t	Ga .	65.7	12.3	95.6	96.3	88.1	
	t	Cl .	98.3	100.0	98.0	98.0	86.5	
	t	Gu .	88.3	24.7	71.4	72.6	52.7	
	CI.	Ga .	100.0	100.0	100.00	99.8	97.2	
	CI.	t	100.0	98.5	36.6	97.7	75.9	
	CI.	Gu .	100.0	100.0	100.0	100.0	100.0	
	Gu .	Ga .	26.1	30.9	87.8	84.1	69.4	
	Gu .	t	47.0	25.6	5.5	4.3	5.9	
	Gu .	CI.	100.0	100.0	100.0	100.0	97.5	

Table 2: Percentage of rejection of H_{0} by various tests of size $n=300$ from different copula models with $\tau=0.75, N=1000, M=1000$.

Simulation Study - Results

	True	H_{0}	S_{n}	J_{n}	R_{n}	$T_{n}(1)$	$T_{n}(3)$	
$\begin{aligned} & \text { O } \\ & \text { M } \\ & \\| \\ & \text { = } \end{aligned}$	Ga .	Ga.	5.5	4.3	4.4	4.5	4.2	
	t	t	4.3	5.1	5.5	4.6	6.2	
	CI.	Cl .	5.0	5.9	6.6	6.5	5.0	
	Gu .	Gu .	4.5	3.3	5.2	5.2	5.2	
	Ga.	t	5.1	12.4	66.0	61.7	22.4	
	Ga.	CI.	99.1	100.0	77.7	78.8	62.5	
	Ga.	Gu .	60.2	36.3	7.3	6.9	6.3	
	t	Ga .	65.7	12.3	95.6	96.3	88.1	
	t	CI.	98.3	100.0	98.0	98.0	86.5	
	t	Gu .	88.3	24.7	71.4	72.6	52.7	
	Cl .	Ga .	100.0	100.0	100.00	99.8	97.2	
	Cl .	t	100.0	98.5	36.6	97.7	75.9	
	CI.	Gu .	100.0	100.0	100.0	100.0	100.0	
	Gu .	Ga .	26.1	30.9	87.8	84.1	69.4	
	Gu .	t	47.0	25.6	5.5	4.3	5.9	
	Gu.	Cl .	100.0	100.0	100.0	100.0	97.5	

Table 3: Percentage of rejection of H_{0} by various tests of size $n=300$ from different copula models with $\tau=0.75, N=1000, M=1000$.

Simulation Study - Results

	True	H_{0}	S_{n}	J_{n}	R_{n}	$T_{n}(1)$	$T_{n}(3)$	
$\begin{aligned} & \text { O } \\ & \text { M } \\ & \\| \\ & \text { = } \end{aligned}$	Ga.	Ga.	5.5	4.3	4.4	4.5	4.2	
	t	t	4.3	5.1	5.5	4.6	6.2	
	CI.	Cl .	5.0	5.9	6.6	6.5	5.0	
	Gu .	Gu .	4.5	3.3	5.2	5.2	5.2	
	Ga.	t	5.1	12.4	66.0	61.7	22.4	
	Ga.	CI.	99.1	100.0	77.7	78.8	62.5	
	Ga .	Gu .	60.2	36.3	7.3	6.9	6.3	
	t	Ga.	65.7	12.3	95.6	96.3	88.1	
	t	CI.	98.3	100.0	98.0	98.0	86.5	
	t	Gu.	88.3	24.7	71.4	72.6	52.7	
	CI.	Ga.	100.0	100.0	100.00	99.8	97.2	
	CI.	t	100.0	98.5	36.6	97.7	75.9	
	Cl .	Gu.	100.0	100.0	100.0	100.0	100.0	
	Gu .	Ga.	26.1	30.9	87.8	84.1	69.4	
	Gu .	t	47.0	25.6	5.5	4.3	5.9	
	Gu .	Cl .	100.0	100.0	100.0	100.0	97.5	

Table 4: Percentage of rejection of H_{0} by various tests of size $n=300$ from different copula models with $\tau=0.75, N=1000, M=1000$.

Hybrid Test, I

\checkmark Different tests + different situations $=$ Different power
\checkmark Hybrid test combines several test methods
\checkmark Consider q test statistics $T_{n}^{(1)}, T_{n}^{(2)}, \ldots, T_{n}^{(q)}$
\square Common H_{0} hypothesis and given significance level α
\square Hybrid test statistic, $T_{n}^{\text {hybrid }}$, will have p-value

$$
p_{n}^{\text {hybrid }}=\min \left\{q \times \min \left\{p_{n}^{(1)}, \ldots, p_{n}^{(q)}\right\}, 1\right\}
$$

\checkmark Rejection rule: $p_{n}^{\text {hybrid }} \leq \alpha$

Hybrid Test, II

\square Type I error:

$$
P\left(p_{n}^{(\text {hybrid })} \leq \alpha \mid H_{0}\right) \leq \alpha
$$

\square Type II error:

$$
P\left(p_{n}^{\text {hybrid }} \leq \alpha \mid H_{1}\right) \geq \max \left\{\beta_{n}^{1}(\alpha / q), \ldots, \beta_{n}^{q}(\alpha / q)\right\}
$$

\square Implication: If at least one test is consistent, hybrid test is consistent as well
\square Simulation study shows that the Hybrid Test behaves more desirably than the individual tests

Simulation Study - cont.

\square Bootstrap technique to numerically establish the null distribution of the test statistics
\checkmark Applied single tests:

- S_{n}
- J_{n}
- R_{n}
- $T_{n}(1)$ and $T_{n}(3)$
\square Applied hybrid tests:
- $S R_{n}$
- $S T_{n}(1)$
- $J R_{n}$
- $J T_{n}(1)$
- $S J R_{n}$
- $S J T_{n}(1)$

Simulation Study - Results

	True	${ }_{\mathrm{H}}^{0}$	S_{n}	J_{n}	R_{n}	$T_{n}(\mathbf{1})$	$T_{n}(3)$	$S R_{n}$	$S T_{n}(\mathbf{1})$	$J R_{n}$	$J T_{n}(\mathbf{1})$	$S J R_{n}$	$S J T_{n}(\mathbf{1})$	
	Ga.	Ga.	5.5	4.3	4.4	4.5	4.2	4.7	4.2	4.3	4.1	5.6	5.7	
	t	t	4.3	5.1	5.5	4.6	6.2	5.6	4.5	4.7	5.1	5.1	4.7	
	Cl.	Cl.	5.0	5.9	6.6	6.5	5.0	5.5	5.5	3.5	3.5	3.2	3.2	
	Gu.	Gu.	4.5	3.3	5.2	5.2	5.2	4.4	4.3	4.5	4.3	5.1	5.1	
	Ga.	t	5.1	12.4	66.0	61.7	22.4	55.3	46.4	58.3	50.3	51.2	42.9	
	Ga.	Cl.	99.1	100.0	77.7	78.8	62.5	98.3	98.3	100.0	100.0	100.0	100.0	
$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	Ga.	Gu.	60.2	36.3	7.3	6.9	6.3	49.5	49.1	26.8	26.9	57.9	57.9	
	t	Ga.	65.7	12.3	95.6	96.3	88.1	92.9	93.7	93.2	94.0	91.9	92.5	
$\begin{aligned} & \\| \\ & = \end{aligned}$	t	Cl.	98.3	100.0	98.0	98.0	86.5	99.6	99.6	100.0	100.0	100.0	100.0	
	t	Gu.	88.3	24.7	71.4	72.6	52.7	88.3	88.3	67.9	68.1	83.1	83.1	
	Cl.	Ga.	100.0	100.0	100	99.8	97.2	100.0	100.0	100.0	100.0	100.0	100.0	
	Cl.	t	100.0	98.5	36.6	97.7	75.9	100.0	100.0	97.9	99.6	100.0	100.0	
	Cl.	Gu.	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
	Gu.	Ga.	26.1	30.9	87.8	84.1	69.4	83.1	80.0	82.8	82.1	79.7	78.4	
	Gu.	t	47.0	25.6	5.5	4.3	5.9	32.2	31.8	19.6	19.5	30.4	29.2	
	Gu.	Cl.	100.0	100.0	100.0	100.0	97.5	100.0	100.0	100.0	100.0	100.0	100.0	

Table 5: Percentage of rejection of H_{0} by various tests of size $n=300$ from different copula models with $\tau=0.75, N=1000, M=1000$.

PIOS for SCOMDY model

\square True data-generating processes are $\operatorname{GARCH}(1,1)$:

$$
\begin{aligned}
x_{i t} & =\sigma_{i t} \varepsilon_{i t} \\
\sigma_{i t}^{2} & =\omega+\alpha x_{i, t-1}^{2}+\beta \sigma_{i, t-1}^{2}, \quad \text { for } i=1,2
\end{aligned}
$$

with $\left\{\varepsilon_{1 t}, \varepsilon_{2 t}\right\} \sim C\left\{F_{1}(\cdot), F_{2}(\cdot) ; \theta\right\}, \varepsilon_{i, t} \perp \varepsilon_{i, t-1}$ for $i=1,2$.
$\square \omega=10^{-1}, \alpha=0.1$ and $\beta=0.8$

1. Simulated iid samples in bootstrap loop
2. Bootstrap loop with time series structure

Observation-based Bootstrap

Step 1. Generate time series $\left\{Y_{t}^{(k)}, t=1, \ldots, n\right\}$ from SCOMDY model with $\widehat{\eta}_{1}$ and $\widehat{\eta}_{2}$ estimated from original data, and with innovation process generated from assumed copula under H_{0} with $\widehat{\theta}$ and marginal distribution \check{F}.
Step 2. Based on $\left\{Y_{t}^{(k)}, t=1, \ldots, n\right\}$, estimate $\widehat{\eta}_{1}^{(k)}$ and $\widehat{\eta}_{2}^{(k)}$. Estimate residuals $\widetilde{\epsilon}_{t j}^{(k)}=\left\{y_{t j}^{(k)}-\mu_{t j}\left(\widehat{\eta}_{1}^{(k)}\right)\right\} / \Sigma_{t j}^{1 / 2}\left(\widehat{\eta}_{2}^{(k)}\right)$.
Step 3. Based on $\left\{\tilde{\epsilon}_{t}^{(k)}, t=1, \ldots, n\right\}$, estimate θ of copula under H_{0} by two-step PMLE method and compute R_{n}^{k};

Step 4. Repeat Steps 1- $3 N$ times and obtain N statistics $R_{n}^{k}, k=1, \ldots, N$;
Step 5. Compute empirical p-value as $p_{e}=\frac{1}{N} \sum_{k=1}^{N} \mathbf{I}\left(\left|R_{n}^{k}\right| \geq\left|R_{n}\right|\right)$.

SCOMDY, I

True	H_{0}	$\tau=0.25$		$\tau=0.5$		$\tau=0.75$	
		R_{n}	$T_{n}(1)$	R_{n}	$T_{n}(1)$	R_{n}	$T_{n}(1)$
Ga	Ga	0.062	0.059	0.058	0.066	0.085	0.088
		0.058	0.061	0.046	0.043	0.042	0.041
Cl	Cl	0.058	0.052	0.061	0.068	0.113	0.113
		0.053	0.057	0.038	0.039	0.050	0.050
t	t	0.054	0.053	0.048	0.044	0.062	0.043
		0.042	0.043	0.052	0.060	0.049	0.046
Gu	Gu	0.054	0.056	0.055	0.052	0.070	0.069
		0.052	0.055	0.048	0.049	0.046	0.045

Table 6: Percentages of rejection of H_{0} by various tests from different copula models for $n=300, N=300, M=1000$ for the $\operatorname{GARCH}(1,1)$ dependent data. Type I errors were obtained using residual-based (in italic) and observationbased bootstrap procedures.

Application: Structural changes in the dependency

\square Daily returns of Citigroup and Bank of America
\square Period 2004 - 2013
\square Apply $\operatorname{GARCH}(1,1)$ to each year separately
\square Chosen is the copula dependency with the largest p-value for each year

Scatterplots

Figure 6: Scatterplots of residuals transformed to the standard normal for Citygroup/Bank of America for 2004, 2006 and 2009.

Results

	$T_{n}(1)$	R_{n}	S_{n}	J_{n}	$S T_{n}(1)$	$S R_{n}$	$J T_{n}(1)$	$J R_{n}$	$S J T_{n}(1)$	$S J R_{n}$
2004	Gu.	Gu.	Ga.	Ga.	Ga.	Ga.	Gu.	Gu.	Ga.	Ga.
2005	Gu.	Gu.	t	t	Gu.	Gu.	Gu.	Gu.	Gu.	Gu.
2006	t	\mathbf{t}	Ga.	\mathbf{t}	t	t	t	t	\mathbf{t}	\mathbf{t}
2007	t									
2008	t									
2009	Gu.	Gu.	Gu.	Ga.	Gu.	Gu.	Gu.	Gu.	Gu.	Gu.
2010	t	t	Gu.	t	Gu.	Gu.	t	t	Gu.	Gu.
2011	t									
2012	t									
2013	t	t	t	Gu.	t	t	t	t	t	t

Table 7: Copulas that are preferred in each time period by each goodness-of-fit test for the Citigroup / Bank of America.

R-package gofCopula

\square Most tests in one package
\square Several margin structures
\square Each test at least 3 dim
\square Automatized parallelization (in progress)

Covered single tests

\square gofRosenblattSnB
\square gofRosenblattSnC
\square gofKendallCvM
\square gofKendallKS
\square gofPIOSRn
\square gofPIOSTn
\square gofADChisq
\square gofADGamma
\square gofSn
\square gofRn
\square gofKernel
\square gofWhite

Hybrid test - computation

\checkmark Random 2 dim sample
$1 \mathrm{x}=\mathrm{cbind}(\operatorname{rnorm}(100)$, rnorm(100))
\square Hybrid test for normality with 2 tests

1 gofHybrid("gaussian", x, testset $=c("$ gofRosenblattSnB" , "gofRosenblattSnC"), $M=1000$)
\checkmark Computation time

```
1 [1] "The computation will take approximately 0 d, 0 h,
    2 min and 14 sec."
```


Hybrid test - result

Tests results:		
p.value test statistic		
RosenblattSnB	0.9515485	0.05416868
RosenblattSnC	0.8786214	0.07630096
hybrid $(1,2)$	1.0000000	$N a N$

\square Automatic margin estimation

Warning message:
In gofHybrid("gaussian", x, testset $=c$ (" gofRosenblattSnB", "gofRosenblattSnC"), :
The observations are not in $[0,1]$. The margins will be estimated by the ranks of the observations.

Tests for copulae

\square Available tests for gaussian?

```
gofWhich("gaussian", d = 2)
[1] "gofHybrid" "gofRosenblattSnB"
[3] "gofRosenblattSnC" "gofADChisq" "gofADGamma"
[6] "gofSn" "gofRn" "gofPIOSRn" "gofPIOSTn"
[10] "gofKernel" "gofWhite" "gofKendallCvM"
[13] "gofKendallKS "
```

\square Use all for hybrid test

```
1 gofHybrid("gaussian", x, testset = gofWhich("gaussian",
    \(\mathrm{d}=2\) ) \([-1], \quad \mathrm{M}=1000\) )
2 [1] "The computation will take approximately 0 d, 2 h,
    20 min and 15 sec."
```


Flexible testing structure

\square Adjust margins

```
margins = "gaussian"
gofHybrid("gaussian", x,
    testset = c("gofRosenblattSnB",
        "gofRosenblattSnC"),
    M = 1000,
    margins = margins)
```


Flexible testing structure

\square Fix parameter

```
parameter = 0.2
gofHybrid("gaussian", x,
    testset =c("gofRosenblattSnB",
                                "gofRosenblattSnC"),
    M = 1000,
    param.est = FALSE,
    param = parameter)
```


Copulae for tests

\checkmark Available copulae for test?

```
gofWhichCopula("gofRosenblattSnB")
[1] "gaussian" "t" "clayton" "frank" "gumbel"
gofWhichCopula("gofRosenblattSnC")
[1] "gaussian" "t" "clayton" "frank" "gumbel"
```


Copulae for tests

\square Use a test with all copulae

```
copulae= gofWhichCopula("gofRosenblattSnB")
for (i in copulae){
    print(gofHybrid(i, x,
        testset = c("gofRosenblattSnB",
                                "gofRosenblattSnC"),
        M (= 10))
}
```


\square OR

```
copulae = gofWhichCopula("gofRosenblattSnB")
gof(x,
    copula = copulae,
    tests = c("gofRosenblattSnB", "gofRosenblattSnC"),
    M = 10)
```


gof

\checkmark Options of gof

- priority $\in\{$ "tests", "copula"\}
- "tests": all tests for their shared copulae
- "copula": all tests which support \{"gaussian", "t", "gumbel", "clayton", "frank"\}
- copula: which copulae to use
- tests: which tests to use
\square priority just in effect if copula $=$ tests $=$ NULL

Interface to copula package

\square Connection to copula package
\square Usage of both packages may be desirable

2	copulaobject = normalCopula(param = 0.2, dim = 2)	
	gofco(copulaobject, x,	
3	testset = c("gofRosenblattSnB", "gofRosenblattSnC")	
4	$\mathrm{M}=1000$)	
5		
6	Tests results:	
7	p.value test statistic	
8	RosenblattSnB 0.9475524	0.05416868
9	RosenblattSnC 0.8366633	0.07630096
10	hybrid(1, 2) 1.0000000	NaN

Multivariate Copula families

\checkmark Gaussian copula

- No tail dependence and correlation matrix.
$\square t$-copula
- One parameter for all tail areas plus correlation matrix.
\square Factor copula, Oh and Patton (2014)
- Flexible, but no density/conditional quantile.
\square Vines, Kurowicka and Joe (2011)
- Flexible, but need $d(d-1) / 2$ parameters.
$\square d$-dimensional Archimedean Copulae
- too restrictive: single parameter, exchangeable
\square HAC

Hierarchical Archimedean copulae

Papers:
Okhrin, O., Okhrin, Y. and Schmid, W., Determining the structure and estimation of hierarchical Archimedean copulas, Journal of Econometrics 173(2), 2013, pp. 189-204.

Okhrin, O. and Ristig, A., Hierarchical Archimedean Copulae: The HAC Package, Journal of Statistical Software 58(4), 2014, pp 1-20.

Okhrin, O., Ristig, A., Sheen, J., and Trueck, S., Conditional Systemic risk with penalized copula, working paper

Hofert, M., Sampling Archimedean copulas. Computational Statistics and Data Analysis 52, 2008, pp. 5163-5174.

Main Idea of HAC

\square combine interpretability with flexibility without loosing statistical precision
\square determine the optimal structure of HAC
\square convenient and useful probabilistic properties of the HAC

Hierarchical Archimedean Copulae

$$
\begin{aligned}
\text { AC with } s & =((123) 4) \\
C\left(u_{1}, u_{2}, u_{3}, u_{4}\right) & =C_{1}\left\{C_{2}\left(u_{1}, u_{2}, u_{3}\right), u_{4}\right\}
\end{aligned}
$$

Fully nested AC with $\mathrm{s}=(((12) 3) 4)$
$C\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=C_{1}\left[C_{2}\left\{C_{3}\left(u_{1}, u_{2}\right), u_{3}\right\}, u_{4}\right]$

Partially Nested AC with $\mathrm{s}=((12)(34))$ $C\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=C_{1}\left\{C_{2}\left(u_{1}, u_{2}\right), C_{3}\left(u_{3}, u_{4}\right)\right\}$

Hierarchical Archimedean Copula

Figure 7: Scatterplot of the $C_{\text {Gumbel }}\left[C_{G u m b e l}\left\{\Phi\left(x_{1}\right), t_{2}\left(x_{2}\right) ; \theta_{1}=\right.\right.$ $\left.10\}, \Phi\left(x_{3}\right) ; \theta_{2}=2\right], s=\left((12)_{10} 3\right)_{2}$

Hierarchical Archimedean Copula

Figure 8: Scatterplot of the $C_{\text {Gumbel }}\left[\Phi\left(x_{2}\right), C_{G u m b e l}\left\{t_{2}\left(x_{1}\right), \Phi\left(x_{3}\right) ; \theta_{1}=\right.\right.$ $\left.10\} ; \theta_{2}=2\right], s=\left(2_{10}(13)_{2}\right)$

Hierarchical Archimedean Copula

Advantages of HAC:

\square flexibility and wide range of dependencies:
for $d=10$ more than $2.8 \cdot 10^{8}$ structures
\square dimension reduction:
$d-1$ parameters to be estimated
\square subcopulae are also HAC

Theoretical motivation

Let M be the cdf of a positive random variable and ϕ denotes its Laplace transform, i.e. $\phi(t)=\int_{0}^{\infty} \exp ^{-t w} d M(w)$. For an arbitrary cdf F there exists a unique $\mathrm{cdf} G$, such that

$$
F(x)=\int_{0}^{\infty} G^{\alpha}(x) d M(\alpha)=\phi\{-\log G(x)\} .
$$

Now consider a d-variate cdf F with margins F_{1}, \ldots, F_{d}. Then it holds for $G_{j}=\exp \left\{-\phi^{-1}\left(F_{j}\right)\right\}$ that

$$
\int_{0}^{\infty} G_{1}^{\alpha}\left(x_{1}\right) \cdots \cdot G_{d}^{\alpha}\left(x_{d}\right) d M(\alpha)=\phi\left\{-\sum_{j=1}^{d} \log G_{j}\left(x_{j}\right)\right\}=\phi\left[\sum_{j=1}^{d} \phi^{-1}\left\{F_{j}\left(x_{j}\right)\right\}\right] .
$$

$$
C\left(u_{1}, \ldots, u_{d}\right)=
$$

$$
\int_{0}^{\infty} \ldots \int_{0}^{\infty} G_{1}^{\alpha_{1}}\left(u_{1}\right) G_{2}^{\alpha_{1}}\left(u_{2}\right) d M_{1}\left(\alpha_{1}, \alpha_{2}\right) G_{3}^{\alpha_{2}}\left(u_{3}\right) d M_{2}\left(\alpha_{2}, \alpha_{3}\right) \ldots G_{d}^{\alpha_{d-1}}\left(u_{d}\right) d M_{d-1}\left(\alpha_{d-1}\right) .
$$

Recovering the structure (theory)

To guarantee that C is a HAC we assume that $\phi_{d-i}^{-1} \circ \phi_{d-j} \in \mathcal{L}^{*}, i<j$ with
$\mathcal{L}^{*}=\left\{\omega:[0, \infty) \rightarrow[0, \infty) \mid \omega(0)=0, \omega(\infty)=\infty,(-1)^{j-1} \omega^{(j)} \geq 0, j \geq 1\right\}$.

For most of the generator functions the parameters should decrease from the lowest level to the highest

Theorem
Let F be an arbitrary multivariate distribution function based on HAC. Then F can be uniquely recovered from the marginal distribution functions and all bivariate copula functions.

$$
C\left(u_{1}, \ldots, u_{6}\right)=C_{1}\left[C_{2}\left(u_{1}, u_{2}\right), C_{3}\left\{u_{3}, C_{4}\left(u_{4}, u_{5}\right), u_{6}\right\}\right] .
$$

The bivariate marginal distributions are then given by
$\left(U_{1}, U_{2}\right) \sim C_{2}(\cdot, \cdot)$,
$\left(U_{2}, U_{3}\right) \sim C_{1}(\cdot, \cdot)$,
$\left(U_{3}, U_{5}\right) \sim C_{3}(\cdot, \cdot)$, $\left(U_{1}, U_{3}\right) \sim C_{1}(\cdot, \cdot)$, $\left(U_{2}, U_{4}\right) \sim C_{1}(\cdot, \cdot)$, $\left(U_{3}, U_{6}\right) \sim C_{3}(\cdot, \cdot)$, $\left(U_{1}, U_{4}\right) \sim C_{1}(\cdot, \cdot)$, $\left(U_{2}, U_{5}\right) \sim C_{1}(\cdot, \cdot)$, $\left(U_{4}, U_{5}\right) \sim C_{4}(\cdot, \cdot)$, $\left(U_{1}, U_{5}\right) \sim C_{1}(\cdot, \cdot)$,
$\left(U_{2}, U_{6}\right) \sim C_{1}(\cdot, \cdot)$,
$\left(U_{4}, U_{6}\right) \sim C_{3}(\cdot, \cdot)$, $\left(U_{1}, U_{6}\right) \sim C_{1}(\cdot, \cdot)$,
$\left(U_{3}, U_{4}\right) \sim C_{3}(\cdot, \cdot)$,
$\left(U_{5}, U_{6}\right) \sim C_{3}(\cdot, \cdot)$.

$$
\mathcal{C}_{2}\{\boldsymbol{N}(C)\}=\left\{C_{1}(\cdot, \cdot), C_{2}(\cdot, \cdot), C_{3}(\cdot, \cdot), C_{4}(\cdot, \cdot)\right\} .
$$

\square each variable belongs to at least one bivariate margin C_{1} \rightsquigarrow the distribution of u_{1}, \ldots, u_{6} has C_{1} at the top level.
$\square C_{3}$ covers the largest set of variables $u_{3}, u_{4}, u_{5}, u_{6} \rightsquigarrow C_{3}$ is at the top level of the subcopula containing $u_{3}, u_{4}, u_{5}, u_{6}$.

$$
U_{1}, \ldots, U_{6} \sim C_{1}\left\{u_{1}, u_{2}, C_{3}\left(u_{3}, u_{4}, u_{5}, u_{6}\right)\right\}
$$

$\square C_{2}$ and C_{4} and they join u_{1}, u_{2} and u_{4}, u_{5} respectively.

$$
\left(U_{1}, \ldots, U_{6}\right) \sim C_{1}\left[C_{2}\left(u_{1}, u_{2}\right), C_{3}\left\{u_{3}, C_{4}\left(u_{4}, u_{5}\right), u_{6}\right\}\right]
$$

Let for each bivariate copula $C^{*} \in \mathcal{C}_{2}\{\boldsymbol{N}(C)\}, I(C)$ be the set of indices $i \in\{1, \ldots, k\}$ such that $\left(U_{i}, U_{j}\right) \sim C^{*}$ for at least one $j \in\{1, \ldots, k\} \backslash\{i\}$.

$$
I\left(C_{1}\right)=\{1, \ldots, 6\}, I\left(C_{2}\right)=\{1,2\}, I\left(C_{3}\right)=\{3,4,5,6\}, I\left(C_{4}\right)=\{4,5\}
$$

The family of sets $I\left(C^{*}\right)$, as C^{*} ranges over $\mathcal{C}_{2}\{\boldsymbol{N}(C)\}$, is partially ordered by inclusion

$$
I\left(C_{1}\right) \supset\left\{\begin{array}{l}
I\left(C_{2}\right), \\
I\left(C_{3}\right) \supset I\left(C_{4}\right)
\end{array}\right.
$$

Recovering the structure (practice)

$$
\begin{aligned}
& \text { (12) } \rightsquigarrow \widehat{\theta}_{12} \\
& \text { (13) } \rightsquigarrow \widehat{\theta}_{13} \\
& (14) \rightsquigarrow \widehat{\theta}_{14} \\
& \text { (23) } \rightsquigarrow \widehat{\theta}_{23} \\
& \text { (24) } \rightsquigarrow \widehat{\theta}_{24} \\
& \begin{array}{c}
(34) \rightsquigarrow \widehat{\theta}_{34} \\
\hline(123) \rightsquigarrow \widehat{\theta}_{123}
\end{array} \\
& (124) \rightsquigarrow \widehat{\theta}_{124} \\
& (234) \rightsquigarrow \widehat{\theta}_{234} \\
& \text { (134) } \rightsquigarrow \widehat{\theta}_{134} \\
& (1234) \rightsquigarrow \widehat{\theta}_{1234} \\
& \text { best fit ((13)4) } \\
& z_{((13) 4), i}=\widehat{C}\left\{z_{(13) i}, \widehat{F}_{4}\left(x_{4 i}\right)\right\} \\
& ((13) 4) 2 \rightsquigarrow \widehat{\theta}_{((13) 4)^{2}}
\end{aligned}
$$

Estimation: multistage MLE with nonparametric and parametric margins Criteria for grouping: goodness-of-fit tests, parameter-based method, etc.

Estimation Issues - Multistage Estimation

$$
\begin{aligned}
& \left(\frac{\partial \mathcal{L}_{1}}{\partial \boldsymbol{\theta}_{1}^{\top}}, \ldots, \frac{\partial \mathcal{L}_{p}}{\partial \boldsymbol{\theta}_{p}^{\top}}\right)^{\top}=\mathbf{0}, \\
\text { where } \quad \mathcal{L}_{j}= & \sum_{i=1}^{n} l_{j}\left(\mathbf{X}_{i}\right) \\
l_{j}\left(\mathbf{X}_{i}\right)= & \log \left(c\left(\left\{\phi_{\ell}, \boldsymbol{\theta}_{\ell}\right\}_{\ell=1, \ldots, j ;} ; s_{j}\right)\left[\left\{\check{F}_{m}\left(x_{m i}\right)\right\}_{m \in s_{j}}\right]\right) \\
& \text { for } j=1, \ldots, p .
\end{aligned}
$$

Theorem
Under regularity conditions, estimator $\widehat{\boldsymbol{\theta}}$ is consistent and

$$
n^{\frac{1}{2}}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \xrightarrow{\mathcal{L}} N\left(\mathbf{0}, \mathbf{B}^{-1} \Sigma \mathbf{B}^{-1}\right)
$$

Criteria for grouping

Alternatives:

\checkmark goodness-of-fit tests

- dimension dependent
- computationally complicated
\square distance measures
- dimension dependent
\square parameter-based methods
Note that, if the true structure is (123) then

$$
\theta_{(12)}=\theta_{(13)}=\theta_{(23)}=\theta_{(123)}
$$

- heuristic methods
- test-based methods
\bullet tests on exchangeability

Criteria for grouping based on θ 's

I. For all subsets perform tests of the kind

$$
H_{0}: \quad \theta_{(12)}=\theta_{(13)}=\theta_{(23)}=\theta_{(123)}
$$

H_{1} : at least one equality is not fulfilled
II.

$$
\Delta=\min _{I_{k i},\left|\left.\right|_{k i}\right| \geq 3} \max _{I_{\left|l_{k i}\right|, j} \subset I_{k i}}\left|\theta\left(I_{k i}\right)-\theta\left(I_{\left|\left.\right|_{k i}\right|, j}\right)\right|,
$$

where $j=1, \ldots, 2^{\left|I_{k i}\right|}-\left|I_{k i}\right|-1$ and $\left\{I_{k i}\right\}_{i=1, \ldots 2^{k}-k-1}$ denote the subsets of the initial set of size k, excluding empty set and single element sets.

$$
I^{*}=\left\{\begin{array}{ll}
I_{\Delta}, & \Delta \leq \delta \\
\max _{I_{k i},\left|I_{k i}\right|=2} \theta\left(I_{k i}\right), & \Delta>\delta
\end{array} .\right.
$$

Estimation of HAC

$$
\max \left\{\widehat{\theta}_{12}, \widehat{\theta}_{13}, \widehat{\theta}_{14}, \widehat{\theta}_{23}, \widehat{\theta}_{24}, \widehat{\theta}_{34}\right\}=\widehat{\theta}_{13} \quad \Rightarrow
$$

$$
\max \left\{\widehat{\theta}_{(13) 2}, \widehat{\theta}_{(13) 4}, \widehat{\theta}_{24}\right\}=\widehat{\theta}_{(13) 4} \quad \Rightarrow
$$

Simulation, I

Table 8: Model fit for the true structure $\left((123)_{4}(45)_{3}\right)_{2}$.

Simulation, II

Method	Copula structure(s)	$\%$	KL	Kendall τ	λ_{U}
Gauss			$0.2896(0.0418)$	$0.6417(0.0298)$	$3.0882(0.0000)$
t		$0.1992(0.0281)$	$0.6442(0.0279)$	$1.4610(0.1430)$	
sAC	$(12345)_{2.37}$	100.0	$0.4963(0.0664)$	$0.4338(0.0147)$	$0.3938(0.0127)$
$\tau_{\triangle \tau>0}$	$\left(5\left(12(34)_{4.03}\right)_{3.33}\right)_{2.18}$	98.8	$0.0318(0.0219)$	$0.1627(0.0582)$	$0.1488(0.0539)$
	$\left(5(1234)_{3.58}\right)_{2.17}$	1.1			
	$\left(5\left(1\left(2(34)_{3.97}\right)_{3.74}\right)_{3.50}\right)_{2.24}$	0.1			
Chen	$\left(15(234)_{3.20}\right)_{2.10}$	12.1	$0.4512(0.1377)$	$0.4939(0.0891)$	$0.4503(0.082)$
	$\left(13(245)_{2.18}\right)_{2.09}$	11.0			
	$\left(34(125)_{2.18}\right)_{2.08}$	10.9			
$\theta_{\text {binary }}$	$\left(5\left((34)_{4.00}(12)_{3.07}\right)_{3.07}\right)_{1.78}$	38.9	$0.0312(0.0163)$	$0.2196(0.0562)$	$0.2152(0.0562)$
	$\left(5\left(2\left(1(34)_{4.03}\right)_{3.06}\right)_{2.59}\right)_{1.75}$	32.3			
	$\left(5\left(1\left(2(34)_{4.03}\right)_{3.06}\right)_{2.59}\right)_{1.75}$	28.8			
$\theta_{P M L}$	$\left(5\left(12(34)_{4.01}\right)_{3.02}\right)_{2.00}$	81.1	$-0.0025(0.0032)$	$0.0509(0.0253)$	$0.0472(0.0244)$
	$\left(5\left((12)_{3.12}(34)_{4.03}\right)_{2.87}\right)_{1.99}$	17.5			
	$\left(5\left(1\left(2(34)_{4.17}\right)_{3.19}\right)_{2.97}\right)_{2.02}$	0.9			

Table 9: Model fit for the true structure $\left(\left(12(34)_{4}\right)_{3} 5\right)_{2}$.

Simulation, III

	$\hat{\theta}_{3},\left(\theta_{3}=4.0\right)$	$\hat{\theta}_{2},\left(\theta_{2}=3.0\right)$	$\hat{\theta}_{1},\left(\theta_{1}=2.0\right)$	Time (in s)
Structure $\left((123)_{4}(45)_{3}\right)_{2}$				
MStage	$4.028(0.103)$	$3.010(0.112)$	$1.967(0.058)$	$0.496(0.032)$
Full	$4.002(0.100)$	$3.010(0.111)$	$2.002(0.058)$	$0.949(0.060)$
Structure $\left(\left(12(34)_{4}\right)_{3} 5\right)_{2}$				
MStage	$3.983(0.148)$	$2.995(0.078)$	$2.003(0.061)$	$1.995(0.372)$
Full	$3.980(0.141)$	$3.004(0.070)$	$2.005(0.061)$	$2.740(0.326)$

Table 10: The average parameters and computational times for multistage ML and full ML estimation based on 1000 simulated samples of size 500. Standard errors provided in brackets.

Misspecification

Let $H\left(x_{1}, \ldots, x_{k}\right)$ - true df with density h. Since H is unknown we specify $F\left(x_{1}, \ldots, x_{k}, \boldsymbol{\eta}\right)$ with density f.
$\square F$ is correctly specified:
$\exists \boldsymbol{\eta}_{0}: F\left(x_{1}, \ldots, x_{k}, \boldsymbol{\eta}_{0}\right)=H\left(x_{1}, \ldots, x_{k}\right), \forall\left(x_{1}, \ldots, x_{k}\right)$ then $\widehat{\boldsymbol{\eta}}$ is consistent for $\boldsymbol{\eta}_{0}$.
$\square F$ is not correctly specified:
$\nexists \boldsymbol{\eta}_{0}: F\left(x_{1}, \ldots, x_{k}, \boldsymbol{\eta}_{0}\right)=H\left(x_{1}, \ldots, x_{k}\right), \forall\left(x_{1}, \ldots, x_{k}\right)$, then $\widehat{\boldsymbol{\eta}}$ is an estimator for $\boldsymbol{\eta}_{*}$ which minimizes the Kullback-Leibler divergence between f and h as

$$
\mathcal{K}(h, f, \boldsymbol{\eta})=\mathrm{E}_{h}\left\{\log \left[h\left(x_{1}, \ldots, x_{k}\right) / f\left(x_{1}, \ldots, x_{k}, \boldsymbol{\eta}\right)\right]\right\}
$$

Misspecification, I

Simulation from HAC

Figure 9: Kullback-Leibler divergences for the simulated samples, HAC with Gumbel generators, $\theta_{1}=2.0, \theta_{2}=1.5, N=200, n=1000$

Misspecification, II

Simulation Normal

Figure 10: Kullback-Leibler divergences for the simulated samples, HAC, Σ equal to first model, $N=200, n=1000$

Penalized estimation of HAC

$$
\max \left\{\widehat{\theta}_{(13) 2}, \widehat{\theta}_{(13) 4}, \widehat{\theta}_{24}\right\}=\widehat{\theta}_{(13) 4}, \quad \text { if } \widehat{\theta}_{13}-\widehat{\theta}_{(13) 4}<\epsilon_{n} \quad \Rightarrow
$$

\square Build $\ell_{i}\left(\theta_{k(\ell)}\right)=\log \left\{c\left(U_{i 1}, \ldots, U_{i d_{k}} ; \theta_{k(\ell)}\right)\right\}$.
\square Penalized log-likelihood

$$
\mathcal{Q}\left(\theta_{\ell}, \theta_{k(\ell)}\right)=\sum_{i=1}^{n} \ell_{i}\left(\theta_{k(\ell)}\right)-n p_{\lambda_{n}}\left(\theta_{\ell}-\theta_{k(\ell)}\right)
$$

c.f. Cai and Wang (2014, JASA), Fan and Li (2001, JASA), Tibshirani et al. (2005, JRSSB).
\square Let $\widehat{\theta}_{k(\ell)}^{\lambda_{n}}$ be the maximizer of $\mathcal{Q}\left(\widehat{\theta}_{\ell}, \theta_{k(\ell)}\right)$.

Sparsity and oracle property

Proposition

Under Assumptions 1-3, if $n^{1 / 2} \lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\lim _{n \rightarrow \infty} P\left(\widehat{\theta}_{k(\ell)}^{\lambda_{n}}=\theta_{\ell, 0}\right)=1
$$

Proposition
Under Assumptions 1-3, if $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\begin{aligned}
& n^{1 / 2}\left\{\widehat{V}\left(\theta_{k(\ell), 0}\right)+p_{\lambda_{n}}^{\prime \prime}\left(\theta_{0}^{-}\right)\right\}\left[\left(\widehat{\theta}_{k(\ell)}^{\lambda_{n}}-\theta_{k(\ell), 0}\right)\right. \\
& \\
& \left.\quad-\left\{\widehat{V}\left(\theta_{k(\ell), 0}\right)+p_{\lambda_{n}}^{\prime \prime}\left(\theta_{0}^{-}\right)\right\}^{-1} p_{\lambda_{n}}^{\prime}\left(\theta_{0}^{-}\right)\right] \xrightarrow{\mathcal{L}} \boldsymbol{N}\left\{0, V\left(\theta_{k(\ell), 0}\right)\right\},
\end{aligned}
$$

where $\theta_{0}^{-}=\theta_{\ell, 0}-\theta_{k(\ell), 0}$.

ML representation

\square Let $\widehat{\theta}_{k(\ell)}$ and $\widehat{\theta}_{\ell}$ be the MLE of Okhrin et al. (2013, JoE).
\checkmark Linear approximation of penalty function, Zou and Li (2008, Ann.).

Proposition
Under Assumptions 1-3, $\widehat{\theta}_{k(\ell)}^{\lambda_{n}}=\widehat{\theta}_{k(\ell)}+\epsilon_{n}$, with

$$
\epsilon_{n} \stackrel{\text { def }}{=} \epsilon\left(\lambda_{n}, a_{n}\right)=\widehat{V}\left(\widehat{\theta}_{k(\ell)}\right)^{-1} p_{\lambda_{n}}^{\prime}\left(\widehat{\theta}_{\ell}-\widehat{\theta}_{k(\ell)}\right) .
$$

Practical issues

\square Attain sparsity from

$$
\widehat{\theta}_{k(\ell)}=\widehat{\theta}_{\ell}, \quad \text { if } \quad \hat{\theta}_{\ell}-\widehat{\theta}_{k(\ell)} \leq \epsilon_{n} .
$$

\square Wang et al. (2007, Biometrica), determine $(\lambda, a) \top$ by

$$
\left(\lambda_{n}, a_{n}\right) \top=\arg \max _{(\lambda, a) \top} 2 \sum_{i=1}^{n} \ell_{i}\left\{\widehat{\theta}_{k(\ell)}+\epsilon(\lambda, a)\right\}-q_{k} \log (n) .
$$

$\square q_{k}$ parameters in HAC up to level k.

Setup

\square Until $m=1000$ structures correctly specified.
\square Sample size $n=250$.
\square Let $\tau: \Theta_{k(\ell)} \rightarrow[0,1]$ transform the parameter $\theta_{k(\ell)}$ into Kendall's correlation coefficient.

$\square \theta_{\ell}=\tau^{-1}(0.7)$ and $\theta_{k(\ell)}=\tau^{-1}(0.3)$.

Family	$s(\widehat{\theta})=s\left(\theta_{0}\right)$	$\tau\left(\widehat{\theta}_{1}\right)(\mathrm{sd})$	$\tau\left(\widehat{\theta}_{2}\right)(\mathrm{sd})$	$\#\{\widehat{\theta}\}$
Clayton	0.82	$0.70(0.01)$	$0.30(0.02)$	3.04
Frank	0.85	$0.70(0.01)$	$0.30(0.02)$	3.03
Gumbel	0.85	$0.70(0.01)$	$0.30(0.02)$	3.02
Joe	0.88	$0.70(0.01)$	$0.30(0.02)$	3.04

Table 11: $s(\widehat{\theta})=s\left(\theta_{0}\right)$ reports the fraction of correctly specified structures, $\tau\left(\widehat{\theta}_{k}\right)(\mathrm{sd}), k=1,2$, refers to the sample average of Kendall's $\tau(\cdot)$ evaluated at the estimates and sd to the sample standard deviation thereof. If the structure is misspecified, $\#\{\widehat{\theta}\}$ gives the number of parameters on average included in the misspecified HAC.

Data and Copula

\square daily log returns of Apple (AAPL), Ford (F), Google (GOOG, Microsoft (MSFT) and Toyota Motors (TM)
\square timespan $=[03.01 .2007-31.12 .2010](n=1008)$
\square Gumbel and Clayton generators
\square AR(1)-GARCH(1,1)-general error distributed residuals are conditionally distributed with estimated copula

$$
\varepsilon \sim C\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right) ; \theta_{t}\right\}
$$

where F_{1}, \ldots, F_{d} are marginal distributions taking to be nonparametrically and θ_{t} are the copula parameters.

Application II

Figure 11: Residuals

Estimation Results

Generator estimated structure and parameters
Gumbel $\quad\left(\left(\left((\text { GOOG.AAPL })_{1.692(0.078)} \cdot M S F T\right)_{1.490(0.046)} \cdot T M\right)_{1.344(0.028)} \cdot F\right)_{1.280(0.025)}$
Clayton $\quad\left(\left((G O O G . A A P L)_{1.072(0.120)} \cdot M S F T\right)_{0.762(0.089)} \cdot(T M . F)_{0.554(0.058)}\right)_{0.548(0.051)}$
Table 12: Estimation results for the fit of the HAC with Gumbel and Clayton generators to the residuals. The standard errors of the parameters are given in the parenthesis.

Model with Clayton generators

Figure 12: BIC for comparison of the model with Clayton generators with Gaussian and t-copula.

Model with Clayton generators

Figure 13: Parameters transformed to Kendall's τ of the model with Clayton generators.

Model with Clayton generators

Index
Figure 14: The structure from moving window estimation with window length 100 using Clayton generators.

VaR

The P\&L function is $L_{t+1}=\sum_{i=1}^{3} w_{i} P_{i t}\left(e^{R_{i, t+1}}-1\right)$, The VaR at level α is $\operatorname{VaR}(\alpha)=F_{L}^{-1}(\alpha)$

$$
\widehat{\alpha}_{\mathbf{w}}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{l}\left\{L_{t}<\widehat{\operatorname{VaR}}_{t}(\alpha)\right\} .
$$

The distance between $\widehat{\alpha}$ and α

$$
e_{w}=\left(\widehat{\alpha}_{w}-\alpha\right) / \alpha .
$$

The performance of models is measured through

$$
A_{W}=\frac{1}{|W|} \sum_{\mathbf{w} \in W} e_{\mathbf{w}}, \quad D_{W}=\left\{\frac{1}{|W|} \sum_{\mathbf{w} \in W}\left(e_{\mathbf{w}}-A_{W}\right)^{2}\right\}^{1 / 2} .
$$

VaR

	10%		5%
HAC (Gumbel)	$0.1070(0.0048)$	$0.0586(0.0061)$	$0.0173(0.0020)$
AC (Gumbel)	$0.1094(0.0070)$	$0.0639(0.0067)$	$0.0186(0.0028)$
HAC (Clayton)	$0.1017(0.0050)$	$0.0473(0.0034)$	$0.0107(0.0012)$
AC (Clayton)	$0.1098(0.0072)$	$0.0545(0.0042)$	$0.0118(0.0014)$
Gauss	$0.1015(0.0053)$	$0.0542(0.0034)$	$0.0139(0.0016)$
t	$0.1015(0.0048)$	$0.0530(0.0033)$	$0.0128(0.0015)$
vineC (mixed)	$0.1010(0.0042)$	$0.0528(0.0033)$	$0.0139(0.0015)$
vineC (Gumbel)	$0.1084(0.0053)$	$0.0614(0.0049)$	$0.0157(0.0029)$
vineC (Clayton)	$0.1028(0.0044)$	$0.0492(0.0033)$	$0.0119(0.0016)$
vineD (mixed)	$0.1034(0.0049)$	$0.0503(0.0032)$	$0.0125(0.0011)$
vineD (Gumbel)	$0.1074(0.0054)$	$0.0602(0.0057)$	$0.0157(0.0028)$
vineD (Clayton)	$0.1060(0.0047)$	$0.0496(0.0030)$	$0.0105(0.0016)$

Table 13: The empirical quantiles $\widehat{\operatorname{VaR}}(\alpha)$ and the standard deviation in parenthesis.

VaR

	10%		1%
HAC (Gumbel)	$0.0702(0.0479)$	$0.1726(0.1226)$	$0.7330(0.2034)$
AC (Gumbel)	$0.0936(0.0703)$	$0.2785(0.1344)$	$0.8589(0.2793)$
HAC (Clayton)	$0.0173(0.0498)$	$-0.0548(0.0685)$	$0.0702(0.1173)$
AC (Clayton)	$0.0975(0.0716)$	$0.0899(0.0846)$	$0.1823(0.1371)$
Gauss	$0.0150(0.0528)$	$0.0845(0.0680)$	$0.3871(0.1601)$
t	$0.0153(0.0476)$	$0.0602(0.0655)$	$0.2842(0.1485)$
vineC (optimal)	$0.0102(0.0419)$	$0.0567(0.0658)$	$0.3884(0.1536)$
vineC (Gumbel)	$0.0837(0.0533)$	$0.2280(0.0983)$	$0.5709(0.2877)$
vineC (Clayton)	$0.0276(0.0445)$	$-0.0161(0.0658)$	$0.1863(0.1586)$
vineD (optimal)	$0.0339(0.0489)$	$0.0067(0.0640)$	$0.2504(0.1087)$
vineD (Gumbel)	$0.0744(0.0538)$	$0.2046(0.1137)$	$0.5690(0.2808)$
vineD (Clayton)	$0.0597(0.0473)$	$-0.0078(0.0591)$	$0.0462(0.1581)$

Table 14: The average exceedance A_{W} over all portfolios and its standard deviation D_{W}.

HAC meets R

Figure 15: Website for downloading

Portfolio Management

\square HAC can be applied to VaR estimation or assessing diversification effects.
\square Four stocks: Chevron (CVX), Total (FP), Royal Dutch Sheel (RDSA) and Exxon (XOM).
\square 2011-02-02 to 2012-03-19

```
> price = read.table("stocks")
> ret = diff(log(price), 1)
```

\square Residuals of ARMA-GARCH models res
\square Non-ellipticity? Joint extreme events?

```
1 > pairs(ret, pch = 20)
```


Figure 16: Dependencies of CVX, FP, RDSA and XOM
\square Copula estimation based on uniformly distributed margins ures

```
> result = estimate.copula(ures)
> plot(result)
```


Figure 17: Estimated HAC of the portfolio

Estimation

$\square 3$ computational blocks:

1. Specification of the margins
2. Estimation of the parameters and the structure
3. Optional aggregation of the binary HAC
\square Two estimation procedures: QML and Kendall's τ.
\square estimate.copula returns a hac object.
```
> result1 = estimate.copula(res, margins = 'edf')
> plot(result1)
```


Figure 18: Estimation result
\square Note, $C_{\theta_{1(23)}}\left(C_{\theta_{23}}\left(u_{2}, u_{3}\right), u_{1}\right)=C_{\theta_{123}}\left(u_{1}, u_{2}, u_{3}\right)$, if $\left|\theta_{1(23)}-\theta_{23}\right|<\varepsilon, \varepsilon>0$
\square epsilon $=0.3$ leads to a non-binary structure

```
1 > result2 = estimate.copula(X = res,
+ type=1, method = ML, epsilon = 0.3,
    agg.method = "mean", margins = "edf")
plot(result2)
```


Figure 19: Results of the modified estimation

Objects of the class hac

\square hac and hac.full create objects of the class hac.
\square hac.full cannot construct partially nested AC.
\square Consider a 5-dimensional fully nested Gumbel HAC:

```
1 > G1 = hac.full(type = 1,
+ y = c("X1", "X2", "X3", "X4", "X5"),
+ theta = c(1, 1.01, 2, 2.01))
> G1
Class: hac
Generator: Gumbel
((((X5.X4)_{2.01}.X3)_{2}.X2)_{1.01}.X1)_{1}
```

\square It is smarter to aggregate the variables X 1 and X 2 in a first node and the variables $\mathrm{X} 3, \mathrm{X} 4$ and X 5 in a second node.

```
> G2 = hac (type = 1,
    tree = list(list("X3", "X4", "X5", 2.005),
    "X2", "X1", 1.005))
```

\square Substituting of variables for lists leads to arbitrary objects

```
> G3 = hac(type = 1,
    tree = list(list("Y1", "Y2",
    list("Z3", "Z4", 3), 2.5),
    list("Z1", "Z2", 2),
    list("X1", "X2", 2.4),
    "X3", "X4", 1.5))
```


Graphics

```
> plot(G3)
```


Figure 20: Structure of object G3

```
1> plot(G3, digits = 2, theta = TRUE,
    col = "blue3", fg= "red3",
    bg = "white", col.t = "blue3")
```


Figure 21: Colored structure of object G3

```
1> tree2str(hac = G2, theta = TRUE
+ digits = 3)
[1] ''((X3.X4.X5)_{2.005}.X2.X1)_{1.005}',
> plot(G2, digits = 3, index = TRUE,
+ theta = FALSE)
```


Figure 22: Structure of object G2

Simulation

\checkmark Simulation of HAC requires 2 arguments: the number of generated random vectors and a hac object.

```
> sample = rHAC(n = 1500, hac = G2)
```


Figure 23: Scatterplot of sample

Distribution Functions

\square pHAC computes the values of copulas.

```
1 > cf.values = pHAC(X = sample, hac = G2)
```

\square emp.copula.self computes the empirical copula, ie.

$$
\widehat{C}\left(u_{1}, \ldots, u_{d}\right)=n^{-1} \sum_{i=1}^{n} \prod_{j=1}^{d} \mid\left\{\widehat{F}_{j}\left(X_{i j}\right) \leq u_{j}\right\}
$$

```
> ecf.values = emp.copula.self(x = sample,
+ proc = "M", sort = "none", na.rm = FALSE)
```


Figure 24: Values of cf.values on the x-axis against the values of the ecf.values

Figure 25: Runtimes of emp.copula.self for an increasing sample-size but fixed dimension $d=5$ plotted on a log-log-scale

Density Functions

$\square d$-dimensional copula density

$$
c\left(u_{1}, \ldots, u_{d}\right)=\frac{\partial^{d} C\left(u_{1}, \ldots, u_{d}\right)}{\partial u_{1} \cdots \partial u_{d}}
$$

\square dHAC returns the values of the analytical density.

- Requires a data matrix and a hac object as arguments.
\square Construction of Likelihood functions by to. logLik.
\square Random sampling using conditional inverse method.

Theoretical Properties of HAC

Papers:
Okhrin, O., Okhrin, Y. and Schmid, W., Properties of hierarchical Archimedean copulas. Statistics and Risk Modeling 30(1), 2013, pp. 21-53.

Charpentier, A., and Segers, J., Tails of multivariate Archimedean copulas. Journal of Multivariate Analysis 100, 2009, pp. 1521-1537
Barbe, Ph., Genest, Ch., Ghoudi, K., and Remillard, B., On Kendalls's process. Journal of Multivariate Analysis 58, 1996, pp. 197-229.

Distribution of HAC

Let $V=C\left\{F_{1}\left(X_{1}\right), \ldots, F_{d}\left(X_{d}\right)\right\}$ and let $K(t)$ denote the cdf (K-distribution) of the $r v V$.

We consider a HAC of the form $C_{1}\left\{u_{1}, C_{2}\left(u_{2}, \ldots, u_{d}\right)\right\}$.
Theorem
Let $U_{1} \sim U[0,1], V_{2} \sim K_{2}$ and let $P\left(U_{1} \leq x, V_{2} \leq y\right)=C_{1}\left\{x, K_{2}(y)\right\}$ with $C_{1}(a, b)=\phi\left\{\phi^{-1}(a)+\phi^{-1}(b)\right\}$ for $a, b \in[0,1]$. Under certain regularity conditions the distribution function K_{1} of the random variable $V_{1}=C_{1}\left(U_{1}, V_{2}\right)$ is given by

$$
\begin{aligned}
K_{1}(t)= & t-\int_{0}^{\phi^{-1}(t)} \phi^{\prime}\left\{\phi^{-1}(t)+\phi^{-1} \circ K_{2} \circ \phi(u)-u\right\} d u \\
& \text { for } t \in[0,1] .
\end{aligned}
$$

Gumbel copula

$$
\begin{aligned}
\phi_{\theta}(t) & =\exp \left(-t^{1 / \theta}\right) \\
\phi_{\theta}^{-1}(t) & =\{-\log (t)\}^{\theta} \\
\phi_{\theta}^{\prime}(t) & =-\frac{1}{\theta} \exp \left(-t^{1 / \theta}\right) t^{-1+1 / \theta}
\end{aligned}
$$

Following Genest and Rivest (1993), K for the simple 2-dim Archimedean copula with generator ϕ is given by $K(t)=t-\phi^{-1}(t) \phi^{\prime}\left\{\phi^{-1}(t)\right\}$. Thus

$$
K_{2}(t, \theta)=t-\frac{t}{\theta} \log (t)
$$

Figure 26: K distribution for three-dimensional HAC with Gumbel generators

Next consider $V_{3}=C_{3}\left(V_{4}, V_{5}\right)$ with $V_{4}=C_{4}\left(U_{1}, \ldots, U_{\ell}\right)$ and $V_{5}=C_{5}\left(U_{\ell+1}, \ldots, U_{d}\right)$.
Theorem
Let $V_{4} \sim K_{4}$ and $V_{5} \sim K_{5}$ and
$P\left(V_{4} \leq x, V_{5} \leq y\right)=C_{3}\left\{K_{4}(x), K_{5}(y)\right\}$ with
$C_{3}(a, b)=\phi\left\{\phi^{-1}(a)+\phi^{-1}(b)\right\}$ for $a, b \in[0,1]$. Under certain regularity conditions the distribution function K_{3} of the rv $V_{3}=C_{3}\left(V_{4}, V_{5}\right)$ is given by

$$
\begin{aligned}
K_{3}(t)= & K_{4}(t)- \\
- & \int_{0}^{\phi^{-1}(t)} \phi^{\prime}\left[\phi^{-1} \circ K_{5} \circ \phi(u)\right. \\
& \left.+\phi^{-1} \circ K_{4} \circ \phi\left\{\phi^{-1}(t)-u\right\}\right] d \phi^{-1} \circ K_{4} \circ \phi(u)
\end{aligned}
$$

for $t \in[0,1]$.

Dependence orderings

C^{\prime} is more concordant than C if
$(\bar{C}(u, v)=u+v-1+C(1-u, 1-v))$

$$
C \prec_{c} C^{\prime} \Leftrightarrow C(\mathrm{x}) \leq C^{\prime}(\mathrm{x}) \text { and } \bar{C}(\mathrm{x}) \leq \overline{C^{\prime}}(\mathrm{x}) \forall \mathrm{x} \in[0 ; 1]^{d} .
$$

Theorem
If two feasible hierarchical Archimedean copulae C^{1} and C^{2} differ only by the generator functions on the top level satisfying the condition $\phi_{1}^{-1} \circ \phi_{2} \in \mathcal{L}^{*}$, then $C^{1} \prec_{c} C^{2}$.

Theorem
If two hierarchical Archimedean copulae $C^{1}=C_{\phi_{1}}^{1}\left(u_{1}, \ldots, u_{d}\right)$ and
$C^{2}=C_{\phi_{2}}^{2}\left(u_{1}, \ldots, u_{d}\right)$ differ only by the generator functions on the level r as
$\phi_{1}=\left(\phi_{1}, \ldots, \phi_{r-1}, \phi, \phi_{r+1}, \ldots, \phi_{p}\right)$ and
$\phi_{2}=\left(\phi_{1}, \ldots, \phi_{r-1}, \phi^{*}, \phi_{r+1}, \ldots, \phi_{p}\right)$ with $\phi^{-1} \circ \phi^{*} \in \mathcal{L}^{*}$, then $C^{1} \prec_{c} C^{2}$.

Theorem

(Deheuvels (1978)) Let $\left\{X_{1 i}, \ldots, X_{d i}\right\}_{i=1, \ldots, n}$ be a sequence of the random vectors with the distribution function F, marginal distributions F_{1}, \ldots, F_{d} and copula C. Let also $M_{j}^{(n)}=\max _{1 \leq i \leq n} X_{j i}, j=1, \ldots, d$ be the componentwise maxima. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \boldsymbol{P}\left\{\frac{M_{1}^{(n)}-a_{1 n}}{b_{1 n}} \leq x_{1}, \ldots, \frac{M_{d}^{(n)}-a_{d n}}{b_{d n}} \leq x_{d}\right\}= & F^{*}\left(x_{1}, \ldots, x_{d}\right) \\
& \forall\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}
\end{aligned}
$$

with $b_{j n}>0, j=1, \ldots, d, n \geq 1$ if and only if

1. for all $j=1, \ldots, d$ there exist some constants $a_{j n}$ and $b_{j n}$ and a non-degenerating limit distribution F_{j}^{*} such that

$$
\lim _{n \rightarrow \infty} \boldsymbol{P}\left\{\frac{M_{j}^{(n)}-a_{j n}}{b_{j n}} \leq x_{j}\right\}=F_{j}^{*}\left(x_{j}\right), \quad \forall x_{j} \in \mathbb{R} ;
$$

2. there exists a copula C^{*} such that

$$
C^{*}\left(u_{1}, \ldots, u_{d}\right)=\lim _{n \rightarrow \infty} C^{n}\left(u_{1}^{1 / n}, \ldots, u_{d}^{1 / n}\right)
$$

Let $F_{d s}$ be the class of d dimensional hierarchical Archimedean copulae with structure s.

Theorem

If $C \in F_{d s_{1}}, C^{*} \in F_{d s_{2}}, \forall \varphi_{\theta} \in \mathcal{N}(C), \partial\left[\varphi_{\ell}^{-1}(t) /\left(\varphi_{\ell}^{-1}\right)^{\prime}(t)\right] /\left.\partial t\right|_{t=1}$ exists and is equal to $1 / \theta$ and $C \in \operatorname{MDA}\left(C^{*}\right)$ and $C \in M D A\left(C^{*}\right)$ then $s_{1}=s_{2}, \forall \phi_{\theta} \in \mathcal{N}\left(C^{*}\right), \phi_{\theta}(x)=\exp \left\{-x^{1 / \theta}\right\}$.

If the multivariate HAC C (under some minor condition) belongs to the domain of attraction of the HAC C*. The extreme value HAC C* has the same structure as the given copula C, with generators on all levels of the hierarchy being Gumbel generators, but with probably other parameters.

Tail dependency

The upper and lower tail indices of two random variables $X_{1} \sim F_{1}$ and $X_{2} \sim F_{2}$ are given by

$$
\begin{aligned}
& \lambda_{u}=\lim _{u \rightarrow 1^{-}} P\left\{X_{2}>F_{2}^{-1}(u) \mid X_{1}>F_{1}^{-1}(u)\right\}=\lim _{u \rightarrow 1^{-}} \frac{\bar{C}(u, u)}{1-u} \\
& \lambda_{L}=\lim _{u \rightarrow 0^{+}} P\left\{X_{2} \leq F_{2}^{-1}(u) \mid X_{1} \leq F_{1}^{-1}(u)\right\}=\lim _{u \rightarrow 0^{+}} \frac{C(u, u)}{u} .
\end{aligned}
$$

Theorem (Nelsen (1997))
For a bivariate Archimedean copula with the generator ϕ it holds

$$
\begin{aligned}
& \lambda_{U}=2-\lim _{u \rightarrow 1^{-}} \frac{1-\phi\left\{2 \phi^{-1}(u)\right\}}{1-u}=2-\lim _{w \rightarrow 0^{+}} \frac{1-\phi(2 w)}{1-\phi(w)}, \\
& \lambda_{L}=\lim _{u \rightarrow 0^{+}} \frac{\phi\left\{2 \phi^{-1}(u)\right\}}{u}=\lim _{w \rightarrow \infty} \frac{\phi(2 w)}{\phi(w)} .
\end{aligned}
$$

A function $\phi:(0, \infty) \rightarrow(0, \infty)$ is regularly varying at infinity with tail index $\lambda \in \mathbb{R}\left(\right.$ written $\left.R V_{\lambda}(\infty)\right)$ if $\lim _{w \rightarrow \infty} \frac{\phi(t w)}{\phi(w)}=t^{\lambda}$ for all $t>0 . \phi \in R V_{-\infty}(\infty)$ if

$$
\lim _{w \rightarrow \infty} \frac{\phi(t w)}{\phi(w)}=\left\{\begin{array}{ccc}
\infty & \text { if } & t<1 \\
1 & \text { if } & t=1 \\
0 & \text { if } & t>1
\end{array} .\right.
$$

It holds for $\lambda \geq 0$ that if $\phi \in R V_{-\lambda}(\infty)$ then $\phi^{-1} \in R V_{-1 / \lambda}(0)$. The function ϕ^{-1} is regularly varying at zero with the tail index γ, if $\lim _{w \rightarrow 0^{+}} \frac{\phi^{-1}(1-t w)}{\phi^{-1}(1-w)}=t^{\gamma}$. For the direct function $\lim _{w \rightarrow 0^{+}} \frac{1-\phi(t w)}{1-\phi(w)}=t^{1 / \gamma}$.

$$
\begin{aligned}
& \lim _{u \rightarrow 0^{+}} \mathrm{P}\left\{X_{i} \leq F_{i}^{-1}\left(u_{i} u\right) \text { for } i \notin \mathcal{S} \subset \mathcal{K}=\{1, \ldots, k\}\right. \\
& \left.\quad \mid X_{j} \leq F_{j}^{-1}\left(u_{j} u\right) \text { for } j \in \mathcal{S}\right\} \\
& \lim _{u \rightarrow 0^{+}} \mathrm{P}\left\{X_{i}>F_{i}^{-1}\left(1-u_{i} u\right) \text { for } i \notin \mathcal{S} \subset \mathcal{K}=\{1, \ldots, k\}\right. \\
& \left.\quad \mid X_{j}>F_{j}^{-1}\left(1-u_{j} u\right) \text { for } j \in \mathcal{S}\right\} .
\end{aligned}
$$

The above limits can be established via the limits

$$
\begin{aligned}
\lambda_{L}\left(u_{1}, \ldots, u_{k}\right) & =\lim _{u \rightarrow 0^{+}} \frac{1}{u} C\left(u_{1} u, \ldots, u_{k} u\right) \quad \text { and } \\
\lambda_{U}\left(u_{1}, \ldots, u_{k}\right) & =\lim _{u \rightarrow 0^{+}} \frac{1}{u} \bar{C}\left(1-u_{1} u, \ldots, 1-u_{k} u\right) \\
& =\lim _{u \rightarrow 0^{+}} \sum_{s_{1} \in \mathcal{K}}(-1)^{\left|s_{1}\right|+1}\left\{1-C_{s_{1}}\left(1-u_{j} u, j \in s_{1}\right)\right\} .
\end{aligned}
$$

Theorem (Lower Tail Dependency)

Assume that the limits
$\lim _{u \rightarrow 0^{+}} u^{-1} C_{i}\left(u u_{k_{i-1}+1}, \ldots, u u_{k_{i}}\right)=\lambda_{L, i}\left(u_{k_{i-1}+1}, . ., u_{k_{i}}\right)$ exist for all
$0<u_{k_{i-1}+1}, . ., u_{k_{i}}<1, i=1, \ldots, m$. Suppose that $m+k-k_{m} \geq 2$.
If ϕ_{0}^{-1} is regularly varying at infinity with index $-\lambda_{0} \in[-\infty, 0]$, then it holds for all $0<u_{i}<1, i=1, . ., m$ that
$\lim _{u \rightarrow 0^{+}} \frac{C\left(u u_{1}, \ldots, u u_{k}\right)}{u}$

$$
=\left\{\begin{array}{l}
\min \left\{\lambda_{L, 1}\left(u_{1}, . ., u_{k_{1}}\right), \ldots, \lambda_{L, m}\left(u_{k_{m-1}+1}, . ., u_{k_{m}}\right), u_{k_{m}+1}, \ldots, u_{k}\right\} \\
\quad \text { if } \lambda_{0}=\infty, \\
\left(\sum_{i=1}^{m} \lambda_{L, i}\left(u_{k_{i-1}+1}, . ., u_{k_{i}}\right)^{-\lambda_{0}}+\sum_{j=k_{m}+1}^{k} u_{j}^{-\lambda_{0}}\right)^{-1 / \lambda_{0}} \\
\text { if } 0<\lambda_{0}<\infty, \\
0 \text { if } \lambda_{0}=0 .
\end{array}\right.
$$

In the following let

$$
\begin{aligned}
C_{j}^{*}(u) & =\left.C_{j}\left(u_{k_{j}-1+1} u, . ., u_{k_{j}} u\right)\right|_{u_{k_{j-1}+1}}=. .=u_{k_{j}}=1 \\
C^{*}(u) & =\left.C\left(u_{1} u, . ., u_{k} u\right)\right|_{u_{1}=. .}=u_{k}=1 \\
\lambda_{L, j}^{*}\left(u, u_{k_{j-1}+1}, . ., u_{k_{j}}\right) & =C_{j}\left(u_{k_{j-1}+1} u, \ldots, u_{k_{j}} u\right) / C_{j}^{*}(u) .
\end{aligned}
$$

Note that $0 \leq \lambda_{L, j}^{*}\left(u, u_{k_{j-1}+1}, . ., u_{k_{j}}\right) \leq 1$. Moreover, if $\lim _{u \rightarrow 0^{+}} u^{-1} C_{j}\left(u u_{k_{j-1}+1}, \ldots, u u_{k_{j}}\right)=\lambda_{L, j}\left(u_{k_{j-1}+1}, . ., u_{k_{j}}\right)>0$ for all $0<u_{k_{j-1}+1}, . ., u_{k_{j}} \leq 1$ then

$$
\begin{aligned}
\lambda_{L, j}^{*}\left(u_{k_{j-1}+1}, . ., u_{k_{j}}\right) & =\lim _{u \rightarrow 0+} \frac{C_{j}\left(u_{k_{j}-1+1} u, . ., u_{k_{j}} u\right) / u}{C_{j}^{*}(u) / u} \\
& =\frac{\lambda_{L, j}\left(u_{k_{j-1}+1}, . ., u_{k_{j}}\right)}{\lambda_{L, j}(1, . ., 1)}
\end{aligned}
$$

Theorem (Lower Tail Dependency 2)

Assume that the limits

$$
\lim _{u \rightarrow 0^{+}} \frac{C_{i}\left(u u_{k_{i-1}+1}, \ldots, u u_{k_{i}}\right)}{C_{i}^{*}(u)}=\lambda_{L, i}^{*}\left(u_{k_{i-1}+1}, . ., u_{k_{i}}\right)
$$

exist for all $0<u_{k_{i-1}+1}, . ., u_{k_{i}} \leq 1, i=1, \ldots, m$. Let $\phi_{0}^{-1} \in R V_{0}(0)$ and let $\psi(v)=-\phi_{0}(v) / \phi_{0}^{\prime}(v)$ be regularly varying at infinity with finite tail index \varkappa then $\varkappa \leq 1$ and it holds for all $0<u_{i}<1$, $i=1, . ., m$ that

$$
\begin{aligned}
\lim _{u \rightarrow 0^{+}} & \frac{C\left(u u_{1}, \ldots, u u_{k}\right)}{C^{*}(u)}= \\
& \prod_{j=1}^{m}\left[\lambda_{L, j}^{*}\left(u_{k_{j-1}+1}, \ldots, u_{k_{j}}\right)\right]^{\left(m+k-k_{m}\right)^{-\varkappa}} \cdot \prod_{j=k_{m}+1}^{k} u_{j}^{\left(m+k-k_{m}\right)^{-\varkappa}}
\end{aligned}
$$

Theorem (Upper Tail Dependency)

Assume that the limits
$\lim _{u \rightarrow 0^{+}} u^{-1}\left[1-C_{i}\left(1-u u_{k_{i-1}+1}, \ldots, 1-u u_{k_{i}}\right)\right]=\lambda_{U, i}\left(u_{k_{i-1}+1}, . ., u_{k_{i}}\right)$ exist for all $0<u_{k_{i-1}+1}, . ., u_{k_{i}}<1, i=1, \ldots, m$. Suppose that $m+k-k_{m} \geq 2$. If $\phi_{0}^{-1}(1-w)$ is regularly varying at zero with index $-\gamma_{0} \in[-\infty,-1]$, then it holds for all $0<u_{i}<1, i=1, .$. , m that

$$
\begin{aligned}
\lim _{u \rightarrow 0^{+}} & \frac{1-C\left(1-u u_{1}, \ldots, 1-u u_{k}\right)}{u} \\
= & \left\{\begin{array}{c}
\min \left\{\lambda_{U, 1}\left(u_{1}, . ., u_{k_{1}}\right), \ldots, \lambda_{u, m}\left(u_{k_{m-1}+1}, . ., u_{k_{m}}\right), u_{k_{m}+1}, \ldots, u_{k}\right\} \\
\text { if } \gamma_{0}=\infty, \\
\left(\sum_{i=1}^{m}\left[\lambda_{U, i}\left(u_{k_{i-1}+1}, . ., u_{k_{i}}\right)\right]^{\gamma_{0}}+\sum_{j=k_{m}+1}^{k} u_{j}^{\gamma_{0}}\right)^{1 / \gamma_{0}} \\
\text { if } 1 \leq \gamma_{0}<\infty
\end{array}\right.
\end{aligned}
$$

Time Varying Copulae

Papers:

Härdle, W.K., Okhrin, O., and Wang, W., HMM in dynamic HAC models, Econometric Theory 31(5), 2015, pp 981-1015

Härdle, W.K., Okhrin, O. and Okhrin, Y., Dynamic Structured Copula Models, Statistics and Risk Modeling, 30(4), 2013, pp.361-388

Giacomini, E., Härdle, W. K. and Spokoiny, V. (2009). Inhomogeneous dependence modeling with time-varying copulae, Journal of Business and Economic Statistics 27(2): 224-234.
Mercurio, D. and Spokoiny, V. (2004). Statistical inference for time-inhomogeneous volatility models, Annals of Statistics 32(2): 577-602.

Local Change Point Detection

Figure 27: Dependence over time for DaimlerChrysler, Volkswagen, Bayer, BASF, Allianz and Münchener Rückversicherung, 20000101-20041231. Giacomini et. al (2009)

Adaptive Copula Estimation

\square adaptively estimate largest interval where homogeneity hypothesis is accepted
\square Local Change Point detection (LCP): sequentially test θ_{t}, s_{t} are constants (i.e. $\theta_{t}=\theta, s_{t}=s$) within some interval I (local parametric assumption).
\square "Oracle" choice: largest interval $I=\left[t_{0}-m_{k^{*}}, t_{0}\right]$ where small modelling bias condition (SMB)

$$
\triangle_{I}(s, \boldsymbol{\theta})=\sum_{t \in I} \mathcal{K}\left\{C\left(\cdot ; s_{t}, \boldsymbol{\theta}_{t}\right), C(\cdot ; s, \boldsymbol{\theta})\right\} \leq \triangle
$$

holds for some $\triangle \geq 0 . m_{k^{*}}$ is the ideal scale, $(s, \theta)^{\top}$ is ideally estimated from $I=\left[t_{0}-m_{k^{*}}, t_{0}\right]$ and $\mathcal{K}(\cdot, \cdot)$ is the Kullback-Leibler divergence

$$
\mathcal{K}\left\{C\left(\cdot ; s_{t}, \boldsymbol{\theta}_{t}\right), C(\cdot ; s, \boldsymbol{\theta})\right\}=\boldsymbol{E}_{s_{t}, \boldsymbol{\theta}_{t}} \log \frac{c\left(\cdot ; s_{t}, \boldsymbol{\theta}_{t}\right)}{c(\cdot ; \boldsymbol{s}, \boldsymbol{\theta})}
$$

Under the SMB condition on $I_{k^{*}}$ and assuming that $\max _{k \leq k^{*}} \boldsymbol{E}_{s, \boldsymbol{\theta}}\left|\mathcal{L}\left(\widetilde{s}_{k}, \widetilde{\boldsymbol{\theta}}_{k}\right)-\mathcal{L}(s, \boldsymbol{\theta})\right|^{r} \leq \mathcal{R}_{r}(s, \boldsymbol{\theta})$, we obtain

$$
\begin{aligned}
& \boldsymbol{E}_{s_{t}, \boldsymbol{\theta}_{t}} \log \left\{1+\frac{\left|\mathcal{L}\left(\widetilde{s}_{\widehat{k}}, \widetilde{\boldsymbol{\theta}}_{\widehat{k}}\right)-\mathcal{L}(s, \boldsymbol{\theta})\right|^{r}}{\mathcal{R}_{r}(s, \boldsymbol{\theta})}\right\} \leq 1+\Delta, \\
& \boldsymbol{E}_{s_{t}, \boldsymbol{\theta}_{t}} \log \left\{1+\frac{\left|\mathcal{L}\left(\widetilde{s}_{\widehat{k}}, \widetilde{\boldsymbol{\theta}}_{\widehat{k}}\right)-\mathcal{L}\left(\widehat{s}_{\widehat{k}}, \widehat{\boldsymbol{\theta}}_{\widehat{k}}\right)\right|^{r}}{\mathcal{R}_{r}(s, \boldsymbol{\theta})}\right\} \leq \rho+\Delta,
\end{aligned}
$$

where \widehat{a}_{l} is an adaptive estimator on I and \widetilde{a}_{l} is any other parametric estimator on l.

Local Change Point Detection

1. define family of nested intervals $I_{0} \subset I_{1} \subset I_{2} \subset \ldots \subset I_{K}=I_{K+1}$ with length m_{k} as $I_{k}=\left[t_{0}-m_{k}, t_{0}\right]$
2. define $\mathfrak{T}_{k}=\left[t_{0}-m_{k}, t_{0}-m_{k-1}\right]$

Local Change Point Detection

1. test homogeneity $H_{0, k}$ against the change point alternative in \mathfrak{T}_{k} using I_{k+1}
2. if no change points in \mathfrak{T}_{k}, accept I_{k}. Take \mathfrak{T}_{k+1} and repeat previous step until $H_{0, k}$ is rejected or largest possible interval I_{K} is accepted
3. if $H_{0, k}$ is rejected in \mathfrak{T}_{k}, homogeneity interval is the last accepted $\widehat{\imath}=I_{k-1}$
4. if largest possible interval I_{K} is accepted $\hat{I}=I_{K}$

Test of homogeneity

Interval $I=\left[t_{0}-m, t_{0}\right], \mathfrak{T} \subset I$

$$
\begin{aligned}
H_{0}: & \forall \tau \in \mathfrak{T}, \theta_{t}=\theta, s_{t}=s, \\
& \forall t \in J=\left[\tau, t_{0}\right], \forall t \in J^{c}=I \backslash J \\
H_{1}: & \exists \tau \in \mathfrak{T}, \theta_{t}=\theta_{1}, s_{t}=s_{1} ; \forall t \in J, \\
& \theta_{t}=\theta_{2} \neq \theta_{1} ; s_{t}=s_{2} \neq s_{1}, \forall t \in J^{c}
\end{aligned}
$$

Test of homogeneity

Likelihood ratio test statistic for fixed change point location:

$$
\begin{aligned}
T_{l, \tau} & =\max _{\theta_{1}, \theta_{2}}\left\{L_{J}\left(\theta_{1}\right)+L_{J c}\left(\theta_{2}\right)\right\}-\max _{\theta} L_{l}(\theta) \\
& =M L_{J}+M L_{J c}-M L_{l}
\end{aligned}
$$

Test statistic for unknown change point location:

$$
T_{I}=\max _{\tau \in \mathfrak{T}_{l}} T_{l, \tau}
$$

Reject H_{0} if for a critical value ζ_{1}

$$
T_{1}>\zeta_{1}
$$

Selection of I_{k} and ζ_{k}

\square set of numbers m_{k} defining the length of I_{k} and \mathfrak{T}_{k} are in the form of a geometric grid
$\square m_{k}=\left[m_{0} c^{k}\right]$ for $k=1,2, \ldots, K, m_{0} \in\{20,40\}, c=1.25$ and $K=10$, where $[x]$ means the integer part of x
$\square I_{k}=\left[t_{0}-m_{k}, t_{0}\right]$ and $\mathfrak{T}_{k}=\left[t_{0}-m_{k}, t_{0}-m_{k-1}\right]$ for $k=1,2, \ldots, K$
(Mystery Parameters)

Sequential choice of ζ_{k}

\square after k steps are two cases: change point at some step $\ell \leq k$ and no change points.
\square let \mathcal{B}_{ℓ} be the event meaning the rejection at step ℓ

$$
\mathcal{B}_{\ell}=\left\{T_{1} \leq \zeta_{1}, \ldots, T_{\ell-1} \leq \zeta_{\ell-1}, T_{\ell}>\zeta_{\ell}\right\}
$$

and $\left(\widehat{s}_{k}, \widehat{\boldsymbol{\theta}}_{k}\right)=\left(\widetilde{s}_{\ell-1}, \widetilde{\boldsymbol{\theta}}_{\ell-1}\right)$ on \mathcal{B}_{ℓ} for $\ell=1, \ldots, k$.
\square we find sequentially such a minimal value of ζ_{ℓ} that ensures following inequality
$\max _{k=1, \ldots, K} \boldsymbol{E}_{s^{*}, \theta^{*}}\left|\mathcal{L}\left(\widetilde{s}_{k}, \widetilde{\boldsymbol{\theta}}_{k}\right)-\mathcal{L}\left(\widetilde{s}_{\ell-1}, \widetilde{\boldsymbol{\theta}}_{\ell-1}\right)\right|^{r} \mathbf{I}\left(\mathcal{B}_{\ell}\right) \leq \rho \mathcal{R}_{r}\left(s^{*}, \boldsymbol{\theta}^{*}\right) \frac{k}{K-1}$

Illustration

Sequential choice of ζ_{k}

1. pairs of Kendall's $\tau: \forall\left\{\tau_{1}, \tau_{2}\right\} \in\{0.1,0.3,0.5,0.7,0.9\}^{2}, \tau_{1} \geq \tau_{2}$
2. simul. from $C_{\theta_{i}, \theta_{j}}\left(u_{1}, u_{2}, u_{3}\right)=C\left\{C\left(u_{1}, u_{2} ; \theta_{1}\right), u_{3} ; \theta_{2}\right\}, \theta=\theta(\tau)$
3. run sequential algorithm for each sample

Figure 28: ζ_{k} of the 3 -dimensional HAC as a function of k with the fixed $m_{0}=40, \rho=0.5, r=0.5, \tau_{1}=0.1$ and for different $\tau_{2} . \tau_{2}=0.1$ (solid), $\tau_{2}=0.3$ (solid), $\tau_{2}=0.5$ (solid), $\tau_{2}=0.7$ (dashed), $\tau_{2}=0.9$ (dashed).

Simulation: Change in θ_{1}, I

$C_{t}\left(u_{1}, u_{2}, u_{3} ; s, \boldsymbol{\theta}\right)= \begin{cases}C\left\{u_{1}, C\left(u_{2}, u_{3} ; \theta_{1}=3.33\right) ; \theta_{2}=1.43\right\} & \text { for } 1 \leq t \leq 200 \\ C\left\{u_{1}, C\left(u_{2}, u_{3} ; \theta_{1}=2.00\right) ; \theta_{2}=1.43\right\} & \text { for } 200<t \leq 400\end{cases}$

1. $N=400$ and 100 runs
2. LCP based on the same critical values

Figure 29: θ_{1} and θ_{2} on the intervals of homogeneity (median - dashed line, mean - solid line).

Simulation: Change in θ_{1}, II

Figure 30: Intervals of homogeneity and ML on these intervals (median dashed line, mean - solid line)

Simulation: Change in θ_{2}, I

$C_{t}\left(u_{1}, u_{2}, u_{3} ; s, \boldsymbol{\theta}\right)= \begin{cases}C\left\{u_{1}, C\left(u_{2}, u_{3} ; \theta_{1}=3.33\right) ; \theta_{2}=1.43\right\} & \text { for } 1 \leq t \leq 200 \\ C\left\{u_{1}, C\left(u_{2}, u_{3} ; \theta_{1}=3.33\right) ; \theta_{2}=2.00\right\} & \text { for } 200<t \leq 400\end{cases}$

1. $N=400$ and 100 runs
2. LCP based on the same critical values

Figure 31: θ_{1} and θ_{2} on the intervals of homogeneity (median - dashed line, mean - solid line).

Simulation: Change in θ_{2}, II

Figure 32: Intervals of homogeneity and ML on these intervals (median dashed line, mean - solid line)

Simulation: Change in the Structure, I

$C_{t}\left(u_{1}, u_{2}, u_{3} ; s, \boldsymbol{\theta}\right)=\left\{\begin{array}{ll}C\left\{u_{1}, C\left(u_{2}, u_{3} ; \theta_{1}=3.33\right) ; \theta_{2}=1.43\right\} & \text { for } 1 \leq t \leq 200 \\ C\left\{C\left(u_{1}, u_{2} ; \theta_{1}=3.33\right), u_{3} ; \theta_{2}=1.43\right\}\end{array} \quad\right.$ for $200<t \leq 400$

1. $N=400$ and 100 runs
2. LCP based on the same critical values

Figure 33: The structure of the est. HAC on the intervals of homogeneity (median - dashed line, mean - solid line)

Simulation: Change in the Structure, II

Figure 34: Intervals of homogeneity and ML on these intervals (median dashed line, mean - solid line)

Application III

\square daily values for the exchange rates JPN/USD, GBP/USD and EUR/USD
\square timespan $=$ [4.1.1999; 14.8.2009] $(n=2771)$
\checkmark Gumbel and Clayton generators generators
\square a univariate $\operatorname{GARCH}(1,1)$ process on log-returns

$$
\begin{aligned}
X_{j, t} & =\mu_{j, t}+\sigma_{j, t} \varepsilon_{j, t} \text { with } \sigma_{j, t}^{2}=\omega_{j}+\alpha_{j} \sigma_{j, t-1}^{2}+\beta_{j}\left(X_{j, t-1}-\mu_{j, t-1}\right)^{2} \\
\varepsilon_{t} & \sim C\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right) ; \theta_{t}\right\}
\end{aligned}
$$

HAC for whole sample

Generator	Structure	ML
Clayton	$\left((J P Y . U S D)_{0.808(0.042)} \cdot G B P\right)_{0.401(0.025)}$	617.268
Gumbel	$\left((J P Y . U S D)_{1.521(0.025)} \cdot G B P\right)_{1.303(0.016)}$	736.341

Table 15: Estimation results for HAC with Clayton and Gumbel generators for indices and exchange rates using full samples. The standard deviations of the parameters are given in the parenthesis.

LCP for HAC to real Data

Figure 35: Structure, τ_{1} and τ_{2} of the HAC on the intervals of homogeneity

LCP for HAC to real Data

Figure 36: Intervals of homogeneity and ML on these intervals

VaR

Figure 37: Profit and Loss function

VaR

	Clayton			Gumbel			DCC		
α	0.0100	0.0500	0.1000	0.0100	0.0500	0.1000	0.0100	0.0500	0.1000
$\widehat{\alpha}_{w^{*}}$	0.0100	0.0487	0.0951	0.0091	0.0474	0.0977	0.0156	0.0413	0.0817
$\widehat{\alpha}_{w_{1}}$	0.0083	0.0460	0.0912	0.0087	0.0447	0.0925	0.0152	0.0408	0.0812
$\widehat{\alpha}_{w_{2}}$	0.0100	0.0487	0.0951	0.0096	0.0487	0.0977	0.0156	0.0413	0.0812
$\widehat{\alpha}_{w_{3}}$	0.0100	0.0487	0.0951	0.0091	0.0482	0.0973	0.0156	0.0413	0.0812
$\widehat{\alpha}_{w_{4}}$	0.0100	0.0487	0.0951	0.0091	0.0469	0.0973	0.0156	0.0417	0.0817
$\widehat{\alpha}_{w_{s}}$	0.0100	0.0487	0.0947	0.0091	0.0478	0.0973	0.0156	0.0417	0.0817
A_{W}	-0.0217	-0.0328	-0.0557	-0.0895	-0.0526	-0.0341	0.5482	-0.1652	-0.1852
D_{w}	0.0649	0.0186	0.0125	0.0632	0.0406	0.0272	0.0335	0.0091	0.0042

Table 16: Exceedance ratios for portfolios of exchange rates with $w^{*}, w_{i}, i=$ $1, \ldots, 5$, the average exceedance A_{W} over all portfolios and its standard deviation D_{W}.

Data and Copula

\square daily returns values for Dow Jones (DJ), DAX and NIKKEI
\square timespan $=$ [01.01.1985; 23.12.2010] $(n=6778)$
\square Gumbel and Clayton generators
$\square \operatorname{APARCH}(1,1)$ model with the residuals following the skewed- t distribution

$$
\begin{aligned}
& X_{j, t} \quad \mu_{j}+\sigma_{j, t} \varepsilon_{j, t} \\
& \text { with } \quad \\
& \sigma_{j, t}^{\delta_{j}}=\omega_{j}+\alpha_{j}\left(\left|X_{j, t-1}-\mu_{j}\right|-\gamma\left(X_{j, t-1}-\mu_{j}\right)\right)^{\delta_{j}}+\beta_{j} \sigma_{j}^{\delta}
\end{aligned}
$$

where $\varepsilon_{j, t} \sim t_{\text {skewed }}(\varkappa ; \nu), j=1, \ldots, 3$. The parameters \varkappa and ν stand for the skew and shape (degrees of freedom) of the distribution.

HAC for whole sample

Generator	Structure	ML
Clayton	$\left((\text { DAX.DJ })_{0.459(0.021)} \cdot \text { NIKKEI }\right)_{0.155(0.012)}$	545.399
Gumbel	$\left((\text { DAX.DJ })_{1.272(0.012)} \cdot \text { NIKKEI }\right)_{1.103(0.007)}$	542.736

Table 17: Estimation results for HAC with Clayton and Gumbel generators for indices and exchange rates using full samples. The standard deviations of the parameters are given in the parenthesis.

LCP for HAC to real Data

Figure 38: Structure, τ_{1} and τ_{2} of the HAC on the intervals of homogeneity

LCP for HAC to real Data

Figure 39: Intervals of homogeneity and ML on these intervals

VaR

Figure 40: Profit and Loss function

VaR

	Clayton			Gumbel			DCC		
α	0.0100	0.0500	0.1000	0.0100	0.0500	0.1000	0.0100	0.0500	0.1000
$\widehat{\alpha}_{w^{*}}$	0.0054	0.0390	0.0935	0.0033	0.0249	0.0683	0.0155	0.0460	0.0830
$\widehat{\alpha}_{w_{1}}$	0.0055	0.0372	0.0916	0.0040	0.0239	0.0705	0.0162	0.0453	0.0864
$\widehat{\alpha}_{w_{2}}$	0.0073	0.0458	0.0994	0.0044	0.0303	0.0788	0.0152	0.0471	0.0830
$\widehat{\alpha}_{w_{3}}$	0.0055	0.0412	0.0940	0.0030	0.0254	0.0718	0.0160	0.0480	0.0808
$\widehat{\alpha}_{w_{4}}$	0.0052	0.0399	0.0943	0.0035	0.0225	0.0681	0.0157	0.0431	0.0818
$\widehat{\alpha}_{w_{5}}$	0.0062	0.0422	0.0976	0.0043	0.0290	0.0765	0.0160	0.0507	0.0887
A_{W}	-0.3902	-0.1781	-0.0497	-0.6187	-0.4496	-0.2686	0.5979	-0.0687	-0.1739
D_{W}	0.0930	0.0508	0.0286	0.0953	0.0932	0.0638	0.0959	0.0829	0.0609

Table 18: Exceedance ratios for portfolios of indices with $w^{*}, w_{i}, i=1, \ldots, 5$, the average exceedance A_{W} over all portfolios and its standard deviation D_{W}.

Hidden Markov Models

Stochastic process driven by an underlying Markov process, Bickel, Ritov and Ryden (1998), Fuh (2003):

Figure 41: Graphical representation of the dependence structure of HMM

Hidden Markov Models

Observe i.i.d. $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{T}\right)^{\top} \in \mathbb{R}^{d}$, where $\left\{Y_{t}\right\}_{t \geq 0}$ is connected with an underlying Markov Chain $\left\{X_{t}\right\}_{t \geq 0}, t=1, \ldots, T$, X_{t} takes value on $1, \ldots, M$.

$$
\begin{align*}
\boldsymbol{P}\left(X_{t} \mid X_{1:(t-1)}, Y_{1:(t-1)}\right) & =\boldsymbol{P}\left(X_{t} \mid X_{t-1}\right) \tag{3}\\
\boldsymbol{P}\left(Y_{t} \mid Y_{1:(t-1)}, X_{(1: t)}\right) & =\boldsymbol{P}\left(Y_{t} \mid X_{t}\right), \tag{4}
\end{align*}
$$

$\left\{X_{t}, Y_{t}\right\}$ follows an HMM.

Likelihood

\checkmark Define $p_{i j}=\boldsymbol{P}\left(X_{t}=j \mid X_{t-1}=i\right)$ the transition probability
$\square \pi_{i}$ the initial probability
$\square f_{j}\left\{b ; s^{(j)}, \boldsymbol{\theta}^{(j)}\right\}$ (abbreviated as $\left.f_{j}().\right)$ the HAC-based density
$\square \mathfrak{g} \stackrel{\text { def }}{=}\left(\{\mathbf{s}, \theta\}, p_{i j}\right)(i=1, \ldots, M, j=1, \ldots, M)$.

Likelihood

For given d dimensional time series $y_{1}, \cdots, y_{T} \in \mathbb{R}^{d}$
$\left(y_{t}=\left(y_{1 t}, y_{2 t}, y_{3 t}, \ldots, y_{d t}\right)^{\top}\right) \pi_{x_{t}}$ as the π_{i} for $x_{0}=i, i=1, \ldots, M$, and $p_{x_{t-1} x_{t}}=p_{j i}$ for $x_{t-1}=j$ and $x_{t}=i$.
The likelihood of Y and X can be expressed as:

$$
p_{T}\left(y_{1}, \cdots, y_{T} ; x_{1}, \ldots, x_{T}\right)=\pi_{x_{0}} \prod_{t=1}^{T} p_{x_{t-1} x_{t}} f_{x_{t}}\left(y_{t} ; \boldsymbol{\theta}^{\left(x_{t}\right)}, s^{\left(x_{t}\right)}\right)
$$

EM algorithm

Following Dempster, Laird and Rubin (1997)
(a) E-step : compute $\mathcal{Q}\left(\mathfrak{g} ; \mathfrak{g}^{(\nu)}\right)$,
(b) M-step : choose the update parameters

$$
\mathfrak{g}^{(\nu+1)}=\arg \max _{\mathfrak{g}} \mathcal{Q}\left(\mathfrak{g} ; \mathfrak{g}^{(\nu)}\right),
$$

where $\mathcal{Q}\left(\mathfrak{g} ; \mathfrak{g}^{(\nu)}\right) \stackrel{\text { def }}{=} \boldsymbol{E}_{\mathfrak{g}}(\nu)\{\log L(Y, X, \theta, \mathbf{s}) \mid Y\}$.

EM algorithm - E-step

$$
\begin{aligned}
\mathcal{Q}\left(g ; g^{\prime}\right)= & \sum_{i=1}^{M} P_{\left(g^{\prime}\right)}\left(X_{0}=i \mid Y\right) \log \left\{\pi_{i} f_{i}\left(Y_{0}\right)\right\} \\
& +\sum_{t=1}^{T} \sum_{i=1}^{M} \sum_{j=1}^{M} P_{\left(g^{\prime}\right)}\left(X_{t-1}=i, X_{t}=j \mid Y\right) \log \left\{p_{i j}\right\} \\
& +\sum_{t=1}^{T} \sum_{i=1}^{M} P_{\left(g^{\prime}\right)}\left(X_{t}=i \mid Y\right) \log f_{i}\left(Y_{t}\right)
\end{aligned}
$$

Likelihood with constraints:

$$
\begin{equation*}
\mathfrak{L}\left(\mathfrak{g}, \lambda ; \mathfrak{g}^{\prime}\right)=\mathcal{Q}\left(\mathfrak{g} ; \mathfrak{g}^{\prime}\right)+\sum_{i=1}^{M} \lambda_{i}\left(1-\sum_{j=1}^{M} p_{i j}\right) \tag{5}
\end{equation*}
$$

EM algorithm - M-step

$$
\begin{aligned}
\left\{\widehat{\theta}_{(\nu)}^{(i)},,_{(\nu)}^{(i)}\right\}= & \arg \max _{s^{(i)}, \theta^{(i)}} \sum_{t=1}^{T} \boldsymbol{P}\left(X_{t}=i \mid Y\right) \mathfrak{L}\left(\mathfrak{g}_{i}, \lambda ; \mathfrak{g}^{\prime}\right) \\
\left\{\widehat{\theta}_{i j}\right\}= & \arg \operatorname{zero}_{\theta_{i j}} \sum_{t=1}^{T} \boldsymbol{P}\left(X_{t}=i \mid Y\right) \partial \log f_{i}\left(y_{t}\right) / \partial \theta_{i j}, \\
& i \in 1, \cdots, M
\end{aligned}
$$

Theoretical Results

Theorem
Under certain conditions, we can consistently find the corresponding structure:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \boldsymbol{P}\left(\widehat{s}^{(i)}=s^{*(i)}\right)=1, \forall i, 1, \ldots, M \tag{6}
\end{equation*}
$$

Theorem
Given the selected structures $\left\{\widehat{s}^{(i)}\right\} s$, the estimator $\widehat{\theta}^{(i)}$ satisfies:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \boldsymbol{P}\left(\widehat{\boldsymbol{\theta}}^{(i)}=\boldsymbol{\theta}^{*(i)}\right)=1, \forall i \tag{7}
\end{equation*}
$$

Simulations

\square Aim is to check if estimation performance of HMM HAC is affected by

1. adopting nonparametric margins.
2. assuming parametric margins.
3. introducing a GARCH dependency in the marginal time series.
\square Simulation I: Simulation of 3 dimensional time series model
\square Simulation II: Simulation of 5 dimensional time series model
\square Simulation III: Forcasting comparison of the DCC method with the HMM HAC approach

Simulation, I

\checkmark Simulation according to a $\operatorname{GARCH}(1,1)$ model for studying effect of deGARCH,

$$
Y_{t j}=\mu_{t j}+\sigma_{t j} \varepsilon_{t j}
$$

with

$$
\sigma_{t j}^{2}=\omega_{j}+\alpha_{j} \sigma_{t-1 j}^{2}+\beta_{j}\left(Y_{t-1 j}-\mu_{t-1 j}\right)^{2}
$$

with parameters $\omega_{j}=10^{-6}, \alpha_{j}=0.8, \beta_{j}=0.1$, with standard normal residuals $\varepsilon_{t 1}, \varepsilon_{t 2}, \varepsilon_{t 3} \sim \boldsymbol{N}(0,1)$.
\checkmark Dependence structure is modeled by HAC with Gumbel generators.

Simulation, I

Transition matrix: $\left(\begin{array}{lll}0.982 & 0.010 & 0.008 \\ 0.008 & 0.984 & 0.008 \\ 0.003 & 0.002 & 0.995\end{array}\right)$
$n=2000, d=3, M=3$, fixed marginal distributions:
$Y_{t 1}, Y_{t 2}, Y_{t 3} \sim N(0,1)$

$$
\begin{aligned}
& C\left\{u_{1}, C\left(u_{2}, u_{3} ; \theta_{1}^{(1)}=1.3\right) ; \theta_{2}^{(1)}=1.05\right\} \text { for } i=1 \\
& C\left\{u_{2}, C\left(u_{3}, u_{1} ; \theta_{1}^{(2)}=2.0\right) ; \theta_{2}^{(2)}=1.35\right\} \text { for } i=2 \\
& C\left\{u_{3}, C\left(u_{1}, u_{2} ; \theta_{1}^{(3)}=4.5\right) ; \theta_{2}^{(3)}=2.85\right\} \text { for } i=3
\end{aligned}
$$

with i indicating the three states.

Simulation, I

Figure 42: The underlying sequence x_{t} (upper left panel), marginal plots of $\left(y_{t 1}, y_{t 2}, y_{t 3}\right)(t=0, \ldots, 1000)$.

Simulation, I

Figure 43: Snapshots of pairwise scatter plots of dependency structures ($t=$ $0, \ldots, 1000)$, the $\left(y_{t 1}\right)$ vs. $\left(y_{t 2}\right)$ (left), the $\left(y_{t 1}\right)$ vs. $\left(y_{t 3}\right)$ (middle), and the $\left(y_{t 2}\right)$ vs. $\left(y_{t 3}\right)$ (right). Circles, triangles, and crosses correspond to the observations from states $i=1,2,3$ respectively.

With GARCH effects in the margins, nonparametrically estimated margins

Figure 44: The averaged estimation errors for the transition matrix (left panel), parameters (middle panel), convergence of states (right panel). Estimation starts from near true value (dashed); starts from values obtained by rolling window (solid). x-axis represents represents iterations. Number of repetitions is 1000 .

Without GARCH effects in the margins, nonparametrically estimated margins

Figure 45: The averaged estimation errors for the transition matrix (left panel), parameters (middle panel), convergence of states (right panel). Estimation starts from near true value (dashed); starts from values obtained by rolling window (solid). x-axis represents represents iterations. Number of repetitions is 1000 .

Without GARCH effects in the margins, parametric margins

Figure 46: The averaged estimation errors for the transition matrix (left panel), parameters (middle panel), convergence of states (right panel). Estimation starts from near true value (dashed); starts from values obtained by rolling window (solid). x-axis represents represents iterations. Number of repetitions is 1000 .

Simulation, I

		True	is ID	True DGP	ARCH(1.1)
	True	Rol. Win.	True Str.	Rol. Win.	True Str.
	$C_{1} \theta_{1}^{(1)} \quad 1.05$	1.030 (0.046, 0.003)	1.057 (0.068, 0.005)	1.100 (0.888, 0.791)	1.138 (0.080, 0.014)
敛	$C_{1} \theta_{2}^{(1)} \quad 1.30$	1.313 (0.156, 0.025)	1.308 (0.083, 0.007)	1.407 (0.888, 0.800)	1.246 (0.080, 0.009)
\sum^{π}	$C_{2} \theta_{1}^{(2)} \quad 1.35$	1.366 (0.121, 0.015)	1.346 (0.182, 0.033)	1.403 (1.473, 2.173)	1.436 (2.608, 6.089)
U	$\begin{array}{ll} \theta_{2}^{(2)} & 2.00 \end{array}$	2.556 (1.052, 1.416)	3.212 (1.991, 5.433)	3.288 (1.473, 3.829)	5.106 (2.608, 16.449)
$\stackrel{\varepsilon}{6}$	$C_{2} \theta_{1}^{(3)} \quad 2.85$	2.854 (0.073, 0.005)	2.854 (0.073, 0.005)	2.772 (0.936, 0.882)	2.790 (0.941, 0.889)
$\frac{\mathrm{N}}{\mathrm{~N}}$	$\theta_{2}^{(3)} \quad 4.50$	4.497 (0.133, 0.018)	4.496 (0.130, 0.017)	4.570 (0.936, 0.881)	4.606 (0.941, 0.897)
딩	rat. of correct states	0.958 (0.029)	0.933 (0.056)	0.853 (0.054)	0.813 (0.061)
z	$\sum_{i, j=1}^{d}\left\|\widehat{p}_{i j}-p_{i j}\right\|$	0.278 (0.230)	0.404 (0.307)	0.601 (0.217)	0.770 (0.242)
	rat. of correct structures	0.949	0.918	0.853	0.757

Table 19: Simulation results for different DGPs, sample size $T=2000,1000$ repetitions, standard deviations and MSEs are provided in brackets.

Simulation, I

		True DGP is ID		True DGP is GARCH(1.1)	
	True	Rol. Win.	True Str.	Rol. Win.	True Str.
	$C_{1} \theta_{1}^{(1)} \quad 1.05$	1.030 (0.041, 0.002)	1.056 (0.066, 0.004)	1.205(1.261,1.614)	1.107(0.079,0.009)
	$C_{1} \theta_{2}^{(1)} \quad 1.30$	1.310 (0.154, 0.024)	1.306 (0.087, 0.008)	1.843 (1.261,1.885)	1.145 (0.079,0.030)
	$C_{2} \begin{array}{ll} \theta_{1}^{(2)} & 1.35 \end{array}$	1.365 (0.130, 0.017)	1.344 (0.173, 0.030)	$1.577(1.381,1.959)$	$1.838(1.612,2.837)$
	$l_{2} \quad \theta_{2}^{(2)} \quad 2.00$	2.544 (0.962, 1.221)	3.157 (1.906, 4.971)	$3.15(1.381,3.230)$	3.480 (2.270, 7.343)
	$C_{3} \theta_{1}^{(3)} \quad 2.85$	2.855 (0.074, 0.006)	$2.854(0.074,0.005)$	$3.879(1.453,3.170)$	3.906(1.523, 3.435)
	$\begin{array}{lll}C_{3} & \theta_{2}^{(3)} & 4.50\end{array}$	4.513 (0.133, 0.018)	4.513 (0.132, 0.018)	6.39 (1.453,5.683)	6.592(1.523, 6.696)
	rat. of correct states	0.959 (0.029)	0.934 (0.056)	0.732 (0.08)	0.747 (0.053)
	$\sum_{i, j=1}^{d}\left\|\widehat{p}_{i j}-p_{i j}\right\|$	0.278 (0.232)	0.395 (0.297)	0.761 (0.179)	0.76 (0.156)
	rat. of correct structures	0.955	0.921	0.358	0.323

Table 20: Simulation results for different DGPs, sample size $T=2000,1000$ repetitions, standard deviations and MSEs are provided in brackets.

Simulation, I

Table 21: Simulation results for different DGPs, sample size $T=2000,1000$ repetitions, standard deviations and MSEs are provided in brackets.

Simulation, II

Marginal distributions: $Y_{t 1}, Y_{t 2}, Y_{t 3}, Y_{t 4}, Y_{t 5} \sim N(0,1), M=3$, $n=2000, d=3$

$$
\begin{aligned}
& C\left(u_{1}, C\left[u_{2}, C\left\{u_{3}, C\left(u_{5}, u_{4} ; \theta_{1}^{(1)}=3.15\right) ; \theta_{2}^{(1)}=2.45\right\} ; \theta_{3}^{(1)}=1.75\right] ; \theta_{4}^{(1)}=1.05\right) \text { for } i=1, \\
& C\left(u_{3}, C\left[u_{5}, C\left\{u_{2}, C\left(u_{1}, u_{4} ; \theta_{1}^{(2)}=3.15\right) ; \theta_{2}^{(2)}=2.45\right\} ; \theta_{3}^{(2)}=1.75\right] ; \theta_{4}^{(2)}=1.05\right) \text { for } i=2, \\
& C\left(u_{5}, C\left[u_{4}, C\left\{u_{3}, C\left(u_{1}, u_{2} ; \theta_{1}^{(3)}=3.15\right) ; \theta_{2}^{(3)}=2.45\right\} ; \theta_{3}^{(3)}=1.75\right] ; \theta_{4}^{(3)}=1.05\right) \text { for } i=3,
\end{aligned}
$$

Transition matrix:

$$
P=\left(\begin{array}{lll}
0.82 & 0.10 & 0.08 \\
0.08 & 0.84 & 0.08 \\
0.03 & 0.02 & 0.95
\end{array}\right)
$$

Simulation, II

Figure 47: Snapshots of pairwise scatter plots of dependency structures ($t=$ $0, \ldots, 1000$).

Simulation, II

Figure 48: The averaged estimation errors for transition matrix (left panel), parameters (middle panel), convergence of states (right panel). Estimation starts from near true value (dashed); starts from values obtained by rolling window (solid). x-axis represents represents iterations. Number of repetitions is 1000 .

Simulation, II

Table 22: The summary of estimation accuracy in five dimensional model, standard deviations and MSEs are provided in brackets. The case of deGARCHing is with nonparametrically estimated margins.

Simulation, III

\checkmark Simulation of data from three different true models: HMM GARCH, HMM ID and DCC
\checkmark Simulation of three dimensional time series from the simulated data
\square Application of the models on the simulated data
\square one-step ahead distribution forecast comparison of true and estimated model
\square Comparison by Kolmogorov-Smirnov (KS) test statistics

Simulation, III

True \ Estimated	Sample size	HMMGARCH	HMM ID	DCC
HMM GARCH		0.0899 (0.0353)	0.1243 (0.0571)	0.1949 (0.1112)
DCC	250	0.0607 (0.0241)	0.0723 (0.0320)	0.0782 (0.0309)
HMM ID		0.0908 (0.0359)	0.0867 (0.0345)	0.1424 (0.0271)
HMMGARCH		0.0889 (0.0338)	0.1203 (0.0556)	0.2117 (0.0782)
DCC	500	0.0541 (0.0194)	0.0672 (0.0325)	0.0774 (0.0254)
HMM ID		0.0936 (0.0331)	0.0924 (0.0326)	0.1515 (0.0239)
HMM GARCH		0.0869 (0.0321)	0.1237 (0.0605)	0.3703 (0.1366)
DCC	1000	0.0494 (0.0166)	0.0659 (0.0320)	0.0823 (0.0392)
HMM ID		0.0919 (0.0331)	0.0907 (0.0322)	0.1509 (0.0213)

Table 23: The estimated mean KS test statistics (standard deviation) of the forecast distribution from the true model and the estimated model. Number of repetitions is 1000 .

Application IV

\square JPN/EUR, GBP/EUR and USD/EUR, from DataStream,
\square [4.1.1999; 14.8.2009], 2771 obs.
\square Fit to each marginal time series of log-returns a univariate $\operatorname{GARCH}(1,1)$ process:

$$
\begin{aligned}
& X_{j, t}=\mu_{j, t}+\sigma_{j, t} \varepsilon_{j, t} \text { with } \sigma_{j, t}^{2}=\omega_{j}+\alpha_{j} \sigma_{j, t-1}^{2}+\beta_{j}\left(X_{j, t-1}-\mu_{j, t-1}\right)^{2}, \\
& \text { and } \omega>0, \alpha_{j} \geq 0, \beta_{j} \geq 0, \alpha_{j}+\beta_{j}<1
\end{aligned}
$$

Application

Figure 49: Rolling window for Exchange Rates: structure (upper) and parameters (lower, θ_{1} and θ_{2}) for Gumbel HAC. $w=250$.

Application

Figure 50: LCP for Exchange Rates: structure (upper) and parameters (lower, θ_{1} and θ_{2}) for Gumbel HAC. $m_{0}=40$.

Application

Figure 51: HMM for Exchange Rates: structure (upper) and parameters (lower, θ_{1} and θ_{2}) for Gumbel HAC.

Application

Figure 52: Plot of estimated number of states for each window

VaR

$T=2219, N=10^{4}$ is the sample size, $\omega=1000$ portfolios.
The P\&L function is $L_{t+1}=\sum_{i=1}^{3} w_{i}\left(y_{i, t+1}-y_{i, t}\right)$. The VaR at level α is $\operatorname{Va} R(\alpha)=F_{L}^{-1}(\alpha)$

$$
\widehat{\alpha}_{\mathbf{w}}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{I}\left\{L_{t}<\widehat{\operatorname{VaR}}_{t}(\alpha)\right\}
$$

The distance between $\widehat{\alpha}$ and α

$$
e_{w}=\left(\widehat{\alpha}_{w}-\alpha\right) / \alpha
$$

The performance of models is measured through

$$
A_{W}=\frac{1}{|W|} \sum_{\mathbf{w} \in W} e_{\mathbf{w}}, \quad D_{W}=\left\{\frac{1}{|W|} \sum_{\mathbf{w} \in W}\left(e_{\mathbf{w}}-A_{W}\right)^{2}\right\}^{1 / 2}
$$

Backtesting

	Window $\backslash \alpha$	0.1	0.05	0.01
HMM, RGum	500	0.0980	$\mathbf{0 . 0 5 0 7}$	$\mathbf{0 . 0 1 2 8}$
HMM, Gum	500	$\mathbf{0 . 0 9 8 1}$	0.0512	0.0135
Rolwin, RGum	250	0.1037	0.0529	0.0151
Rolwin, Gum	250	0.1043	0.0539	0.0162
LCP, $m_{0}=40$	468	0.0973	0.0520	0.0146
LCP, $m_{0}=20$	235	0.1034	0.0537	0.0169
DCC	500	0.0743	0.0393	0.0163

Table 24: VaR backtesting results, $\bar{\alpha}$, where "Gum" denotes the Gumbel copula and "RGum" the rotated survival Gumbel one.

Backtesting

	Window $\backslash \alpha$	0.1	0.05	0.01
HMM, RGum	500	$-0.0204(0.013)$	$\mathbf{0 . 0 1 4 7}(0.012)$	$\mathbf{0 . 2 8 2 7}(0.064)$
HMM, Gum	500	$-0.0191(0.008)$	$0.0233(0.018)$	$0.3521(0.029)$
Rolwin, RGum	250	$0.0375(0.009)$	$0.0576(0.012)$	$0.5076(0.074)$
Rolwin, Gum	250	$0.0426(0.009)$	$0.0772(0.030)$	$0.6210(0.043)$
LCP, $m_{0}=40$	468	$-0.0270(0.010)$	$0.0391(0.018)$	$0.4553(0.037)$
LCP, $m_{0}=20$	235	$0.0344(0.009)$	$0.0735(0.026)$	$0.6888(0.050)$
DCC	500	$-0.2573(0.015)$	$-0.2140(0.015)$	$0.6346(0.091)$

Table 25: Robustness relative to $A_{W}\left(D_{W}\right)$

Thank you for your attention !!!

Assumptions - Law of Large Numbers

- Back LLN

\square Notation:

- $\mathcal{N}\left(\theta^{*}\right)$ denote an open neighborhood of θ^{*}
- $\ell_{\theta, j}\left(u_{1}, \ldots, u_{d} ; \theta\right)=\frac{\partial \ell_{\theta}\left(u_{1}, \ldots, u_{d} ; \theta\right)}{\partial u_{j}}, j=1, \ldots, d$
- $\ell_{\theta \theta, j}\left(u_{1}, \ldots, u_{d} ; \theta\right)=\frac{\partial \ell_{\theta \theta}\left(u_{\mathbf{1}}, \ldots, u_{d} ; \theta\right)}{\partial u_{j}}, j=1, \ldots, d$
\square Assumptions:
A1: $\ell_{\theta}(u ; \theta)$ and $\ell_{\theta \theta}(u ; \theta)$ are continuous with respective to θ for any $u \in[0,1]^{d}$; there exist integrable functions $G_{1}(u)$ and $G_{2}(u)$ such that $\left\|\ell_{\theta}(u ; \theta) \ell_{\theta}^{\top}(u ; \theta)\right\| \leq G_{1}(u),\left\|\ell_{\theta \theta}(u ; \theta)\right\| \leq G_{2}(u) \forall \theta \in \mathcal{N}\left(\theta^{*}\right)$
A2: Matrix $S\left(\theta^{*}\right)=-\mathrm{E}_{0}\left[\ell_{\theta \theta}\left\{F\left(X_{1}\right)\right\} ; \theta^{*}\right]$ is finite and nonsingular.

Assumptions - CLT I

Back CLT

B1: Denote $J_{i}(u)=$ const $\times \prod_{k=1}^{d}\left\{u_{k}\left(1-u_{k}\right)\right\}^{-\xi_{i k}}$, where $\xi_{i k} \geq 0$, $i=1,2, \xi_{i k}$ are some constants. Suppose that for all $\theta \in \mathbb{N}_{\theta^{*}}$, $\left\|\ell_{\theta}(u ; \theta) \ell_{\theta}^{\top}(u ; \theta)\right\| \leq J_{1}(u),\left\|\ell_{\theta \theta}(u ; \theta)\right\| \leq J_{2}(u)$, and $\mathrm{E}_{0}\left[J_{i}^{2}\left\{F\left(X_{1}\right)\right\}\right]<\infty$.
B2: Suppose that both $\ell_{\theta, k}(u ; \theta)$ and $\ell_{\theta \theta, k}(u ; \theta), k=1,2, \ldots, d$ exist and are continuous. Denote $\widetilde{J}_{i}^{k}(u)=$ const $\times\left\{u_{k}\left(1-u_{k}\right)\right\}^{-\widetilde{\xi}_{i k}} \prod_{j=1, j \neq k}^{d}\left\{u_{j}\left(1-u_{j}\right)\right\}^{-\xi_{i j}}$, where $\widetilde{\xi}_{i j}>\xi_{i j}$ are some constants, such that for all $\theta \in \mathbb{N}\left(\theta^{*}\right)$, $\left\|\ell_{\theta, k}(u ; \theta)\right\| \leq \widetilde{J}_{1}^{k}(u)$ and $\left\|\ell_{\theta \theta, k}(u ; \theta)\right\| \leq \widetilde{J}_{2}^{k}(u)$, and furthermore, $\mathrm{E}_{0}\left[\widetilde{J}_{i}\left\{F\left(X_{1}\right)\right\}\right]<\infty, i=1,2$ and $k=1,2, \ldots, d$.

Assumptions - CLT II

Back CLT - Back Theorem

B3: Suppose $\frac{\partial \ell_{\theta \theta}(u ; \theta)}{\partial \theta_{k}}, k=1,2, \ldots, p$ exist and are continuous with $\theta \in \mathbb{N}\left(\theta^{*}\right)$, and there exists an integrable function $G_{3}(u)$ such that $\left\|\frac{\partial \ell_{\theta \theta}(u ; \theta)}{\partial \theta_{k}}\right\| \leq G_{3}(u)$ for all $\theta \in \mathbb{N}\left(\theta^{*}\right), k=1, \ldots, d$.
C1: The block size m is of order $o\left(n^{a}\right)$ with $0 \leq a \leq \frac{1}{4}$.

Assumption - Local Power of Evaluation

Back Local Power

D1: Both the copula $C_{0}\left(\cdot ; \theta_{0}\right)$ and $C_{1}(\cdot)$ in $P_{n}^{C_{1}, \delta}(x)$ are absolutely continuous with respective to square integrable densities $c_{0}\left(\cdot ; \theta_{0}\right)$ and $c_{1}(\cdot)$. Moreover

$$
\int_{u \in[0,1]^{d}}\left[\sqrt{n}\left\{\sqrt{p_{n}^{c_{1}, \delta}(u)}-\sqrt{p_{0}(u)}\right\}-\frac{1}{2} \delta g(u) \sqrt{p_{0}(u)}\right]^{2} d u \rightarrow 0
$$

as $n \rightarrow \infty$, where $p_{n}^{c_{1}, \delta}(u)=\left(1-\frac{\delta}{\sqrt{n}}\right) c_{0}\left(u ; \theta_{0}\right)+\frac{\delta}{\sqrt{n}} c_{1}(u)$, $p_{0}(u)=c_{0}\left(u ; \theta_{0}\right)$ and $g(u)=\frac{c_{1}(u)-c_{0}\left(u ; \theta_{0}\right)}{c_{0}\left(u ; \theta_{0}\right)}$.

Assumptions - Large sample properties I

Back Theorem

E1. $\left\{\left(Y_{t}^{\top}, Z_{t}^{\top}\right), t=1, \ldots, n\right\}$ is stationary β-mixing with serial decay rate of order $O\left(t^{-\frac{\xi}{\xi-1}}\right)$ for some $\xi>1$
E2. $\widehat{\eta}$ is a root- n consistent estimator of η_{0}
E3. For all $t \geq 1$ and $j=1, \ldots, d, \epsilon_{t j}=\Sigma_{t j}^{-1 / 2}\left(\eta^{0}\right)\left\{Y_{t j}-\mu_{t j}\left(\eta_{1}^{0}\right)\right\}$ is continuously differentiable in the neighbood of η^{0}, and $\omega_{1}=\mathrm{E}_{0}\left\{\Sigma_{t j}^{-1 / 2}\left(\eta^{0}\right) \dot{\mu}_{t j}\left(\eta_{1}^{0}\right)\right\}<\infty$ and $\omega_{2}=\mathrm{E}_{0}\left\{\Sigma_{t j}^{-1}\left(\eta^{0}\right) \dot{\Sigma}_{t j}\left(\eta^{0}\right)\right\}<\infty$, where $\dot{\mu}_{t j}\left(\eta_{1}^{0}\right)=\frac{\partial \mu_{t j}\left(\eta_{1}^{0}\right)}{\partial \eta_{1}}$ and $\dot{\Sigma}_{t j}\left(\eta^{0}\right)=\frac{\partial \Sigma_{t j}\left(\eta^{0}\right)}{\partial \eta}$.

Assumptions - Large sample properties II

E4. The PMLE $\widehat{\theta}$ has the following asymptotic expansion

$$
\widehat{\theta}-\theta^{*}=\frac{1}{n} \sum_{t=1}^{n} \varphi_{\theta}\left(U_{t} ; \theta^{*}\right)+o_{p}\left(n^{-1 / 2}\right)
$$

$$
\begin{aligned}
& \text { where } U_{t}=\left(U_{t 1}, \ldots, U_{t d}\right)^{\top}, U_{t j}=F_{j}\left(\epsilon_{t j}\right) \\
& j=1, \ldots, d, t=1, \ldots, n \text { and }
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{\theta}\left(U_{t} ; \theta^{*}\right) & =S\left(\theta^{*}\right)^{-1}\left(\ell_{\theta}\left(U_{t} ; \theta^{*}\right)\right. \\
& \left.+\sum_{j=1}^{d} \mathrm{E}_{0}\left[\ell_{\theta, j}\left(U_{s} ; \theta^{*}\right)\left\{\mathbf{I}\left(U_{t j} \leq U_{s j}\right)-U_{s j}\right\} \mid U_{t j}\right]\right) .
\end{aligned}
$$

Assumptions - Penalization I

Define $\ell_{i}(\theta)=\log c\left(U_{i 1}, \ldots, U_{i d_{k}} ; \theta\right)$:
(1) Model is identifiable and $\theta_{k(\ell), 0}$ is an interior point of the compact parameter space $\Theta_{k(\ell)}$. We assume that $\boldsymbol{E}_{\theta_{k(\ell)}}\left\{\ell_{i}^{\prime}\left(\theta_{k(\ell)}\right)\right\}=0$ and information equality holds,

$$
V\left(\theta_{k(\ell)}\right) \stackrel{\text { def }}{=} \boldsymbol{E}_{\theta_{k(\ell)}}\left\{\ell_{i}^{\prime}\left(\theta_{k(\ell)}\right)^{2}\right\}=-\boldsymbol{E}_{\theta_{k(\ell)}}\left\{\ell_{i}^{\prime \prime}\left(\theta_{k(\ell)}\right)\right\}
$$

for $i=1, \ldots, n$.
(2) Fisher information $V\left(\theta_{k(\ell)}\right)$ is finite and strictly positive at $\theta_{k(\ell), 0}$.

Assumptions - Penalization II

(3) There exists an open subset Ω of $\Theta_{k(\ell)}$ containing the true parameter $\theta_{k(\ell), 0}$ such that for almost all $U_{i}, i=1, \ldots, n$, the density $c\left(U_{i 1}, \ldots, U_{i d_{k}} ; \theta_{k(\ell)}\right)$ admits all third derivatives $c^{\prime \prime \prime}\left(\cdot ; \theta_{k(\ell)}\right)$ for all $\theta_{k(\ell)} \in \Omega$. Furthermore, there exist functions $M(\cdot)$ such that $\left|\ell_{i}^{\prime \prime \prime}\left(\theta_{k(\ell)}\right)\right| \leq M\left(U_{i}\right)$, for all $\theta_{k(\ell)} \in \Omega$, with $\boldsymbol{E}\left\{M\left(U_{i}\right)\right\}<\infty$.

