Copulae in Practice

Ostap Okhrin

Chair of Econometrics and Statistics, esp. Transportation Faculty of Transportation Dresden University of Technology http://osv.vkw.tu-dresden.de

with contributions by W. Härdle, Y. Okhrin, A. Ristig, S. Trimborn, P. Song, M. Zhou, S. Zhang,

Recipe for Disaster: The Formula That Killed Wall Street

By Felix Salmon 🖾 🛛 02.23.09

In the mid-'80s, *Wall* Street turned to the quants – brainy financial engineers – to invent new ways to boost profits.

Their methods for minting money worked brilliantly...

until one of the them devastated the global economy.

Probability - Specifically, this is a joint default probability–the likelihood that any two members of the pool (A and B) will both default. It's what investors are looking for, and the rest of the formula provides the answer.

Survival times - The amount of time between now and when A and B can be expected to default. Li took the idea from a concept in actuarial science that charts what happens to someone's life expectancy when their spouse dies.

$Pr[T_{A} < 1, T_{B} < 1] = \varphi_{2}(\varphi^{-1}(F_{A}(1)), \varphi^{-1}(F_{B}(1)), \gamma)$

Distribution functions - The probabilities of how long A and B are likely to survive. Since these are not certainties, they can be dangerous: Small miscalculations may leave you facing much more risk than the formula indicates.

Copula - This couples (hence the Latine term copula) the individual probabilities associated with A and B to come up with a single number. Errors here massively increase the risk of the whole equation blowing up.

Gamma - The all-powerful correlation parameter, which reduces correlation to a single constant-something that should be highly improbable, if not impossible. This is the magic number that made Li's copula function irresistible.

Example

we pay 200 EUR for the chance to win 1000 EUR, if DAX returns decrease by 2%

$$P_{DAX}(r_{DAX} \le -0.02) = F_{DAX}(-0.02) = 0.2$$

we pay 200 EUR for the chance to win 1000 EUR, if DJ returns decrease by 1%

$$P_{DJ}(r_{DJ} \le -0.01) = F_{DJ}(-0.01) = 0.2$$

Example

 we get 1000 EUR if DAX and DJ indices decrease simultaneously by 2% and 1% respectively. how much are we ready to pay in this case?

$$P\{(r_{DAX} \le -0.02) \land (r_{DJ} \le -0.01)\} \\ = F_{DAX,DJ}(-0.02, -0.01) \\ = C\{F_{DAX}(-0.02), F_{DJ}(-0.01)\} \\ = C(0.2, 0.2).$$

with C being the copula.

Outline

- 1. Motivation \checkmark
- 2. Challenges of Statistical modelling
- 3. Copula
- 4. Goodness-of-Fit Tests
- 5. Hierarchical Archimedean copulae
- 6. Theory of the HAC
- 7. Adaptive Estimation
- 8. Hidden Markov Models
- 9. Appendix

Univariate Case

Let x_1, \ldots, x_n be realizations of the random variable X $X \sim F$, where F is unknown

Example

- \therefore x_i are returns of the asset for one firm at the day t_i
- x_i are numbers of sold albums The Man Who Sold the World by David Bowie at day t_i

What is a good approximation of F?

DAX Index Levels (Pt)

Histogram of DAX Index Levels

QCOPdaxhistogram

DAX returns
$$(r_t = \log \frac{P_t}{P_{t-1}})$$

Histogram of DAX Returns

Traditional approach:

F₀ - known distribution
parameters of F₀ are estimated from the sample x₁,..., x_n
F₀ = N(μ, σ²) ⇒ (μ, σ), here μ̂ = x̄, σ̂² = ŝ²
F₀ = St(α, β, μ, σ²) ⇒ (α, β, μ, σ) are estimated by Hull Estimator, Tail Exponent Estimation, etc.
check the appropriateness of F₀ by a test (KS type)

$$H_0: F = F_0$$
 vs $H_1: F \neq F_0$

 \Box if test confirm F_0 , use \widehat{F}_0

Modern approach: calculate the edf

$$\widehat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathsf{I}\{x_i \le x\},\$$

or the nonparametric kernel smoother

$$\widehat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x-x_i}{h}\right)$$

name
$$\mathcal{K}(u)$$
Uniform $\frac{1}{2}I\{|u| \le 1\}$ Epanechnikov $\frac{3}{4}(1-u^2)I\{|u| \le 1\}$ Gaussian $\frac{1}{\sqrt{2\pi}}\exp\left\{-\frac{1}{2}u^2\right\}$

with $\boldsymbol{\mathsf{I}}$ as indicator function.

Kernel smoothing with UNI kernel x = (-0.475, -1.553, -0.434, -1.019, 0.395)

The estimated density of DAX returns

QCOPdensitydaxreturn

Multivariate Case

 $\{x_{1i}, \ldots, x_{di}\}_{i=1,\ldots,n}$ is the realization of the vector $(X_1, \ldots, X_d) \sim F$, where F is unknown.

Example

- \boxdot { x_{1i}, \ldots, x_{di} }_{i=1,...,n} are returns of the *d* assets in the portfolio at day t_i
- (x_{1i}, x_{2i})[⊤] are numbers of sold albums The Man Who Sold The World by David Bowie and singles I Saved The World Today by Eurythmics at day t_i

TECHNISCHE UNIVERSITAT

Multivariate Case

What is a good approximation of F?

traditional or modern approach

Very flexible approximation to F is challenging in high dimension due to curse of dimensionality.

Traditional approach: Mainly restricted to the class of elliptical distributions: Normal or *t* distributions

$$f_N(x_1,\ldots,x_d) = \frac{1}{\sqrt{|\boldsymbol{\Sigma}|(2\pi)^d}} \exp\left\{-\frac{1}{2}(x-\mu)^\top \boldsymbol{\Sigma}^{-1}(x-\mu)\right\}$$

Drawbacks of the elliptical distributions:

1. does not often describe financial data properly

2. huge number of parameters to be estimated f.e. for Normal distribution: $\underbrace{\frac{d(d-1)}{2}}_{l \text{ in margins}} + \underbrace{\frac{2d}{l}}_{l \text{ in margins}}$

in dependency

3. ellipticity

Simulate $X \sim N(\mu, \Sigma)$ with the sample size n = 1000 and estimate the parameters $(\widehat{\mu}, \widehat{\Sigma})$

$$\Sigma = \begin{pmatrix} 1.5 & 0.7 & 0.2 \\ 0.7 & 1.3 & -0.4 \\ 0.2 & -0.4 & 0.3 \end{pmatrix} \Rightarrow \widehat{\Sigma} = \begin{pmatrix} 1.461 & 0.726 & 0.181 \\ 0.726 & 1.335 & -0.408 \\ 0.181 & -0.408 & 0.301 \end{pmatrix}$$

 $\mu = (0, 0, 0) \Rightarrow \widehat{\mu} = (0.0175, -0.0022, 0.0055)$

 $\widehat{\Sigma}$ and Σ are not close to each other for only 3 dimensions and quiet big sample

"Extreme, synchronized rises and falls in financial markets occur infrequently but they do occur. The problem with the models is that they did not assign a high enough chance of occurrence to the scenario in which many things go wrong at the same time - the "perfect storm" scenario"

(Business Week, September 1998)

Correlation

- 1. 19.10.1987
 - Black Monday
- 2. 09.11.1989 Berlin Wall
- 3. 19.08.1991 Kremlin
- 4. 17.03.2008, 19.09.2008, 10.10.2008, 13.10.2008, 15.10.2008, 29.10.2008

Crisis

Copulae

Correlation

- \odot same linear correlation coefficient ($\rho = 0.4$)
- same marginal distributions
- ☑ rather big difference

Copula

Books:

Joe, H. (1997). Multivariate Models and Dependence Concepts, Chapman & Hall, London.

Nelsen, R. B. (2006). An Introduction to Copulas, Springer Verlag, New York.

Copula

For a distribution function F with marginals F_{X_1}, \ldots, F_{X_d} , there exists a copula $C : [0, 1]^d \rightarrow [0, 1]$, such that

$$F(x_1,...,x_d) = C\{F_{X_1}(x_1),...,F_{X_d}(x_d)\}.$$

for a while
$$d = 2$$

A little bit of history

1940s: Wassilij Hoeffding studies properties of multivariate distributions

1914–91, b. Mustamäki, Finland; d. Chapel Hill, NC gained his PhD from U Berlin in 1940 1924–45 work in U Berlin

Wassilij Hoeffding

A little bit of history

- 1940s: Wassilij Hoeffding studies properties of multivariate distributions
- □ 1959: The word **copula** appears for the first time (*Abe Sklar*)
- ⊡ 1999: Introduced to financial applications (*Paul Embrechts*, *Alexander McNeil*, *Daniel Straumann* in RISK Magazine)
- 2000: Paper by David Li in Journal of Derivatives on application of copulae to CDO
- 2006: Several insurance companies, banks and other financial institutions apply copulae as a risk management tool

Applications

Practical Use:

- 1. medicine (Vandenhende (2003), ...)
- 2. hydrology (Genest and Favre (2006), Durante and O2 (2015), ...)
- 3. biometrics (Wang and Wells (2000, JASA), Chen and Fan (2006, CanJoS), ...)
- 4. economics
 - portfolio selection (Patton (2004, JoFE), Hennessy and Lapan (2002, MathFin), ...)
 - time series (Chen and Fan (2006a, 2006b, JoE), Fermanian and Scaillet (2003, JoR), Lee and Long (2005, JoE), ...)
 - risk management (Junker and May (2002, EJ), Breyman et. al. (2003, QF), ...)

Special Copulae

Theorem

Let C be a copula. Then for every $(u_1, u_2) \in [0, 1]^2$

$$\max(u_1 + u_2 - 1, 0) \le C(u_1, u_2) \le \min(u_1, u_2),$$

where bounds are called **lower and upper Fréchet-Hoeffdings bounds**. When they are copulae they represent perfect negative and positive dependence respectively.

The simplest copula is the product copula

 $\Pi(u_1,u_2)=u_1u_2$

characterize the case of independence.

Copula Classes

- 1. elliptical
 - implied by well-known multivariate df's (Normal, t), derived through Sklar's theorem
 - do not have closed form expressions and are restricted to have radial symmetry
- 2. Archimedean

$$C(u_1, u_2) = \phi^{-1} \{ \phi(u_1) + \phi(u_2) \}$$

- allow for a great variety of dependence structures
- closed form expressions
- several useful methods for multivariate extension
- not derived from mv df's using Sklar's theorem

Gaussian copula

Copulae in Practice

$$C_{\delta}^{G}(u_{1}, u_{2}) = \Phi_{\delta} \{ \Phi^{-1}(u_{1}), \Phi^{-1}(u_{2}) \}$$

=
$$\int_{-\infty}^{\Phi^{-1}(u_{1})} \int_{-\infty}^{\Phi^{-1}(u_{2})} \frac{1}{2\pi\sqrt{1-\delta^{2}}} \exp \left\{ \frac{-(s^{2}-2\delta st+t^{2})}{2(1-\delta^{2})} \right\} ds dt,$$

- ⊡ Gaussian copula contains the dependence structure
- *normal* marginal distribution + Gaussian copula = multivariate normal distributions
- non-normal marginal distribution + Gaussian copula = meta-Gaussian distributions
- □ allows to generate joint symmetric dependence, but no tail dependence

Gumbel (1960) copula

$$C_{ heta}^{Gu}(u_1, u_2) \ = \ \exp\left[-\left\{(-\log u_1)^{1/ heta} + (-\log u_2)^{1/ heta}
ight\}^{ heta}
ight], \ 1 \le heta < \infty.$$

- \boxdot independence for $\theta=1$
- \boxdot upper Frèchet-Hoeffding for $\theta \to \infty$
- asymmetric dependence and upper tail dependence, but no lower tail dependence
- ⊡ the only extreme value Archimedean copula

Clayton (1978) copula

$$C^{Cl}_{\theta}(u_1,u_2) \hspace{2mm} = \hspace{2mm} \left\{ \max \left(u_1^{-\theta} + u_2^{-\theta} - 1, 0 \right) \right\}^{-\frac{1}{\theta}}, \hspace{2mm} -1 \leq \theta < \infty, \theta \neq 0$$

- \boxdot lower Fréchet-Hoeffding bound for $\theta \rightarrow -1$
- \Box independence for $\theta = 0$
- \boxdot upper Fréchet-Hoeffding bound for $\theta \to \infty$
- asymmetric dependence and lower tail dependence, but no upper tail dependence
- : the only Archimedean copula with truncated property

Frank (1979) copula

$$egin{aligned} \mathcal{L}^{\textit{Fr}}_{ heta}(u_1,u_2) &= -rac{1}{ heta}\log\left\{1+rac{(e^{- heta u_1}-1)(e^{- heta u_2}-1)}{e^{- heta}-1}
ight\}\ &-\infty < heta < \infty, \ heta
eq 0. \end{aligned}$$

$$\boxdot \ \phi(x,\theta) = \theta^{-1} \log \left\{ 1 - (1 - e^{-\theta}) e^{-x} \right\}, \ x \in [0,\infty)$$

 \boxdot lower Fréchet-Hoeffding bound for $\theta \to -\infty$

- \Box independence for $\theta = 0$
- \boxdot upper Fréchet-Hoeffding bound for $\theta \to \infty$
- ⊡ the only elliptically contoured Archimedean copula

Copulae

Dependencies, Pearson's rho

$$\delta(X_1, X_2) = \frac{\operatorname{Cov}(X_1, X_2)}{\sqrt{\operatorname{Var}(X_1)\operatorname{Var}(X_2)}}.$$

- ☑ Sensitive to outliers
- \Box Measures the 'average dependence' between X_1 and X_2
- Invariant under strictly increasing linear transformations
- May be misleading in situations where multivariate df is not elliptical

 \Box cor(x, y, method = 'pearson') or cor(x, y)

Dependencies, Kendall's tau

Definition

If F is continuous bivariate cdf and let (X_1, X_2) , (X'_1, X'_2) be independent random pairs with distribution F. Then **Kendall's tau** is

$$\tau = \boldsymbol{P}\{(X_1 - X_1')(X_2 - X_2') > 0\} - \boldsymbol{P}\{(X_1 - X_1')(X_2 - X_2') < 0\}$$

- ⊡ Less sensitive to outliers
- \boxdot Measures the 'average dependence' between X and Y
- Invariant under strictly increasing transformations
- \bigcirc Depends only on the copula of (X_1, X_2)
- \therefore For elliptical copulae: $\delta(X_1, X_2) = \sin\left(\frac{\pi}{2}\tau\right)$
- cor(x, y, method = 'kendall')

Dependencies, Spearmans's rho

Definition

If *F* is a continuous bivariate cumulative distribution function with marginal F_1 and F_2 and let $(X_1, X_2) \sim F$. Then **Spearmans's rho** is a correlation between $F_1(X_1)$ and $F_2(X_2)$

$$\rho = \frac{Cov\{F_1(X_1), F_2(X_2)\}}{\sqrt{Var\{F_1(X_1)\}Var\{F_2(X_2)\}}}.$$

- ⊡ Less sensitive to outliers
- \Box Measures the 'average dependence' between X_1 and X_2
- Invariant under strictly increasing transformations
- \Box Depends only on the copula of (X_1, X_2)
- For elliptical copulae: $\delta(X_1, X_2) = 2 \sin(\frac{\pi}{6}\rho)$
- cor(x, y, method = 'spearman')

$$\delta = 0.892, \ \tau = 0.956, \ \rho = 0.996$$

$$\delta = 0.659, \ \tau = 0.888, \ \rho = 0.982$$

Method of Moments Estimation

Gaussian copula

$$\begin{array}{rcl} \rho & = & \displaystyle \frac{6}{\pi} \arcsin \frac{\delta}{2}, \\ \tau & = & \displaystyle \frac{2}{\pi} \arcsin \delta, \end{array}$$

where δ is the Pearson linear correlation coefficient. Gumbel copula with parameter θ .

$$ho - no closed form,$$

 $au = 1 - \frac{1}{ heta}.$

Later irho or itau

Multivariate Copula Definition

Definition

The **copula** is a multivariate distribution with all univariate margins being U(0,1).

Theorem (Sklar, 1959)

Let X_1, \ldots, X_d be random variables with marginal distribution functions F_1, \ldots, F_d and joint distribution function F. Then there exists a *d*-dimensional copula $C : [0, 1]^d \to [0, 1]$ such that $\forall x_1, \ldots, x_d \in \mathbb{R} = [-\infty, \infty]$

$$F(x_1,...,x_d) = C\{F_1(x_1),...,F_d(x_d)\}$$
(1)

If the margins F_1, \ldots, F_d are continuous, then C is unique. Otherwise C is uniquely determined on $F_1(\overline{\mathbb{R}}) \times \cdots \times F_d(\overline{\mathbb{R}})$ Conversely, if C is a copula and F_1, \ldots, F_d are distribution functions, then the function F defined in (1) is a joint distribution function with margins F_1, \ldots, F_d .

Copula Density

The copula density:

$$c(u_1,\ldots,u_d)=\frac{\partial^n C(u_1,\ldots,u_d)}{\partial u_1\ldots\partial u_d}.$$

Joint density function based on copula

$$_{c}f(x_{1},\ldots,x_{d})=c\{F_{1}(x_{1}),\ldots,F_{d}(x_{d})\}\cdot f_{1}(x_{1})\cdot\ldots\cdot f_{d}(x_{d}),$$

where $f_1(\cdot), \ldots, f_d(\cdot)$ are marginal density functions.

Special Copulae

Theorem

Let C be a copula. Then for every $(u_1, \ldots, u_d) \in [0, 1]^d$

$$\max\left(\sum_{i=1}^d u_i+1-d,0\right) \leq C(u_1,\ldots,u_d) \leq \min(u_1,\ldots,u_d),$$

where bounds are called **lower and upper Fréchet-Hoeffdings bounds**. When they are copulae they represent perfect negative and positive dependence respectively.

The simplest copula is the product copula

$$\Pi(u_1,\ldots,u_d)=\prod_{i=1}^d u_i$$

characterize the case of independence.

Archimedean Copula

Multivariate Archimedean copula $C : [0,1]^d \rightarrow [0,1]$ defined as

$$C(u_1,\ldots,u_d) = \phi\{\phi^{-1}(u_1) + \cdots + \phi^{-1}(u_d)\},$$
(2)

where $\phi : [0, \infty) \to [0, 1]$ is continuous and strictly decreasing with $\phi(0) = 1$, $\phi(\infty) = 0$ and ϕ^{-1} its pseudo-inverse.

Advantages: single parameter, closed form Disadvantages: too restrictive: single parameter, exchangeable

d-dimensional Gumbel copula

The generator function and the copula function are given as follows:

$$\phi(x,\theta) = \exp\left\{-x^{\frac{1}{\theta}}\right\}, \quad 1 \le \theta < \infty, x \in [0,\infty),$$
$$C_{\theta}^{Gu}(u_1,\ldots,u_d) = \exp\left[-\left\{\sum_{j=1}^d (\log u_j)^{\theta}\right\}^{\theta^{-1}}\right].$$

d-dimensional Clayton copula

The generator function and the copula function are given as follows:

$$\phi(x, heta) = (heta x + 1)^{-rac{1}{ heta}}, \ -1/(d-1) \le heta < \infty, heta
eq 0, x \in [0,\infty),$$
 $C_{ heta}^{Cl}(u_1,\ldots,u_d) = \left\{ \left(\sum_{j=1}^d u_j^{- heta}\right) - d + 1
ight\}^{- heta^{-1}}.$

d-dimensional Frank copula

The generator function and the copula function are given as follows,

$$egin{aligned} \phi(x, heta) &= heta^{-1} \log \left\{1 - (1 - e^{- heta})e^{-x}
ight\}, \ &-\infty < heta < \infty, \ heta
eq 0, \ x \in [0,\infty), \end{aligned}$$

$$C_{ heta}^{Fr}(u_1,\ldots,u_d) = -rac{1}{ heta}\log\left[1+rac{\prod\limits_{j=1}^d \{\exp(- heta u_j)-1\}}{\{\exp(- heta)-1\}^{d-1}}
ight]$$

٠

R packages for copula

- copula most powerful copula package (!), Yan (2007), Hofert and Maechler (2011), Kojadinovic and Yan (2010)
- 🖸 fCopulae learning purposes, bivariate, Wuertz et al. (2009a)
- □ fgac generalized Archimedean copulas, Gonzalez-Lopez (2009)
- □ gumbel functions for Gumbel copulas, Caillat et al. (2008)
- HAC inference for hierarchical Archimedean copulae, Okhrin and Ristig (2012)
- □ VineCopula inference for vine copulae, Czado et al. (2015)
- gofCopula goodness-of-fit tests for copulae, Trimborn, Okhrin, Zhang, Zhou (2015)
- sbgcop Gaussian copula with margins being nuisance parameters, Hoff (2010)

· ...

R packages for copula

- copula most powerful copula package (!), Yan (2007), Hofert and Maechler (2011), Kojadinovic and Yan (2010)
- □ fCopulae learning purposes, bivariate, Wuertz et al. (2009a)
- □ fgac generalized Archimedean copulas, Gonzalez-Lopez (2009)
- □ gumbel functions for Gumbel copulas, Caillat et al. (2008)
- HAC inference for hierarchical Archimedean copulae, Okhrin and Ristig (2012)
- □ VineCopula inference for vine copulae, Czado et al. (2015)
- gofCopula goodness-of-fit tests for copulae, Trimborn, Okhrin, Zhang, Zhou (2015)
- sbgcop Gaussian copula with margins being nuisance parameters, Hoff (2010)

· ...

fCopulae get a feeling using sliders

copula method: 1 - Clayton, 4 - Gumbel, 5 - Frank

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0

0

10 15

Phi | -1|Inf

fCopulae get a feeling using sliders

copula method: 1 - Clayton, 4 - Gumbel, 5 - Frank

Copula density

Archimedean Copula No: 1 - Clayton [-1|Inf) alpha = 0.5 tau = 0.2 rho = 0.295

copula objects

Gaussian copula with $\rho = 0.75$ and $F_1 = N(0, 2)$ and $F_2 = Exp(2)$

```
> ga.c
                  = normalCopula(0.75, dim = 2)
1
2 > ga.c
3 Normal copula family
4 Dimension: 2
 Parameters:
5
     rho.1 = 0.75
6
  > mvdc.ga.c = mvdc(ga.c, c('norm', 'exp'),
7
       paramMargins = list(list(mean=0, sd=2),
8
                             list(rate=2)))
9
  > mvdc.gauss.n.e
10
  Multivariate Distribution Copula based ("mvdc")
11
   @ copula:
12
   . . . . . . . . .
13
```

Simulation

Frees and Valdez, (1998, NAAJ), Whelan, (2004, QF), Marshal and Olkin, (1988, JASA), Hofert (2008, CSDA) **Conditional inversion method:** Let $C = C(u_1, ..., u_d)$, $C_i = C(u_1, ..., u_i, 1, ..., 1)$ and $C_d = C(u_1, ..., u_d)$. Conditional distribution of U_i is given by

$$C_{i}(u_{i}|u_{1},...,u_{i-1}) = P\{U_{i} \leq u_{i}|U_{1} = u_{1}...U_{i-1} = u_{i-1}\} \\ = \frac{\partial^{i-1}C_{i}(u_{1},...,u_{i})}{\partial u_{1}...\partial u_{i-1}} / \frac{\partial^{i-1}C_{i-1}(u_{1},...,u_{i-1})}{\partial u_{1}...\partial u_{i-1}}$$

fCopulae get a feeling using sliders

copula method: 1 - Clayton, 4 - Gumbel, 5 - Frank

1 rarchmCopula(1000, alpha = 0.5, type = "4")
2 rarchmSlider()

copula **simulation**

- ⊡ Simulation from a copula
- 1 x = rCopula(1000, gauss.c)

 $_2$ plot(x, pch = 19)

copula **simulation**

□ Simulation from a copula-based distribution

```
1 x = rMvdc(1000, mvdc.ga.c)
2 plot(x, pch = 19)
```


Estimation Issues - Margins

$$\widehat{F}_j(x) = \frac{1}{n+1} \sum_{i=1}^n \mathbf{I}(x_{ji} \leq x),$$

1 apply(x, 2, FUN = rank) / (nrow(x) + 1)

$$\widetilde{F}_{j}(x) = rac{1}{n+1} \sum_{i=1}^{n} K\left(rac{x-x_{ji}}{h}\right)$$

for j = 1, ..., k, where $\varkappa : \mathbb{R} \to \mathbb{R}$, $\int \varkappa = 1$, $K(x) = \int_{-\infty}^{x} \varkappa(t) dt$ and h > 0 is the bandwidth.

Estimation Issues - Margins

$$F_j(x;\widehat{\alpha}_j) = F_j\left\{x; \arg \max_{\alpha} \sum_{i=1}^n \log f_j(x_{ji}, \alpha)\right\},\$$

$$\check{F}_j(x) \in \{\widehat{F}_j(x), \widetilde{F}_j(x), F_j(x; \widehat{\alpha}_j)\}$$

Full maximum likelihood estimation

⊡ The log-likelihood function:

$$\ell(\alpha; x_1, \dots, x_n) = \sum_{i=1}^n \log c\{F_1(x_{1i}; \alpha_1), \dots, F_d(x_{di}; \alpha_d); \theta\}$$
$$+ \sum_{i=1}^n \sum_{j=1}^d \log f_j(x_{ji}; \alpha_j).$$

□ The efficient and asymptotically normal estimator:

$$\widehat{\alpha}_{FML} = (\widehat{\alpha}_1, \dots, \widehat{\alpha}_d, \widehat{\theta})^\top = \arg \min_{\alpha} \ell(\alpha).$$

IFM (inference for margins) method

Steps:

- 1 Estimate the parameter α_i from the margins
- 2 Estimate the dependence parameter θ

⊡ Maximize the pseudo log-likelihood function over θ to get the dependence parameter estimate $\hat{\theta}$,

$$\ell(\theta,\widehat{\alpha}_1,\ldots,\widehat{\alpha}_d) = \sum_{i=1}^n \log c\{F_1(x_{1i};\widehat{\alpha}_1),\ldots,F_d(x_{di};\widehat{\alpha}_d);\theta\}.$$

TECHNISCHE UNIVERSITAT

CML (canonical maximum likelihood) method

 \square Normalize the empirical cdf not by *n* but by n+1

$$\widehat{F}_j(x) = rac{1}{n+1}\sum_{i=1}^n I(x_{ji} \le x) ext{ or } \widetilde{F}_j(x) = rac{1}{n+1}\sum_{i=1}^n K\left(rac{x-x_{ji}}{h}
ight)$$

: The copula parameter estimator $\hat{\theta}_{CML}$ is given by:

$$\widehat{\theta}_{CML} = \operatorname{argmax}_{\theta} \sum_{i=1}^{n} \log c\{\widehat{F}_{1}(x_{1i}), \dots, \widehat{F}_{d}(x_{di}); \theta\},$$

or
$$\widehat{\theta}_{CML} = \operatorname{argmax}_{\theta} \sum_{i=1}^{n} \log c\{\widetilde{F}_{1}(x_{1i}), \dots, \widetilde{F}_{d}(x_{di}); \theta\}.$$

Copulae

Empirical Copula

$$C_n(u_1, \dots, u_d) = \frac{1}{n} \sum_{i=1}^n I\{\check{F}_1(x_{i1}) \le u_1, \dots, \check{F}_d(x_{id}) \le u_d\}$$
$$= \frac{1}{n} \sum_{i=1}^n \prod_{j=1}^d I\{\check{F}_j(x_{ij}) \le u_j\}$$

Estimation in R

🖸 copula package

```
1 u = apply(x, 2, FUN = rank) / (nrow(x) + 1)
2 fitCopula(ga.c, u, "mpl")
3 fitCopula(ga.c, u, "itau")
4 fitCopula(ga.c, u, "irho")
```

🖸 fCopulae package

```
1 ellipticalCopulaFit(u[,1], u[,2], type = "norm")
```

copula package (fits whole distribution)

Goodness-of-Fit Tests

Papers:

Zhang, S., Okhrin, O., Zhou, Q., and Song, P., Goodness-of-fit Test For Specification of Semiparametric Copula Dependence Models, forthcoming in *Journal of Econometrics*

Trimborn, S., Zhang, S., Okhrin, O., and Zhou, Q., gofCopula package for $\tt R$

Genest, C., Rémillard, B., and Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power study. *Insurance: Mathematics and Economics*, 44:199-213.

Applications

- 1. medicine (Vandenhende (2003), ...)
- 2. hydrology (Genest and Favre (2006), ...)
- 3. biometrics (Wang and Wells (2000, JASA), Chen and Fan (2006, CanJoS), ...)
- 4. economics
 - portfolio selection (Patton (2004, JoFE), Hennessy and Lapan (2002, MathFin), ...)
 - time series (Chen and Fan (2006a, 2006b, JoE), Fermanian and Scaillet (2003, JoR), Lee and Long (2005, JoE), ...)
 - risk management (Junker and May (2002, EJ), Breyman et. al. (2003, QF), ...)

5. ...

How to be sure, that one uses a proper copula?

Different tests \Rightarrow Different outcomes

Different tests \Rightarrow Different outcomes

Test 1: t-copula, Test 2: Gauss, Test 3: t-copula

Different tests \Rightarrow Different outcomes

Goodness-of-Fit Tests

$$\mathcal{H}_0: C_0 \in \mathcal{C}$$
 vs. $\mathcal{H}_1: C_0 \notin \mathcal{C}$

where
$$C = \{C(\cdot; \theta) : \theta \in \Theta\}$$
.
 $\therefore X_1 = (x_{11}, \dots, x_{d1})^\top, \dots, X_n = (x_{1n}, \dots, x_{dn})^\top$ random sample
of size *n* drawn from multivariate distribution
 $H(x) = H(x_1, x_2, \dots, x_d)$
 \therefore Continuous marginal cdf $F(x) = \{F_1(x_1), \dots, F_d(x_d)\}$

$$H(x_1, x_2, \ldots, x_d) = C_0\{F(x)\} = C_0\{F_1(x_1), \ldots, F_d(x_d)\}.$$

PIOS test, I

Define $\ell\{\widehat{F}(X_i);\theta\} = \log c\{\widehat{F}_1(x_{1i}),\ldots,\widehat{F}_d(x_{di});\theta\}$ and $\widehat{\theta}$ be the two-step pseudo maximum likelihood method (PMLE) of θ given by

$$\widehat{\theta} = \operatorname*{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ell \{ \widehat{F}(X_i); \theta \}.$$

Compute delete-one-block PLMEs $\hat{\theta}_{-b}$, $1 \leq b \leq B$:

$$\widehat{ heta}_{-b} = \operatorname*{argmax}_{ heta \in \Theta} \sum_{b'
eq b}^{B} \sum_{i=1}^{m} \ell\{\widehat{F}(X_{i}^{b'}); \theta\}, \quad b = 1, \dots, B,$$

PIOS test, gofPIOSTn

Comparing "in-sample" and "out-of-sample" pseudo-likelihoods with the following test statistic:

$$T_n(m) = \sum_{b=1}^{B} \sum_{i=1}^{m} \left[\ell\{\widetilde{F}(X_i^b); \widehat{\theta}\} - \ell\{\widetilde{F}(X_i^b); \widehat{\theta}_{-b}\} \right].$$

Challenge: needed $\left[\frac{n}{m}\right]$ dependence parameters Solution: test statistic which is asymptotically equivalent.

PIOS test, III

□ Under suitable regularity conditions and under assumption, that $\exists \theta^* \in \Theta$ with $\hat{\theta} \xrightarrow{p} \theta^*$ for $n \to \infty$:

$$T_n(m) \xrightarrow{p} \operatorname{tr} \{S(\theta^*)^{-1}V(\theta^*)\}$$

with

$$\begin{split} S(\theta) &= - \operatorname{\mathsf{E}}_{\mathsf{0}} \left[\frac{\partial^{2}}{\partial \theta \partial \theta^{\top}} \ell\{F(X_{1}); \theta\} \right] \,, \\ V(\theta) &= \operatorname{\mathsf{E}}_{\mathsf{0}} \left[\frac{\partial}{\partial \theta} \ell\{F(X_{1}); \theta\} \frac{\partial}{\partial \theta} \ell^{\top}\{F(X_{1}); \theta\} \right] \,. \end{split}$$

PIOS test, gofPIOSRn

- Under a correct model specification, it holds: V(θ*) = S(θ*).
 Then is tr{S(θ*)⁻¹V(θ*)} = p.
- Asymptotic test statistic:

$$R_n = \operatorname{tr}\left\{\widehat{S}(\widehat{\theta})^{-1}\widehat{V}(\widehat{\theta})\right\}$$

where $\widehat{S}(\widehat{\theta})$ and $\widehat{V}(\widehat{\theta})$ are the empirical counterparts to $S(\theta)$ and $V(\theta)$.

Similar to gofWhite where one tests if $V(\theta^*) - S(\theta^*) = 0$, see White (1982)

Law of Large Numbers

Theorem Under assumptions A1 and A2 hold

$$R_n \stackrel{p}{
ightarrow} tr\left\{S(heta^*)^{-1}V(heta^*)
ight\}, \ \ \text{as} \ \ n
ightarrow\infty,$$

where θ^* is the limiting value of PMLE $\hat{\theta}$.

Assumptions

Central Limit Theorem

Theorem

Under the null hypothesis, if A2 and B1 - B3 hold, then

$$\sqrt{n}\left(R_n-p
ight) \stackrel{d}{
ightarrow} N(0,\sigma_R^2), \;\; \text{as } n
ightarrow \infty,$$

where σ_R^2 is the asymptotic variance. Under assumptions A2, B1 - B3 and C1,

$$R_n - T_n(m) = o_p(n^{-1/2}).$$

(Assumption A2) Assumptions B1 - B3 Assumption C1

Local Power, I

• Asymptotic power of R_n against a local alternative in the Pitman sense for a constant $\delta > 0$:

$$H_{1,n}: P_n^{C_1,\delta}(x) = C_0\{F(x);\theta_0\} + \frac{\delta}{\sqrt{n}} [C_1\{F(x)\} - C_0\{F(x);\theta_0\}]$$

- - Ensures that P^{C₁,δ}_n(x) is a copula for 0 < δ ≤ n^{1/2} and the departure from the null C₀{F(x); θ₀} increases as δ increases.

Local Power, II

Theorem

Suppose D1 holds in addition to the assumptions A2 and B1 - B3. Then under $H_{1,n}$

$$\sqrt{n}(R_n-p) \stackrel{\mathcal{L}}{\longrightarrow} \mathsf{N}\{\delta m(c_0,c_1),\sigma_R^2\}$$

where

$$m(c_0, c_1) = \mathsf{E}_{c_0} \left[W(X_t) g\left\{ F(X_t); \theta_0 \right\} \right],$$

and $E_{c_0}(\cdot)$ denotes the expectation under the null distribution c_0 or P_0 , and $W(\cdot)$ as a weighting function. That is, $m(c_0, c_1)$ is a weighted expectation of $g\{F(X_t); \theta_0\}$ under P_0 .

• Assumption A2 • Assumptions B1 - B3 • Assumption D1

Local Power, III

Implication: as long as $m(c_0, c_1) \neq 0$

- *R_n* will yield power locally
- \blacktriangleright The asymptotic local power increases to 1 as δ increases to infinity
- $\rightarrow R_n$ is a consistent test
 - T_n has the same asymptotic local power function as R_n
- \rightarrow T_n is also a consistent test

Local power, Simulation Study I

- \square Asymptotic power of R_n under alternatives in the Pitman sense
- Two settings: Clayton copula under H_0 , and Gaussian copula under H_0
- \Box n = 500, N = 1000
- Margins $F(\cdot)$ uniform on [0,1]
- \Box (τ_1, τ_2) = (0.4, 0.8)
- \boxdot $\delta \in [0.0; 0.5]$

Results

Clayton under H0

Figure 5: Local Power curves for the R_n test with Clayton copula being under H_0 and four different cases of true mixture copulas.

PIOS for the time series models, I

 Semi-Parametric Copula based Multivariate DYnamic model (SCOMDY), Chen and Fan (2006), for time series data

$$Y_t = \mu_t(\eta_1^0) + \Sigma_t^{1/2}(\eta^0)\epsilon_t$$

PIOS for the time series models, II

☑ Special cases of SCOMDY:

- VAR
- Multivariate ARMA
- Multivariate GARCH
- ▶ ...

• Estimation:

- Performed with three-stage procedure
- Resulting residuals are used to construct PIOS test to test the specification of a parametric copula.

Estimation, I

1. Univariate quasi ML with $\epsilon \sim N(0, 1)$ to estimate $\eta = (\eta_1^{\top}, \eta_2^{\top})^{\top}$:

$$\widehat{\eta}_1 = \arg\min_{\eta_1 \in \Psi_1} \left[\frac{1}{n} \sum_{t=1}^n \left\{ Y_t - \mu_t(\eta_1) \right\}^\top \left\{ Y_t - \mu_t(\eta_1) \right\} \right]$$

and

$$\widehat{\eta}_2 = \arg\min_{\eta_2 \in \Psi_2} \left(\frac{1}{n} \sum_{t=1}^n \sum_{j=1}^d \left[\Sigma_{tj}^{-1}(\widehat{\eta}_1, \eta_2) \left\{ Y_t - \mu_t(\widehat{\eta}_1) \right\}^2 + \log \Sigma_{tj}(\widehat{\eta}_1, \eta_2) \right] \right)$$

Estimation, II

2. Estimate marginal distribution $F_j(\cdot)$ of $\tilde{\epsilon}_{tj}$

$$\widetilde{\epsilon}_{tj} = \Sigma_{tj}^{-1/2}(\widehat{\eta}) \{ y_{tj} - \mu_{tj}(\widehat{\eta}_1) \}, \quad j = 1, \dots, d; \quad t = 1, \dots, n$$
by

$$\check{F}_j(x) = rac{1}{n+1}\sum_{t=1}^n I\left\{\widetilde{\epsilon}_{tj} \leq x
ight\}, \ x \in \mathbb{R}, \ j = 1, \dots, d.$$

Estimation, III

3. Estimate θ by

$$\widehat{\theta} = \arg \max_{\theta \in \Theta} \frac{1}{n} \sum_{t=1}^{n} \ell\{\check{F}(\widetilde{\epsilon}_{t}); \theta\},\$$

where $\ell(\cdot; \cdot) = \log c(\cdot; \cdot)$.

 \Box use residuals to estimate T_n and R_n

Theorem

(i) Under conditions A1 - A2 and E1 - E4, we have

$$\widetilde{R}_n \stackrel{p}{
ightarrow} tr\left\{S(heta^*)^{-1}V(heta^*)
ight\}, \quad \textit{as} \quad n
ightarrow \infty.$$

(ii) Under the null hypothesis, if A2, B1 - B3 and conditions E1 - E4 hold, we have

$$\sqrt{n}\left(\widetilde{R}_n-p
ight) \stackrel{d}{
ightarrow} N(0,\widetilde{\sigma}_R^2), \quad as \quad n
ightarrow\infty,$$

where $\tilde{\sigma}_R^2$ is the asymptotic variance. (iii) Under assumptions A2, B1 - B3, C1 and E1 - E4, we have

$$\widetilde{R}_n - \widetilde{T}_n(m) = o_p(n^{-1/2}).$$

▶ Assumption A1 − A

► Assumptions B1 -

31 — *B*3) (▶ Assur

(Assumptions C1) (Assumption E1 - E4

Other important tests to discuss here

- 🖸 gofSn
- 🖸 gofRn
- gofKendallCvM
- gofKendallKS
- ☑ gofRosenblattSnB
- ☑ gofRosenblattSnC

- 🖸 gofADChisq
- 🖸 gofADGamma
- ⊡ Chen et al. (2004)
- gofKernel

TECHNISCHE UNIVERSITAT

${\tt gofSn}$ and ${\tt gofRn}$ and KS test

⊡ Use *empirical process*

$$\mathbb{C}_n(u_1,\ldots,u_d)=\sqrt{n}\{C_n(u_1,\ldots,u_d)-C_{\widehat{\theta}}(u_1,\ldots,u_d)\}$$

Cramér-von Mises (CvM)

$$S_n^E = \int_{[0,1]^d} \mathbb{C}_n(u_1,\ldots,u_d)^2 dC_n(u_1,\ldots,u_d)$$

 \blacktriangleright weighted CvM, with tuning params. $m\geq 0$ and $\zeta_m\geq 0$

$$R_n^E = \int_{[0,1]^d} \left\{ \frac{\mathbb{C}_n(u_1,\ldots,u_d)}{[C_{\widehat{\theta}}(u_1,\ldots,u_d)\{1-C_{\widehat{\theta}}(u_1,\ldots,u_d)\}+\zeta_m]^m} \right\}^2 dC_n(u_1,\ldots,u_d)$$

Kolmogorov-Smirnov

$$T_n^E = \sup_{\{u_1,\ldots,u_d\}\in [0,1]^d} |\mathbb{C}_n(u_1,\ldots,u_d)|$$

Tests based on Kendalls's transform

Having

$$(X_1, \dots, X_d) \sim F(x_1, \dots, x_d) = C_{\theta} \{F_1(x_1), \dots, F_d(x_d)\},$$
$$X_i \sim F_i(x), \ F_i(X_i) \sim U(0, 1)$$
$$C_{\theta} \{F_1(X_1), \dots, F_d(X_d)\} \sim K_{\theta}(v)$$

where $K_{\theta}(v)$ is the *univariate* Kendall's distribution. $\Box K_{\theta}(v)$ is the distribution of the copula as the random variable

 \odot K can be estimated nonparametrically as

$$K_n(v) = \frac{1}{n} \sum_{i=1}^n I(C_n\{\check{F}_1(x_{i1}), \dots, \check{F}_d(x_{id})\} \le v), \quad v \in [0, 1]$$

fCopulae get a feeling using sliders

gofKendallCvM and gofKendallKS

 \boxdot Note that $H_0 \subset H_0^{''} \Rightarrow$ tests are not generally consistent

- Usual distances
 - Cramér- von Mises

$$S_n^{(K)} = \int_0^1 \mathbb{K}_n(v)^2 dK_{\theta_n}(v)$$

Kolmogorov-Smirnov

$$T_n^{(K)} = \sup_{v \in [0,1]} |\mathbb{K}_n(v)|$$

 \boxdot for bivariate Archimedean copulas $H_0^{''}$ and H_0 are equivalent

Tests based on Rosenblatt's transform

Recall conditional inverse simulation method, where conditional distribution of U_i is given by

$$C_d(u_i|u_1,...,u_{i-1}) = P\{U_i \le u_i|U_1 = u_1...U_{i-1} = u_{i-1}\} \\ = \frac{\partial^{i-1}C(u_1,...,u_i,1,...,1)/\partial u_1...\partial u_{i-1}}{\partial^{i-1}C(u_1,...,u_{i-1},1,...,1)/\partial u_1...\partial u_{i-1}}$$

Definition

Rosenblatt's probability integral transform of a copula C is the mapping $\mathfrak{R}: (0,1)^d \to (0,1)^d$, $\mathfrak{R}(u_1,\ldots,u_d) = (e_1,\ldots,e_d)$ with $e_1 = u_1$ and $e_i = C_d(u_i|u_1,\ldots,u_{i-1}), \forall i = 2,\ldots,d$

gofRosenblattSnB and gofRosenblattSnC

- Tests on direct Rosenblatt transformed data, see Genest, Rémillard and Beaudoin (2009, IME)
 - Cramér-von Mises I:

 $S_n = n \int_{[0,1]^d} \{D_n(u) - \Pi(u)\}^2 du - \text{best following Genest et al. (2009)}$

Cramér-von Mises II:

$$S_n^{(C)} = n \int_{[0,1]^d} \{D_n(u) - \Pi(u)\}^2 dD_n(u)$$

where the empirical distribution function

$$D_n(u) = D_n(u_1, \ldots, u_d) = \frac{1}{n} \sum_{i=1}^n \prod_{j=1}^d I(e_{ij} \le u_j)$$

should be "close" to product copula Π under H_0 .

Anderson-Darling test statistics:

$$T_n = -n - \sum_{i=1}^n \frac{2i-1}{n} [\log G_{(i)} + \log\{1 - G_{(n+1-i)})\}]$$

$$oldsymbol{\cdot}$$
 where for Gamma $G_i = \Gamma_d \left\{ \sum_{j=1}^d (-\log e_{ij})
ight\},$

where $\Gamma_d(\cdot)$ is the Gamma distribution with shape d and scale 1

$$ar{}$$
 where for Chisq $G_i = \chi^2_d \left[\sum_{j=1}^d \{ \Phi^{-1}(e_{ij}) \}^2
ight]$

where χ^2_d Chi-Squared distribution with d degrees of freedom and Φ is standard normal distribution

Chen et al. (2004)

⊡ Test statistics (Chen et al., 2004):

$$C_n^{Ch} = rac{n\sqrt{h}\widehat{J_n} - c_n}{\sigma} o N(0,1)$$

where c_n and σ are normalization factors and

$$\begin{split} \widehat{W}_i &= \sum_{j=1}^d \{\Phi^{-1}(e_{ji})\}^2, \\ \widehat{g}_W(w) &= \frac{1}{n} \sum_{i=1}^n K_h\{w, F_{\chi^2_d}(\widehat{W}_i)\}, \\ \widehat{J}_n &= \int_0^1 \{\widehat{g}_W(w) - 1\}^2 dw \end{split}$$

gofKernel

\Box J_n from Scaillet (2007, JoMA)

Kernel-based GoF test statistic with fixed smoothing parameter

$$J_n = \int_{[0,1]^d} \{\widehat{c}(u) - K_H * c(u;\widehat{\theta})\} w(u) du,$$

with * convolution operator and w(u) a weight function.

- $K_H(y) = K(H^{-1}y) / \det(H)$ with K bivariate quadratic kernel
- $H = 2.6073 n^{-1/6} \widehat{\Sigma}^{1/2}$ with $\widehat{\Sigma}$ sample covariance matrix
- The copula density is estimated as

$$\widehat{c}(u) = \frac{1}{n} \sum_{t=1}^{n} \mathcal{K}_{H}[u - \{\widetilde{F}_{1}(X_{t1}), \ldots, \widetilde{F}_{d}(X_{td})\}^{\top}].$$

Residual-based Bootstrap

- Step 1. Generate bootstrap sample $\left\{ \epsilon_t^{(k)}, t = 1, \dots, n \right\}$ from copula $C(u; \hat{\theta})$ under H_0 with PMLE $\hat{\theta}$ and estimated marginal distribution \check{F} obtained from original data;
- Step 2. Based on $\{\epsilon_t^{(k)}, t = 1, ..., n\}$ from Step 1, estimate θ of the copula under H_0 by the two-step PMLE method, and compute R_n , denoted by R_n^k ;
- Step 3. Repeat Steps 1 2 N times and obtain N statistics $R_n^k, k = 1, ..., N$;
- Step 4. Compute empirical *p*-value as $p_e = \frac{1}{N} \sum_{k=1}^{N} I(|R_n^k| \ge |R_n|)$.

Simulation Study - Fixed true model setup

☑ Tests used in the study:

- $\succ S_n$ $\triangleright J_n$
- $\triangleright R_n$
- $T_n(1)$ and $T_n(3)$
- ⊡ Copulae: Gaussian, t, Clayton and Gumbel
- \bullet $\tau \in \{0.25; 0.50; 0.75\}$
- \Box $n \in \{100; 300\}$
- \odot Rounds of simulation N = 1000
- \odot Bootstrap sample paths in every simulation M = 1000

	True	H ₀	Sn	J _n	R _n	$T_n(1)$	<i>T_n</i> (3)
	Ga.	Ga.	5.5	4.3	4.4	4.5	4.2
	t	t	4.3	5.1	5.5	4.6	6.2
	CI.	CI.	5.0	5.9	6.6	6.5	5.0
	Gu.	Gu.	4.5	3.3	5.2	5.2	5.2
	Ga.	t	5.1	12.4	66.0	61.7	22.4
	Ga.	CI.	99.1	100.0	77.7	78.8	62.5
300	Ga.	Gu.	60.2	36.3	7.3	6.9	6.3
30	t	Ga.	65.7	12.3	95.6	96.3	88.1
11	t	CI.	98.3	100.0	98.0	98.0	86.5
4	t	Gu.	88.3	24.7	71.4	72.6	52.7
	CI.	Ga.	100.0	100.0	100.00	99.8	97.2
	CI.	t	100.0	98.5	36.6	97.7	75.9
	CI.	Gu.	100.0	100.0	100.0	100.0	100.0
	Gu.	Ga.	26.1	30.9	87.8	84.1	69.4
	Gu.	t	47.0	25.6	5.5	4.3	5.9
	Gu.	CI.	100.0	100.0	100.0	100.0	97.5

Table 1: Percentage of rejection of H_0 by various tests of size n = 300 from different copula models with $\tau = 0.75$, N = 1000, M = 1000.

	True	H ₀	Sn	J _n	R _n	$T_n(1)$	<i>T</i> _n (3)
	Ga.	Ga.	5.5	4.3	4.4	4.5	4.2
	t	t	4.3	5.1	5.5	4.6	6.2
	CI.	CI.	5.0	5.9	6.6	6.5	5.0
	Gu.	Gu.	4.5	3.3	5.2	5.2	5.2
	Ga.	t	5.1	12.4	66.0	61.7	22.4
	Ga.	CI.	99.1	100.0	77.7	78.8	62.5
300	Ga.	Gu.	60.2	36.3	7.3	6.9	6.3
30	t	Ga.	65.7	12.3	95.6	96.3	88.1
11	t	CI.	98.3	100.0	98.0	98.0	86.5
2	t	Gu.	88.3	24.7	71.4	72.6	52.7
	CI.	Ga.	100.0	100.0	100.00	99.8	97.2
	CI.	t	100.0	98.5	36.6	97.7	75.9
	CI.	Gu.	100.0	100.0	100.0	100.0	100.0
	Gu.	Ga.	26.1	30.9	87.8	84.1	69.4
	Gu.	t	47.0	25.6	5.5	4.3	5.9
	Gu.	CI.	100.0	100.0	100.0	100.0	97.5

Table 2: Percentage of rejection of H_0 by various tests of size n = 300 from different copula models with $\tau = 0.75$, N = 1000, M = 1000.

	True	H ₀	Sn	J _n	R _n	$T_n(1)$	<i>T_n</i> (3)
	Ga.	Ga.	5.5	4.3	4.4	4.5	4.2
	t	t	4.3	5.1	5.5	4.6	6.2
	CI.	CI.	5.0	5.9	6.6	6.5	5.0
	Gu.	Gu.	4.5	3.3	5.2	5.2	5.2
	Ga.	t	5.1	12.4	66.0	61.7	22.4
	Ga.	CI.	99.1	100.0	77.7	78.8	62.5
300	Ga.	Gu.	60.2	36.3	7.3	6.9	6.3
30	t	Ga.	65.7	12.3	95.6	96.3	88.1
11	t	CI.	98.3	100.0	98.0	98.0	86.5
2	t	Gu.	88.3	24.7	71.4	72.6	52.7
	CI.	Ga.	100.0	100.0	100.00	99.8	97.2
	CI.	t	100.0	98.5	36.6	97.7	75.9
	CI.	Gu.	100.0	100.0	100.0	100.0	100.0
	Gu.	Ga.	26.1	30.9	87.8	84.1	69.4
	Gu.	t	47.0	25.6	5.5	4.3	5.9
	Gu.	CI.	100.0	100.0	100.0	100.0	97.5

Table 3: Percentage of rejection of H_0 by various tests of size n = 300 from different copula models with $\tau = 0.75$, N = 1000, M = 1000.

	True	H ₀	Sn	J _n	R _n	$T_n(1)$	<i>T</i> _n (3)
	Ga.	Ga.	5.5	4.3	4.4	4.5	4.2
	t	t	4.3	5.1	5.5	4.6	6.2
	CI.	CI.	5.0	5.9	6.6	6.5	5.0
	Gu.	Gu.	4.5	3.3	5.2	5.2	5.2
	Ga.	t	5.1	12.4	66.0	61.7	22.4
	Ga.	CI.	99.1	100.0	77.7	78.8	62.5
300	Ga.	Gu.	60.2	36.3	7.3	6.9	6.3
30	t	Ga.	65.7	12.3	95.6	96.3	88.1
11	t	CI.	98.3	100.0	98.0	98.0	86.5
2	t	Gu.	88.3	24.7	71.4	72.6	52.7
	CI.	Ga.	100.0	100.0	100.00	99.8	97.2
	CI.	t	100.0	98.5	36.6	97.7	75.9
	CI.	Gu.	100.0	100.0	100.0	100.0	100.0
	Gu.	Ga.	26.1	30.9	87.8	84.1	69.4
	Gu.	t	47.0	25.6	5.5	4.3	5.9
	Gu.	CI.	100.0	100.0	100.0	100.0	97.5

Table 4: Percentage of rejection of H_0 by various tests of size n = 300 from different copula models with $\tau = 0.75$, N = 1000, M = 1000.

Hybrid Test, I

- □ Different tests + different situations = Different power
- Hybrid test combines several test methods
- : Consider q test statistics $T_n^{(1)}, T_n^{(2)}, \ldots, T_n^{(q)}$
- \boxdot Common H_0 hypothesis and given significance level lpha
- \Box Hybrid test statistic, T_n^{hybrid} , will have p-value

 $p_n^{\text{hybrid}} = \min\{q \times \min\{p_n^{(1)}, \dots, p_n^{(q)}\}, 1\}$

$$\Box$$
 Rejection rule: $p_n^{\text{hybrid}} \leq \alpha$

Hybrid Test, II

• Type I error:

$$P(p_n^{(hybrid)} \leq \alpha | H_0) \leq \alpha$$

• Type II error:

$$\mathsf{P}(p_n^{hybrid} \leq lpha | \mathcal{H}_1) \geq \max \left\{ eta_n^1(lpha / q), \dots, eta_n^q(lpha / q)
ight\}$$

- □ Implication: If at least one test is consistent, hybrid test is consistent as well
- Simulation study shows that the Hybrid Test behaves more desirably than the individual tests

Simulation Study - cont.

- Bootstrap technique to numerically establish the null distribution of the test statistics
- ☑ Applied single tests:
 - ► *S*_n
 - ► J_n
 - ► R_n
 - $T_n(1)$ and $T_n(3)$

☑ Applied hybrid tests:

- ► SR_n
- ▶ *ST_n*(1)
- ► JR_n
- $JT_n(1)$
- ► SJR_n
- ► SJT_n(1)

Simulation Study - Results

	True	H O	S _n	J_n	R _n	$T_n(1)$	$T_n(3)$	SR _n	$ST_n(1)$	JR _n	$JT_n(1)$	SJR _n	$SJT_n(1)$
	Ga.	Ga.	5.5	4.3	4.4	4.5	4.2	4.7	4.2	4.3	4.1	5.6	5.7
	t	t	4.3	5.1	5.5	4.6	6.2	5.6	4.5	4.7	5.1	5.1	4.7
	cl.	Cl.	5.0	5.9	6.6	6.5	5.0	5.5	5.5	3.5	3.5	3.2	3.2
	Gu.	Gu.	4.5	3.3	5.2	5.2	5.2	4.4	4.3	4.5	4.3	5.1	5.1
	Ga.	t	5.1	12.4	66.0	61.7	22.4	55.3	46.4	58.3	50.3	51.2	42.9
	Ga.	Cl.	99.1	100.0	77.7	78.8	62.5	98.3	98.3	100.0	100.0	100.0	100.0
0	Ga.	Gu.	60.2	36.3	7.3	6.9	6.3	49.5	49.1	26.8	26.9	57.9	57.9
300	t	Ga.	65.7	12.3	95.6	96.3	88.1	92.9	93.7	93.2	94.0	91.9	92.5
11	t	Cl.	98.3	100.0	98.0	98.0	86.5	99.6	99.6	100.0	100.0	100.0	100.0
c	t	Gu.	88.3	24.7	71.4	72.6	52.7	88.3	88.3	67.9	68.1	83.1	83.1
	cl.	Ga.	100.0	100.0	100	99.8	97.2	100.0	100.0	100.0	100.0	100.0	100.0
	cl.	t	100.0	98.5	36.6	97.7	75.9	100.0	100.0	97.9	99.6	100.0	100.0
	cl.	Gu.	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Gu.	Ga.	26.1	30.9	87.8	84.1	69.4	83.1	80.0	82.8	82.1	79.7	78.4
	Gu.	t	47.0	25.6	5.5	4.3	5.9	32.2	31.8	19.6	19.5	30.4	29.2
	Gu.	CI.	100.0	100.0	100.0	100.0	97.5	100.0	100.0	100.0	100.0	100.0	100.0

Table 5: Percentage of rejection of H_0 by various tests of size n = 300 from different copula models with $\tau = 0.75$, N = 1000, M = 1000.

PIOS for SCOMDY model

 \Box True data-generating processes are GARCH(1,1):

$$\begin{aligned} x_{it} &= \sigma_{it} \varepsilon_{it} \\ \sigma_{it}^2 &= \omega + \alpha x_{i,t-1}^2 + \beta \sigma_{i,t-1}^2, \quad \text{for } i = 1,2 \end{aligned}$$

with $\{\varepsilon_{1t}, \varepsilon_{2t}\} \sim C\{F_1(\cdot), F_2(\cdot); \theta\}$, $\varepsilon_{i,t} \perp \varepsilon_{i,t-1}$ for i = 1, 2. $\omega = 10^{-1}$, $\alpha = 0.1$ and $\beta = 0.8$

- 1. Simulated *iid* samples in bootstrap loop
- 2. Bootstrap loop with time series structure

Observation-based Bootstrap

- Step 1. Generate time series $\{Y_t^{(k)}, t = 1, ..., n\}$ from SCOMDY model with $\widehat{\eta}_1$ and $\widehat{\eta}_2$ estimated from original data, and with innovation process generated from assumed copula under H_0 with $\widehat{\theta}$ and marginal distribution \check{F} .
- Step 2. Based on $\{Y_t^{(k)}, t = 1, ..., n\}$, estimate $\widehat{\eta}_1^{(k)}$ and $\widehat{\eta}_2^{(k)}$. Estimate residuals $\widetilde{\epsilon}_{tj}^{(k)} = \{y_{tj}^{(k)} \mu_{tj}(\widehat{\eta}_1^{(k)})\} / \Sigma_{tj}^{1/2}(\widehat{\eta}_2^{(k)})$.
- Step 3. Based on $\{\tilde{\epsilon}_t^{(k)}, t = 1, ..., n\}$, estimate θ of copula under H_0 by two-step PMLE method and compute R_n^k ;
- Step 4. Repeat Steps 1- 3 N times and obtain N statistics R_n^k , k = 1, ..., N;
- Step 5. Compute empirical *p*-value as $p_e = \frac{1}{N} \sum_{k=1}^{N} I(|R_n^k| \ge |R_n|)$.

SCOMDY, I

True	H ₀	au = 0.25		$\tau =$	0.5	au = 0.75	
		R _n	$T_n(1)$	R _n	$T_n(1)$	R _n	$T_n(1)$
Ga	Ga	0.062	0.059	0.058	0.066	0.085	0.088
		0.058	0.061	0.046	0.043	0.042	0.041
CI	CI	0.058	0.052	0.061	0.068	0.113	0.113
		0.053	0.057	0.038	0.039	0.050	0.050
t	t	0.054	0.053	0.048	0.044	0.062	0.043
		0.042	0.043	0.052	0.060	0.049	0.046
Gu	Gu	0.054	0.056	0.055	0.052	0.070	0.069
		0.052	0.055	0.048	0.049	0.046	0.045

Table 6: Percentages of rejection of H_0 by various tests from different copula models for n = 300, N = 300, M = 1000 for the GARCH(1,1) dependent data. Type I errors were obtained using residual-based (in italic) and observation-based bootstrap procedures.

Application: Structural changes in the dependency

- Daily returns of Citigroup and Bank of America
- ⊡ Period 2004 2013
- \odot Apply GARCH(1,1) to each year separately
- Chosen is the copula dependency with the largest *p*-value for each year

Scatterplots

Figure 6: Scatterplots of residuals transformed to the standard normal for Citygroup/Bank of America for 2004, 2006 and 2009.

Results

	$T_n(1)$	R _n	Sn	Jn	$ST_n(1)$	SRn	$JT_n(1)$	JR _n	$SJT_n(1)$	SJR _n
2004	Gu.	Gu.	Ga.	Ga.	Ga.	Ga.	Gu.	Gu.	Ga.	Ga.
2005	Gu.	Gu.	t	t	Gu.	Gu.	Gu.	Gu.	Gu.	Gu.
2006	t	t	Ga.	t	t	t	t	t	t	t
2007	t	t	t	t	t	t	t	t	t	t
2008	t	t	t	t	t	t	t	t	t	t
2009	Gu.	Gu.	Gu.	Ga.	Gu.	Gu.	Gu.	Gu.	Gu.	Gu.
2010	t	t	Gu.	t	Gu.	Gu.	t	t	Gu.	Gu.
2011	t	t	t	t	t	t	t	t	t	t
2012	t	t	t	t	t	t	t	t	t	t
2013	t	t	t	Gu.	t	t	t	t	t	t

Table 7: Copulas that are preferred in each time period by each goodness-of-fit test for the Citigroup / Bank of America.

R-package gofCopula

- Most tests in one package
- ⊡ Several margin structures
- ⊡ Each test at least 3 dim
- Automatized parallelization (in progress)

Covered single tests

- gofRosenblattSnB
- gofRosenblattSnC
- gofKendallCvM
- gofKendallKS
- gofPIOSRn
- ⊡ gofPIOSTn

- 🖸 gofADChisq
- 🖸 gofADGamma
- ⊡ gofSn
- 🖸 gofRn
- gofKernel
- gofWhite

Hybrid test - computation

```
Random 2 dim sample
```

1 x = cbind(rnorm(100), rnorm(100))

Hybrid test for normality with 2 tests

1 gofHybrid("gaussian", x, testset = c("gofRosenblattSnB"
, "gofRosenblattSnC"), M = 1000)

Computation time

```
1 [1] "The computation will take approximately 0 d, 0 h,
2 min and 14 sec."
```

Hybrid test - result

1	Tests results:			
2	p.value test s	statistic		
3	RosenblattSnB	0.9515485	0.05416868	
4	RosenblattSnC	0.8786214	0.07630096	
5	hybrid(1, 2)	1.0000000	NaN	

⊡ Automatic margin estimation

1	Warning message:
2	<pre>In gofHybrid("gaussian", x, testset = c("</pre>
	<pre>gofRosenblattSnB", "gofRosenblattSnC"), :</pre>
3	The observations are not in [0,1]. The margins will be
	estimated by the ranks of the observations.

Tests for copulae

Available tests for gaussian?

```
1 gofWhich("gaussian", d = 2)
2 [1] "gofHybrid" "gofRosenblattSnB"
3 [3] "gofRosenblattSnC" "gofADChisq" "gofADGamma"
4 [6] "gofSn" "gofRn" "gofPIOSRn" "gofPIOSTn"
5 [10] "gofKernel" "gofWhite" "gofKendallCvM"
6 [13] "gofKendallKS"
```

Use all for hybrid test

Flexible testing structure

```
Adjust margins
```

Flexible testing structure

⊡ Fix parameter

```
parameter = 0.2
1
 gofHybrid("gaussian", x,
2
   testset = c("gofRosenblattSnB",
3
                  "gofRosenblattSnC"),
4
   М
              = 1000,
5
   param.est = FALSE,
6
           = parameter)
7
   param
```

Copulae for tests

• Available copulae for test?

```
1 gofWhichCopula("gofRosenblattSnB")
2 [1] "gaussian" "t" "clayton" "frank" "gumbel"
3 
4 gofWhichCopula("gofRosenblattSnC")
5 [1] "gaussian" "t" "clayton" "frank" "gumbel"
```

Copulae for tests

\boxdot Use a test with all copulae

🖸 OR

```
1 copulae = gofWhichCopula("gofRosenblattSnB")
2 gof(x,
3 copula = copulae,
4 tests = c("gofRosenblattSnB", "gofRosenblattSnC"),
5 M = 10)
```

gof

Options of gof

- priority \in {"tests", "copula"}
 - "tests": all tests for their shared copulae
 - "copula": all tests which support {"gaussian", "t", "gumbel", "clayton", "frank"}
- copula: which copulae to use
- tests: which tests to use
- \bigcirc priority just in effect if copula = tests = NULL

Interface to copula package

○ Connection to copula package

☑ Usage of both packages may be desirable

```
copulaobject = normalCopula(param = 0.2, dim = 2)
1
  gofco(copulaobject, x,
2
    testset = c("gofRosenblattSnB", "gofRosenblattSnC"),
3
    M = 1000
4
5
  Tests results:
7 p.value test statistic
  RosenblattSnB 0.9475524
8
                              0.05416868
  RosenblattSnC 0.8366633
                               0.07630096
9
10 hybrid(1, 2) 1.0000000
                                      NaN
```

Multivariate Copula families

🖸 Gaussian copula

No tail dependence and correlation matrix.

🖸 *t*-copula

- One parameter for all tail areas plus correlation matrix.
- □ Factor copula, Oh and Patton (2014)
 - Flexible, but no density/conditional quantile.
- ☑ Vines, Kurowicka and Joe (2011)
 - Flexible, but need d(d-1)/2 parameters.
- □ *d*-dimensional Archimedean Copulae
 - too restrictive: single parameter, exchangeable

⊡ HAC

Hierarchical Archimedean copulae

Papers:

Okhrin, O., Okhrin, Y. and Schmid, W., Determining the structure and estimation of hierarchical Archimedean copulas, *Journal of Econometrics* 173(2), 2013, pp. 189-204.

Okhrin, O. and Ristig, A., Hierarchical Archimedean Copulae: The HAC Package, *Journal of Statistical Software* 58(4), 2014, pp 1-20.

Okhrin, O., Ristig, A., Sheen, J., and Trueck, S., Conditional Systemic risk with penalized copula, *working paper*

Hofert, M., Sampling Archimedean copulas. *Computational Statistics and Data Analysis* 52, 2008, pp. 5163-5174.

Main Idea of HAC

- combine interpretability with flexibility without loosing statistical precision
- ☑ determine the optimal structure of HAC
- ⊡ convenient and useful probabilistic properties of the HAC

Hierarchical Archimedean Copulae

Z((12)3)4

AC with s=((123)4) $C(u_1, u_2, u_3, u_4) = C_1 \{C_2(u_1, u_2, u_3), u_4\}$ x₁ x₂ x₁ x₂ x₃ x₄ z₍₁₂₃₎ z₍₍₁₂₃₎₄₎

Partially Nested AC with s=((12)(34)) $C(u_1, u_2, u_3, u_4) = C_1 \{C_2(u_1, u_2), C_3(u_3, u_4)\}$

Hierarchical Archimedean Copula

Figure 7: Scatterplot of the $C_{Gumbel}[C_{Gumbel}\{\Phi(x_1), t_2(x_2); \theta_1 = 10\}, \Phi(x_3); \theta_2 = 2], s = ((12)_{10}3)_2$

Hierarchical Archimedean Copula

Figure 8: Scatterplot of the $C_{Gumbel}[\Phi(x_2), C_{Gumbel}\{t_2(x_1), \Phi(x_3); \theta_1 = 10\}; \theta_2 = 2], s = (2_{10}(13)_2)$

Hierarchical Archimedean Copula

Advantages of HAC:

I flexibility and wide range of dependencies: for d = 10 more than 2.8 ⋅ 10⁸ structures

☑ dimension reduction:

d-1 parameters to be estimated

⊡ subcopulae are also HAC

Theoretical motivation

Let *M* be the cdf of a positive random variable and ϕ denotes its Laplace transform, i.e. $\phi(t) = \int_0^\infty \exp^{-tw} dM(w)$. For an arbitrary cdf *F* there exists a unique cdf *G*, such that

$$F(x) = \int_0^\infty G^\alpha(x) dM(\alpha) = \phi\{-\log G(x)\}.$$

Now consider a *d*-variate cdf *F* with margins F_1, \ldots, F_d . Then it holds for $G_j = \exp\{-\phi^{-1}(F_j)\}$ that

$$\int_0^\infty G_1^\alpha(x_1)\cdots G_d^\alpha(x_d)dM(\alpha) = \phi\left\{-\sum_{j=1}^d \log G_j(x_j)\right\} = \phi\left[\sum_{j=1}^d \phi^{-1}\{F_j(x_j)\}\right].$$

$$C(u_{1},\ldots,u_{d}) = \int_{0}^{\infty} \cdots \int_{0}^{\infty} G_{1}^{\alpha_{1}}(u_{1}) G_{2}^{\alpha_{1}}(u_{2}) dM_{1}(\alpha_{1},\alpha_{2}) G_{3}^{\alpha_{2}}(u_{3}) dM_{2}(\alpha_{2},\alpha_{3}) \cdots G_{d}^{\alpha_{d-1}}(u_{d}) dM_{d-1}(\alpha_{d-1})$$

Recovering the structure (theory)

To guarantee that C is a HAC we assume that $\phi_{d-i}^{-1} \circ \phi_{d-j} \in \mathcal{L}^*$, i < j with

 $\mathcal{L}^* = \{\omega: [0,\infty) \to [0,\infty) \,|\, \omega(0) = 0, \, \omega(\infty) = \infty, \, (-1)^{j-1} \omega^{(j)} \ge 0, \, j \ge 1\}.$

For most of the generator functions the parameters should decrease from the lowest level to the highest

Theorem

Let F be an arbitrary multivariate distribution function based on HAC. Then F can be uniquely recovered from the marginal distribution functions and all bivariate copula functions.
$$C(u_1,\ldots,u_6)=C_1[C_2(u_1,u_2),C_3\{u_3,C_4(u_4,u_5),u_6\}].$$

The bivariate marginal distributions are then given by

$(U_1, U_2) \sim C_2(\cdot, \cdot),$	$(U_2, U_3) \sim C_1(\cdot, \cdot),$	$(U_3, U_5) \sim C_3(\cdot, \cdot),$
$(U_1, U_3) \sim C_1(\cdot, \cdot),$	$(U_2, U_4) \sim C_1(\cdot, \cdot),$	$(U_3, U_6) \sim C_3(\cdot, \cdot),$
$(U_1, U_4) \sim C_1(\cdot, \cdot),$	$(U_2, U_5) \sim C_1(\cdot, \cdot),$	$(U_4, U_5) \sim C_4(\cdot, \cdot),$
$(U_1, U_5) \sim C_1(\cdot, \cdot),$	$(U_2, U_6) \sim C_1(\cdot, \cdot),$	$(U_4, U_6) \sim C_3(\cdot, \cdot),$
$(U_1, U_6) \sim C_1(\cdot, \cdot),$	$(U_3, U_4) \sim C_3(\cdot, \cdot),$	$(U_5, U_6) \sim C_3(\cdot, \cdot).$

$$\mathcal{C}_{2}\{\boldsymbol{N}(\mathcal{C})\} = \{C_{1}(\cdot, \cdot), C_{2}(\cdot, \cdot), C_{3}(\cdot, \cdot), C_{4}(\cdot, \cdot)\}.$$

- each variable belongs to at least one bivariate margin C_1 \rightsquigarrow the distribution of u_1, \ldots, u_6 has C_1 at the top level.
- ∴ C_3 covers the largest set of variables $u_3, u_4, u_5, u_6 \rightsquigarrow C_3$ is at the top level of the subcopula containing u_3, u_4, u_5, u_6 .

$$U_1,\ldots,U_6 \sim C_1\{u_1,u_2,C_3(u_3,u_4,u_5,u_6)\}.$$

 \Box C₂ and C₄ and they join u_1, u_2 and u_4, u_5 respectively.

 $(U_1,\ldots,U_6) \sim C_1[C_2(u_1,u_2), C_3\{u_3, C_4(u_4,u_5), u_6\}]$

Let for each bivariate copula $C^* \in C_2\{N(C)\}$, I(C) be the set of indices $i \in \{1, ..., k\}$ such that $(U_i, U_j) \sim C^*$ for at least one $j \in \{1, ..., k\} \setminus \{i\}$.

$$I(C_1) = \{1, \ldots, 6\}, I(C_2) = \{1, 2\}, I(C_3) = \{3, 4, 5, 6\}, I(C_4) = \{4, 5\}$$

The family of sets $I(C^*)$, as C^* ranges over $C_2\{N(C)\}$, is partially ordered by inclusion

$$I(C_1) \supset \left\{ \begin{array}{l} I(C_2), \\ I(C_3) \supset I(C_4). \end{array} \right.$$

Recovering the structure (practice)

Estimation: multistage MLE with nonparametric and parametric margins **Criteria for grouping:** goodness-of-fit tests, parameter-based method, etc.

Estimation Issues - Multistage Estimation

$$\left(\frac{\partial \mathcal{L}_1}{\partial \boldsymbol{\theta}_1^{\top}}, \dots, \frac{\partial \mathcal{L}_p}{\partial \boldsymbol{\theta}_p^{\top}}\right)^{\top} = \mathbf{0},$$

where
$$\mathcal{L}_j = \sum_{i=1}^n l_j(\mathbf{X}_i)$$

 $l_j(\mathbf{X}_i) = \log \left(c(\{\phi_\ell, \theta_\ell\}_{\ell=1,...,j}; s_j) [\{\check{F}_m(x_{mi})\}_{m \in s_j}] \right)$
for $j = 1, ..., p$.

Theorem

Under regularity conditions, estimator $\widehat{oldsymbol{ heta}}$ is consistent and

$$n^{rac{1}{2}}(\widehat{oldsymbol{ heta}}-oldsymbol{ heta}) \stackrel{\mathcal{L}}{
ightarrow} N(\mathbf{0}, \mathbf{B}^{-1}\Sigma\mathbf{B}^{-1})$$

Criteria for grouping

Alternatives:

- ☑ goodness-of-fit tests
 - dimension dependent
 - computationally complicated
- distance measures
 - dimension dependent
- ☑ parameter-based methods

Note that, if the true structure is (123) then

$$\theta_{(12)} = \theta_{(13)} = \theta_{(23)} = \theta_{(123)}.$$

- heuristic methods
- test-based methods
- ⊡ tests on exchangeability

Criteria for grouping based on θ 's

I. For all subsets perform tests of the kind

$$\begin{array}{ll} H_0: & \theta_{(12)} = \theta_{(13)} = \theta_{(23)} = \theta_{(123)} \\ H_1: & \text{at least one equality is not fulfilled} \end{array}$$

П.

$$\Delta = \min_{I_{ki}, |I_{ki}| \geq 3} \max_{I_{|I_{ki}|, j} \subset I_{ki}} |\theta(I_{ki}) - \theta(I_{|I_{ki}|, j})|,$$

where $j = 1, ..., 2^{|I_{ki}|} - |I_{ki}| - 1$ and $\{I_{ki}\}_{i=1,...2^{k}-k-1}$ denote the subsets of the initial set of size k, excluding empty set and single element sets.

$$I^* = \begin{cases} I_{\Delta}, & \Delta \leq \delta \\ \max_{I_{ki}, |I_{ki}|=2} \theta(I_{ki}), & \Delta > \delta \end{cases}$$

Estimation of HAC

Simulation, I

Method	Copula structure(s)	%	KL	Kendall $ au$	λ_U
Gauss			0.2847 (0.0403)	0.0789 (0.0299)	3.0261 (0.0000)
t			0.1989 (0.0283)	0.0682 (0.0268)	1.3398 (0.1500)
sAC	(12345) _{2.32}	100.0		0.5249 (0.0097)	
$\tau_{ riangle au > 0}$	$((45)_{3.01}(123)_{4.14})_{2.23}$	100.0		0.1825 (0.0710)	
Chen	$(45(123)_{4.01})_{2.02}$	18.3	0.7261 (0.2880)	0.5460 (0.1505)	0.4929 (0.1337)
	$(12(345)_{2.18})_{2.01}$	14.8			
	$(23(145)_{2.19})_{2.03}$	13.3			
θ_{binary}	$((45)_{3.01}(3(12)_{4.11})_{3.91})_{2.27}$	34.7	0.0215 (0.0073)	0.2117 (0.0550)	0.2024 (0.0520)
-	$((45)_{3.01}(1(23)_{4.11})_{3.91})_{2.28}$	33.4			
	$((45)_{3.01}(2(13)_{4.11})_{3.90})_{2.28}$	31.9			
θ_{PML}	$((123)_{4.04}(45)_{3.01})_{1.97}$	82.2	-0.0029 (0.0030)	0.0542 (0.0310)	0.0515 (0.0312)
	$((1(23)_{4.2})_{3.94},(4.5)_{3.03})_{1.99}$	6.4			
	$((3(12)_{4.23})_{3.96}.(4.5)_{2.99})_{1.97}$	5.8			

Table 8: Model fit for the true structure $((123)_4(45)_3)_2$.

Simulation, II

Method	Copula structure(s)	%	KL	Kendall $ au$	λ_U
Gauss			0.2896 (0.0418)	0.6417 (0.0298)	3.0882 (0.0000)
t				0.6442 (0.0279)	
sAC	(12345) _{2.37}	100.0	0.4963 (0.0664)	0.4338 (0.0147)	0.3938 (0.0127)
$\tau_{ riangle au} > 0$	$(5(12(34)_{4.03})_{3.33})_{2.18}$	98.8	0.0318 (0.0219)	0.1627 (0.0582)	0.1488 (0.0539)
	$(5(1234)_{3.58})_{2.17}$	1.1			
	$(5(1(2(34)_{3.97})_{3.74})_{3.50})_{2.24}$	0.1			
Chen	$(15(234)_{3.20})_{2.10}$	12.1	0.4512 (0.1377)	0.4939 (0.0891)	0.4503 (0.082)
	$(13(245)_{2.18})_{2.09}$	11.0			
	$(34(125)_{2.18})_{2.08}$	10.9			
θ_{binary}	$(5((34)_{4.00}(12)_{3.07})_{3.07})_{1.78}$	38.9	0.0312 (0.0163)	0.2196 (0.0562)	0.2152 (0.0562)
-	$(5(2(1(34)_{4.03})_{3.06})_{2.59})_{1.75}$	32.3			
	$(5(1(2(34)_{4.03})_{3.06})_{2.59})_{1.75}$	28.8			
θ_{PML}	$(5(12(34)_{4.01})_{3.02})_{2.00}$	81.1	-0.0025 (0.0032)	0.0509 (0.0253)	0.0472 (0.0244)
	$(5((12)_{3.12}(34)_{4.03})_{2.87})_{1.99}$	17.5			
	$(5(1(2(34)_{4.17})_{3.19})_{2.97})_{2.02}$				

Table 9: Model fit for the true structure $((12(34)_4)_35)_2$.

Simulation, III

		$\widehat{ heta}_2, \; (heta_2=3.0)$		Time (in s)
	S	tructure ((123) ₄	(45) ₃) ₂	
MStage Full	4.028 (0.103) 4.002 (0.100)	3.010 (0.112) 3.010 (0.111)	1.967 (0.058) 2.002 (0.058)	0.496 (0.032) 0.949 (0.060)
	()	tructure ((12(34	(/	0.515 (0.000)
MStage Full	3.983 (0.148) 3.980 (0.141)	2.995 (0.078) 3.004 (0.070)	2.003 (0.061) 2.005 (0.061)	1.995 (0.372) 2.740 (0.326)

Table 10: The average parameters and computational times for multistage ML and full ML estimation based on 1000 simulated samples of size 500. Standard errors provided in brackets.

Misspecification

Let $H(x_1, \ldots, x_k)$ – true df with density *h*. Since *H* is unknown we specify $F(x_1, \ldots, x_k, \eta)$ with density *f*.

\bigcirc *F* is not correctly specified:

 $\exists \eta_0 : F(x_1, \ldots, x_k, \eta_0) = H(x_1, \ldots, x_k), \ \forall (x_1, \ldots, x_k)$, then $\widehat{\eta}$ is an estimator for η_* which minimizes the Kullback–Leibler divergence between f and h as

$$\mathcal{K}(h, f, \eta) = \mathsf{E}_h\{\log[h(x_1, \ldots, x_k)/f(x_1, \ldots, x_k, \eta)]\},\$$

Misspecification, I

Gumbel generators, $\theta_1 = 2.0, \theta_2 = 1.5, N = 200, n = 1000$

Misspecification, II

Simulation Normal

Figure 10: Kullback-Leibler divergences for the simulated samples, HAC, Σ equal to first model, N = 200, n = 1000

Penalized estimation of HAC

TECHNISCHE UNIVERSITAT

• Build $\ell_i(\theta_{k(\ell)}) = \log\{c(U_{i1}, \ldots, U_{id_k}; \theta_{k(\ell)})\}$. • Assumptions • Penalized log-likelihood

$$\mathcal{Q}(\theta_{\ell},\theta_{k(\ell)}) = \sum_{i=1}^{n} \ell_{i}(\theta_{k(\ell)}) - np_{\lambda_{n}}(\theta_{\ell} - \theta_{k(\ell)}),$$

c.f. Cai and Wang (2014, JASA), Fan and Li (2001, JASA), Tibshirani et al. (2005, JRSSB).
Det θ^{λ_n}_{k(ℓ)} be the maximizer of Q(θ_ℓ, θ_{k(ℓ)}).

Sparsity and oracle property

Proposition Under Assumptions 1-3, if $n^{1/2}\lambda_n \to \infty$ as $n \to \infty$, then

 $\lim_{n\to\infty}\mathsf{P}(\widehat{\theta}_{k(\ell)}^{\lambda_n}=\theta_{\ell,0})=1.$

Proposition

Under Assumptions 1-3, if $\lambda_n \to 0$ as $n \to \infty$, then

$$n^{1/2} \{ \widehat{V}(\theta_{k(\ell),0}) + p_{\lambda_n}''(\theta_0^-) \} [(\widehat{\theta}_{k(\ell)}^{\lambda_n} - \theta_{k(\ell),0}) \\ - \{ \widehat{V}(\theta_{k(\ell),0}) + p_{\lambda_n}''(\theta_0^-) \}^{-1} p_{\lambda_n}'(\theta_0^-)] \xrightarrow{\mathcal{L}} \mathbb{N} \{ 0, V(\theta_{k(\ell),0}) \},$$

where $\theta_0^- = \theta_{\ell,0} - \theta_{k(\ell),0}$.

ML representation

Let \$\heta_{k(\ell)}\$ and \$\heta_{\ell}\$ be the MLE of Okhrin et al. (2013, JoE).
 Linear approximation of penalty function, Zou and Li (2008, Ann.).

Proposition

Under Assumptions 1-3, $\widehat{\theta}_{k(\ell)}^{\lambda_n} = \widehat{\theta}_{k(\ell)} + \epsilon_n$, with

$$\epsilon_n \stackrel{\text{def}}{=} \epsilon(\lambda_n, a_n) = \widehat{V}(\widehat{\theta}_{k(\ell)})^{-1} p_{\lambda_n}'(\widehat{\theta}_{\ell} - \widehat{\theta}_{k(\ell)}).$$

Practical issues

⊡ Attain sparsity from

$$\widehat{\theta}_{k(\ell)} = \widehat{\theta}_{\ell}, \quad \text{if} \quad \widehat{\theta}_{\ell} - \widehat{\theta}_{k(\ell)} \leq \epsilon_n.$$

 \boxdot Wang et al. (2007, Biometrica), determine (λ, a) by

$$(\lambda_n, a_n)$$
 $\top = \arg \max_{(\lambda, a) \top} 2 \sum_{i=1}^n \ell_i \left\{ \widehat{\theta}_{k(\ell)} + \epsilon(\lambda, a) \right\} - q_k \log(n).$

 \Box q_k parameters in HAC up to level k.

Setup

- \odot Until m = 1000 structures correctly specified.
- \odot Sample size n = 250.
- □ Let $\tau : \Theta_{k(\ell)} \to [0, 1]$ transform the parameter $\theta_{k(\ell)}$ into Kendall's correlation coefficient.

$$\ \, \Theta_\ell = \tau^{-1}(0.7) \text{ and } \theta_{k(\ell)} = \tau^{-1}(0.3).$$

Family	$s(\widehat{ heta}) = s(heta_0)$	$ au(\widehat{ heta}_1)$ (sd)	$ au(\widehat{ heta}_2)$ (sd)	$\#\{\widehat{ heta}\}$
Clayton	0.82	0.70 (0.01)	0.30 (0.02)	3.04
Frank	0.85	0.70 (0.01)	0.30 (0.02)	3.03
Gumbel	0.85	0.70 (0.01)	0.30 (0.02)	3.02
Joe	0.88	0.70 (0.01)	0.30 (0.02)	3.04

Table 11: $s(\hat{\theta}) = s(\theta_0)$ reports the fraction of correctly specified structures, $\tau(\hat{\theta}_k)$ (sd), k = 1, 2, refers to the sample average of Kendall's $\tau(\cdot)$ evaluated at the estimates and sd to the sample standard deviation thereof. If the structure is misspecified, $\#\{\hat{\theta}\}$ gives the number of parameters on average included in the misspecified HAC.

Data and Copula

- daily log returns of Apple (AAPL), Ford (F), Google (GOOG, Microsoft (MSFT) and Toyota Motors (TM)
- : timespan = [03.01.2007 31.12.2010] (n = 1008)
- Gumbel and Clayton generators
- AR(1)-GARCH(1,1)-general error distributed residuals are conditionally distributed with estimated copula

$$\varepsilon \sim C\{F_1(x_1),\ldots,F_d(x_d);\theta_t\}$$

where F_1, \ldots, F_d are marginal distributions taking to be nonparametrically and θ_t are the copula parameters.

Application II

Estimation Results

 Generator
 estimated structure and parameters

 Gumbel
 ((((GOOG.AAPL)_{1.692(0.078)}.MSFT)_{1.490(0.046)}.TM)_{1.344(0.028)}.F)_{1.280(0.025)}

 Clayton
 (((GOOG.AAPL)_{1.072(0.120)}.MSFT)_{0.762(0.089)}.(TM.F)_{0.554(0.058)})_{0.548(0.051)})

Table 12: Estimation results for the fit of the HAC with Gumbel and Clayton generators to the residuals. The standard errors of the parameters are given in the parenthesis.

Model with Clayton generators

Figure 12: BIC for comparison of the model with Clayton generators with Gaussian and t-copula.

Model with Clayton generators

Figure 13: Parameters transformed to Kendall's τ of the model with Clayton generators.

Model with Clayton generators

Figure 14: The structure from moving window estimation with window length 100 using Clayton generators.

VaR

The P&L function is
$$L_{t+1} = \sum_{i=1}^{3} w_i P_{it}(e^{R_{i,t+1}} - 1)$$
,
The VaR at level α is $VaR(\alpha) = F_L^{-1}(\alpha)$

$$\widehat{\alpha}_{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^{T} \mathsf{I}\{L_t < \widehat{\mathsf{VaR}}_t(\alpha)\}.$$

The distance between $\widehat{\alpha}$ and α

$$e_{\mathbf{w}} = (\widehat{\alpha}_{\mathbf{w}} - \alpha)/\alpha.$$

The performance of models is measured through

$$\mathcal{A}_W = rac{1}{|W|} \sum_{\mathbf{w} \in W} \mathbf{e}_{\mathbf{w}}, \qquad D_W = \left\{ rac{1}{|W|} \sum_{\mathbf{w} \in W} (\mathbf{e}_{\mathbf{w}} - \mathcal{A}_W)^2
ight\}^{1/2}.$$

VaR

	10%	5%	1%
HAC (Gumbel)	0.1070 (0.0048)	0.0586 (0.0061)	0.0173 (0.0020)
AC (Gumbel)	0.1094 (0.0070)	0.0639 (0.0067)	0.0186 (0.0028)
HAC (Clayton)	0.1017 (0.0050)	0.0473 (0.0034)	0.0107 (0.0012)
AC (Clayton)	0.1098 (0.0072)	0.0545 (0.0042)	0.0118 (0.0014)
Gauss	0.1015 (0.0053)	0.0542 (0.0034)	0.0139 (0.0016)
t	0.1015 (0.0048)	0.0530 (0.0033)	0.0128 (0.0015)
vineC (mixed)	0.1010 (0.0042)	0.0528 (0.0033)	0.0139 (0.0015)
vineC (Gumbel)	0.1084 (0.0053)	0.0614 (0.0049)	0.0157 (0.0029)
vineC (Clayton)	0.1028 (0.0044)	0.0492 (0.0033)	0.0119 (0.0016)
vineD (mixed)	0.1034 (0.0049)	0.0503 (0.0032)	0.0125 (0.0011)
vineD (Gumbel)	0.1074 (0.0054)	0.0602 (0.0057)	0.0157 (0.0028)
vineD (Clayton)	0.1060 (0.0047)	0.0496 (0.0030)	0.0105 (0.0016)

Table 13: The empirical quantiles $\widehat{VaR}(\alpha)$ and the standard deviation in parenthesis.

VaR

	10%	5%	1%
HAC (Gumbel)	0.0702 (0.0479)	0.1726 (0.1226)	0.7330 (0.2034)
AC (Gumbel)	0.0936 (0.0703)	0.2785 (0.1344)	0.8589 (0.2793)
HAC (Clayton)	0.0173 (0.0498)	-0.0548 (0.0685)	0.0702 (0.1173)
AC (Clayton)	0.0975 (0.0716)	0.0899 (0.0846)	0.1823 (0.1371)
Gauss	0.0150 (0.0528)	0.0845 (0.0680)	0.3871 (0.1601)
t	0.0153 (0.0476)	0.0602 (0.0655)	0.2842 (0.1485)
vineC (optimal)	0.0102 (0.0419)	0.0567 (0.0658)	0.3884 (0.1536)
vineC (Gumbel)	0.0837 (0.0533)	0.2280 (0.0983)	0.5709 (0.2877)
vineC (Clayton)	0.0276 (0.0445)	-0.0161 (0.0658)	0.1863 (0.1586)
vineD (optimal)	0.0339 (0.0489)	0.0067 (0.0640)	0.2504 (0.1087)
vineD (Gumbel)	0.0744 (0.0538)	0.2046 (0.1137)	0.5690 (0.2808)
vineD (Clayton)	0.0597 (0.0473)	-0.0078 (0.0591)	0.0462 (0.1581)

Table 14: The average exceedance A_W over all portfolios and its standard deviation D_W .

HAC meets R

Firefox 🔻	+
	mation, simulation and visualization of Hierarchical
01	ides the estimation of the structure and the parameters, simulation methods and ts of high-dimensional Hierarchical Archimedean Copulae (HAC).
Version:	0.2-0
Depends:	R (≥ 2.14.0), <u>copula</u>
Imports:	graphics, <u>stabledist</u>
Published:	2012-04-20
Author:	Ostap Okhrin and Alexander Ristig

Figure 15: Website for downloading

Portfolio Management

- HAC can be applied to VaR estimation or assessing diversification effects.
- Four stocks: Chevron (CVX), Total (FP), Royal Dutch Sheel (RDSA) and Exxon (XOM).
- ⊡ 2011-02-02 to 2012-03-19

```
1 > price = read.table("stocks")
2 > ret = diff(log(price), 1)
```

- ☑ Residuals of ARMA-GARCH models res
- ☑ Non-ellipticity? Joint extreme events?

```
1 > pairs(ret, pch = 20)
```


Figure 16: Dependencies of CVX, FP, RDSA and XOM

Copula estimation based on uniformly distributed margins ures

```
> result = estimate.copula(ures)
1
2
```

```
> plot(result)
```


Figure 17: Estimated HAC of the portfolio

Estimation

- ⊡ 3 computational blocks:
 - 1. Specification of the margins
 - 2. Estimation of the parameters and the structure
 - 3. Optional aggregation of the binary HAC
- \boxdot Two estimation procedures: QML and Kendall's $\tau.$
- estimate.copula returns a hac object.

```
1 > result1 = estimate.copula(res, margins = 'edf')
2 > plot(result1)
```


Figure 18: Estimation result

□ Note,
$$C_{\theta_{1(23)}}(C_{\theta_{23}}(u_2, u_3), u_1) = C_{\theta_{123}}(u_1, u_2, u_3)$$
, if
 $|\theta_{1(23)} - \theta_{23}| < \varepsilon, \varepsilon > 0$

epsilon = 0.3 leads to a non-binary structure

```
1 > result2 = estimate.copula(X = res,
2 + type = 1, method = ML, epsilon = 0.3,
3 + agg.method = "mean", margins = "edf")
4 > plot(result2)
```


Figure 19: Results of the modified estimation

Objects of the class hac

- ⊡ hac and hac.full create objects of the class hac.
- □ hac.full cannot construct partially nested AC.
- Consider a 5-dimensional fully nested Gumbel HAC:

```
1 > G1 = hac.full(type = 1,
2 + y = c("X1", "X2", "X3", "X4", "X5"),
3 + theta = c(1, 1.01, 2, 2.01))
4 > G1
5 Class: hac
6 Generator: Gumbel
7 ((((X5.X4)_{2.01}.X3)_{2}.X2)_{1.01}.X1)_{1}
```


It is smarter to aggregate the variables X1 and X2 in a first node and the variables X3, X4 and X5 in a second node.

```
1 > G2 = hac(type = 1,
2 + tree = list(list("X3", "X4", "X5", 2.005),
3 + "X2", "X1", 1.005))
```

Substituting of variables for lists leads to arbitrary objects

1	> G3 = hac(type = 1,
2	+ tree = list(list("Y1", "Y2",
3	+ list("Z3", "Z4", 3), 2.5),
4	+ list("Z1", "Z2", 2),
5	+ list("X1", "X2", 2.4),
6	<pre>+ tree = list(list("Y1", "Y2", + list("Z3", "Z4", 3), 2.5), + list("Z1", "Z2", 2), + list("X1", "X2", 2.4), + "X3", "X4", 1.5))</pre>

Graphics

1 > plot(G3)

Figure 20: Structure of object G3

Figure 21: Colored structure of object G3

Figure 22: Structure of object G2

Simulation

□ Simulation of HAC requires 2 arguments: the number of generated random vectors and a hac object.

Figure 23: Scatterplot of sample

□ pHAC computes the values of copulae.

1 > cf.values = pHAC(X = sample, hac = G2)

$$\overline{C} \text{ emp.copula.self computes the empirical copula, i.e.} \\ \widehat{C}(u_1,\ldots,u_d) = n^{-1} \sum_{i=1}^n \prod_{j=1}^d \mathsf{I}\left\{\widehat{F}_j(X_{ij}) \le u_j\right\}.$$

Figure 24: Values of cf.values on the x-axis against the values of the ecf.values $% \left(\frac{1}{2} \right) = 0$

Figure 25: Runtimes of emp.copula.self for an increasing sample-size but fixed dimension d = 5 plotted on a log-log-scale

Density Functions

d-dimensional copula density

$$c(u_1,\ldots,u_d)=\frac{\partial^d C(u_1,\ldots,u_d)}{\partial u_1\cdots\partial u_d}.$$

□ dHAC returns the values of the analytical density.

Requires a data matrix and a hac object as arguments.

- □ Construction of Likelihood functions by to.logLik.
- □ Random sampling using conditional inverse method.

Theoretical Properties of HAC

Papers:

Okhrin, O., Okhrin, Y. and Schmid, W., Properties of hierarchical Archimedean copulas. *Statistics and Risk Modeling* 30(1), 2013, pp. 21-53.

Charpentier, A., and Segers, J., Tails of multivariate Archimedean copulas. *Journal of Multivariate Analysis* 100, 2009, pp. 1521-1537

Barbe, Ph., Genest, Ch., Ghoudi, K., and Remillard, B., On Kendalls's process. *Journal of Multivariate Analysis* 58, 1996, pp. 197-229.

Distribution of HAC

Let $V = C\{F_1(X_1), \ldots, F_d(X_d)\}$ and let K(t) denote the cdf (K-distribution) of the rv V.

We consider a HAC of the form $C_1\{u_1, C_2(u_2, \ldots, u_d)\}$.

Theorem

Let $U_1 \sim U[0,1]$, $V_2 \sim K_2$ and let $P(U_1 \leq x, V_2 \leq y) = C_1\{x, K_2(y)\}$ with $C_1(a,b) = \phi \{\phi^{-1}(a) + \phi^{-1}(b)\}$ for $a, b \in [0,1]$. Under certain regularity conditions the distribution function K_1 of the random variable $V_1 = C_1(U_1, V_2)$ is given by

$$\begin{aligned} & \mathcal{K}_1(t) &= t - \int_0^{\phi^{-1}(t)} \phi' \big\{ \phi^{-1}(t) + \phi^{-1} \circ \mathcal{K}_2 \circ \phi(u) - u \big\} du \\ & \text{for} \quad t \in [0,1]. \end{aligned}$$

Gumbel copula

$$egin{array}{rcl} \phi_{ heta}(t) &=& \exp(-t^{1/ heta}), \ \phi_{ heta}^{-1}(t) &=& \{-\log(t)\}^{ heta}, \ \phi_{ heta}'(t) &=& -rac{1}{ heta}\exp(-t^{1/ heta})t^{-1+1/ heta}. \end{array}$$

Following Genest and Rivest (1993), K for the simple 2-dim Archimedean copula with generator ϕ is given by $K(t) = t - \phi^{-1}(t)\phi'\{\phi^{-1}(t)\}$. Thus

$$K_2(t, heta) = t - rac{t}{ heta}\log(t)$$

UNIVERSITA

Figure 26: K distribution for three-dimensional HAC with Gumbel generators

Next consider $V_3 = C_3(V_4, V_5)$ with $V_4 = C_4(U_1, ..., U_\ell)$ and $V_5 = C_5(U_{\ell+1}, ..., U_d)$.

Theorem

Let
$$V_4 \sim K_4$$
 and $V_5 \sim K_5$ and
 $P(V_4 \leq x, V_5 \leq y) = C_3\{K_4(x), K_5(y)\}$ with
 $C_3(a, b) = \phi \{\phi^{-1}(a) + \phi^{-1}(b)\}$ for $a, b \in [0, 1]$. Under certain
regularity conditions the distribution function K_3 of the rv
 $V_3 = C_3(V_4, V_5)$ is given by

$$\begin{array}{lll} \mathcal{K}_{3}(t) & = & \mathcal{K}_{4}(t) - \\ & - & \int_{0}^{\phi^{-1}(t)} \phi' \big[\phi^{-1} \circ \mathcal{K}_{5} \circ \phi(u) \\ & + \phi^{-1} \circ \mathcal{K}_{4} \circ \phi \{ \phi^{-1}(t) - u \} \big] \; d\phi^{-1} \circ \mathcal{K}_{4} \circ \phi(u) \end{array}$$

for $t \in [0, 1]$.

Dependence orderings

 $\begin{array}{l} C' \text{ is more concordant than } C \text{ if} \\ (\overline{C}(u,v) = u + v - 1 + C(1 - u, 1 - v)) \\ \\ C \prec_c C' \Leftrightarrow C(\mathbf{x}) \leq C'(\mathbf{x}) \text{ and } \overline{C}(\mathbf{x}) \leq \overline{C'}(\mathbf{x}) \ \forall \mathbf{x} \in [0;1]^d. \end{array}$

Theorem

If two feasible hierarchical Archimedean copulae C^1 and C^2 differ only by the generator functions on the top level satisfying the condition $\phi_1^{-1} \circ \phi_2 \in \mathcal{L}^*$, then $C^1 \prec_c C^2$.

Theorem

If two hierarchical Archimedean copulae $C^1 = C^1_{\phi_1}(u_1, \ldots, u_d)$ and $C^2 = C^2_{\phi_2}(u_1, \ldots, u_d)$ differ only by the generator functions on the level r as $\phi_1 = (\phi_1, \ldots, \phi_{r-1}, \phi, \phi_{r+1}, \ldots, \phi_p)$ and $\phi_2 = (\phi_1, \ldots, \phi_{r-1}, \phi^*, \phi_{r+1}, \ldots, \phi_p)$ with $\phi^{-1} \circ \phi^* \in \mathcal{L}^*$, then $C^1 \prec_c C^2$.

Theorem

(Deheuvels (1978)) Let $\{X_{1i}, \ldots, X_{di}\}_{i=1,\ldots,n}$ be a sequence of the random vectors with the distribution function F, marginal distributions F_1, \ldots, F_d and copula C. Let also $M_j^{(n)} = \max_{1 \le i \le n} X_{ji}$, $j = 1, \ldots, d$ be the componentwise maxima. Then

$$\lim_{n\to\infty} \boldsymbol{P}\left\{\frac{M_1^{(n)}-\boldsymbol{a}_{1n}}{\boldsymbol{b}_{1n}} \leq x_1,\ldots,\frac{M_d^{(n)}-\boldsymbol{a}_{dn}}{\boldsymbol{b}_{dn}} \leq x_d\right\} = \boldsymbol{F}^*(x_1,\ldots,x_d),$$
$$\forall (x_1,\ldots,x_d) \in \mathbb{R}^d$$

with $b_{jn} > 0, \ j = 1, \ldots, d, \ n \geq 1$ if and only if

 for all j = 1,..., d there exist some constants a_{jn} and b_{jn} and a non-degenerating limit distribution F^{*}_i such that

$$\lim_{n\to\infty} \boldsymbol{P}\left\{\frac{M_j^{(n)}-a_{jn}}{b_{jn}}\leq x_j\right\}=F_j^*(x_j),\quad\forall x_j\in\mathbb{R};$$

2. there exists a copula
$$C^*$$
 such that

$$C^*(u_1, \ldots, u_d) = \lim_{n \to \infty} C^n(u_1^{1/n}, \ldots, u_d^{1/n}).$$

Let F_{ds} be the class of *d* dimensional hierarchical Archimedean copulae with structure *s*.

Theorem

If $C \in F_{ds_1}$, $C^* \in F_{ds_2}$, $\forall \varphi_{\theta} \in \mathcal{N}(C)$, $\partial [\varphi_{\ell}^{-1}(t)/(\varphi_{\ell}^{-1})'(t)]/\partial t|_{t=1}$ exists and is equal to $1/\theta$ and $C \in MDA(C^*)$ and $C \in MDA(C^*)$ then $s_1 = s_2$, $\forall \phi_{\theta} \in \mathcal{N}(C^*)$, $\phi_{\theta}(x) = \exp\{-x^{1/\theta}\}$.

If the multivariate HAC C (under some minor condition) belongs to the domain of attraction of the HAC C^* . The extreme value HAC C^* has the same structure as the given copula C, with generators on all levels of the hierarchy being Gumbel generators, but with probably other parameters.

Tail dependency

The upper and lower tail indices of two random variables $X_1 \sim F_1$ and $X_2 \sim F_2$ are given by

$$\lambda_{U} = \lim_{u \to 1^{-}} P\{X_{2} > F_{2}^{-1}(u) \mid X_{1} > F_{1}^{-1}(u)\} = \lim_{u \to 1^{-}} \frac{C(u, u)}{1 - u}$$
$$\lambda_{L} = \lim_{u \to 0^{+}} P\{X_{2} \le F_{2}^{-1}(u) \mid X_{1} \le F_{1}^{-1}(u)\} = \lim_{u \to 0^{+}} \frac{C(u, u)}{u}.$$

Theorem (Nelsen (1997))

For a bivariate Archimedean copula with the generator ϕ it holds

$$\lambda_{U} = 2 - \lim_{u \to 1^{-}} \frac{1 - \phi\{2\phi^{-1}(u)\}}{1 - u} = 2 - \lim_{w \to 0^{+}} \frac{1 - \phi(2w)}{1 - \phi(w)},$$
$$\lambda_{L} = \lim_{u \to 0^{+}} \frac{\phi\{2\phi^{-1}(u)\}}{u} = \lim_{w \to \infty} \frac{\phi(2w)}{\phi(w)}.$$

A function $\phi : (0, \infty) \to (0, \infty)$ is regularly varying at infinity with tail index $\lambda \in \mathbb{R}$ (written $RV_{\lambda}(\infty)$) if $\lim_{w\to\infty} \frac{\phi(tw)}{\phi(w)} = t^{\lambda}$ for all t > 0. $\phi \in RV_{-\infty}(\infty)$ if

$$\lim_{w \to \infty} \frac{\phi(tw)}{\phi(w)} = \begin{cases} \infty & \text{if } t < 1\\ 1 & \text{if } t = 1\\ 0 & \text{if } t > 1 \end{cases}$$

It holds for $\lambda \geq 0$ that if $\phi \in RV_{-\lambda}(\infty)$ then $\phi^{-1} \in RV_{-1/\lambda}(0)$. The function ϕ^{-1} is regularly varying at zero with the tail index γ , if $\lim_{w\to 0^+} \frac{\phi^{-1}(1-tw)}{\phi^{-1}(1-w)} = t^{\gamma}$. For the direct function $\lim_{w\to 0^+} \frac{1-\phi(tw)}{1-\phi(w)} = t^{1/\gamma}$.

$$\lim_{u \to 0^+} \mathsf{P}\{X_i \le F_i^{-1}(u_i u) \text{ for } i \notin S \subset \mathcal{K} = \{1, \dots, k\}$$
$$\mid X_j \le F_j^{-1}(u_j u) \text{ for } j \in S\}$$
$$\lim_{u \to 0^+} \mathsf{P}\{X_i > F_i^{-1}(1 - u_i u) \text{ for } i \notin S \subset \mathcal{K} = \{1, \dots, k\}$$
$$\mid X_j > F_j^{-1}(1 - u_j u) \text{ for } j \in S\}.$$

The above limits can be established via the limits

$$\begin{split} \lambda_L(u_1, \dots, u_k) &= \lim_{u \to 0^+} \frac{1}{u} \, C(u_1 u, \dots, u_k u) \quad \text{and} \\ \lambda_U(u_1, \dots, u_k) &= \lim_{u \to 0^+} \frac{1}{u} \, \overline{C}(1 - u_1 u, \dots, 1 - u_k u) \\ &= \lim_{u \to 0^+} \sum_{s_1 \in \mathcal{K}} (-1)^{|s_1| + 1} \{ 1 - C_{s_1}(1 - u_j u, j \in s_1) \}. \end{split}$$

Theorem (Lower Tail Dependency)

Assume that the limits
$$\begin{split} &\lim_{u\to 0^+} u^{-1}C_i(uu_{k_{i-1}+1},\ldots,uu_{k_i}) = \lambda_{L,i}(u_{k_{i-1}+1},..,u_{k_i}) \text{ exist for all} \\ &0 < u_{k_{i-1}+1},..,u_{k_i} < 1, \ i = 1,\ldots,m. \text{ Suppose that } m + k - k_m \geq 2. \\ &If \phi_0^{-1} \text{ is regularly varying at infinity with index } -\lambda_0 \in [-\infty,0], \text{ then it holds for all } 0 < u_i < 1, \ i = 1,..,m \text{ that} \end{split}$$

$$\lim_{u \to 0^{+}} \frac{C(uu_{1}, \dots, uu_{k})}{u}$$

$$= \begin{cases} \min\{\lambda_{L,1}(u_{1}, \dots, u_{k_{1}}), \dots, \lambda_{L,m}(u_{k_{m-1}+1}, \dots, u_{k_{m}}), u_{k_{m}+1}, \dots, u_{k}\}\\ if \quad \lambda_{0} = \infty, \\ \left(\sum_{i=1}^{m} \lambda_{L,i}(u_{k_{i-1}+1}, \dots, u_{k_{i}})^{-\lambda_{0}} + \sum_{j=k_{m}+1}^{k} u_{j}^{-\lambda_{0}}\right)^{-1/\lambda_{0}}\\ if \quad 0 < \lambda_{0} < \infty, \\ 0 \quad if \quad \lambda_{0} = 0. \end{cases}$$

In the following let

$$C_{j}^{*}(u) = C_{j}(u_{k_{j}-1+1}u, ..., u_{k_{j}}u) |_{u_{k_{j}-1}+1=...=u_{k_{j}}=1},$$

$$C^{*}(u) = C(u_{1}u, ..., u_{k}u) |_{u_{1}=...=u_{k}=1},$$

$$\lambda_{L,j}^{*}(u, u_{k_{j}-1+1}, ..., u_{k_{j}}) = C_{j}(u_{k_{j}-1+1}u, ..., u_{k_{j}}u)/C_{j}^{*}(u).$$

Note that
$$0 \le \lambda_{L,j}^*(u, u_{k_{j-1}+1}, ..., u_{k_j}) \le 1$$
. Moreover, if
 $\lim_{u\to 0^+} u^{-1}C_j(uu_{k_{j-1}+1}, ..., uu_{k_j}) = \lambda_{L,j}(u_{k_{j-1}+1}, ..., u_{k_j}) > 0$ for all $0 < u_{k_{j-1}+1}, ..., u_{k_j} \le 1$ then

$$\lambda_{L,j}^{*}(u_{k_{j-1}+1},...,u_{k_{j}}) = \lim_{u \to 0+} \frac{C_{j}(u_{k_{j-1}+1}u,...,u_{k_{j}}u)/u}{C_{j}^{*}(u)/u} = \frac{\lambda_{L,j}(u_{k_{j-1}+1},...,u_{k_{j}})}{\lambda_{L,j}(1,...,1)}$$

Theorem (Lower Tail Dependency 2)

Assume that the limits

$$\lim_{u\to 0^+} \frac{C_i(uu_{k_{i-1}+1},\ldots,uu_{k_i})}{C_i^*(u)} = \lambda_{L,i}^*(u_{k_{i-1}+1},\ldots,u_{k_i})$$

exist for all $0 < u_{k_{i-1}+1}, ..., u_{k_i} \le 1$, i = 1, ..., m. Let $\phi_0^{-1} \in RV_0(0)$ and let $\psi(v) = -\phi_0(v)/\phi'_0(v)$ be regularly varying at infinity with finite tail index \varkappa then $\varkappa \le 1$ and it holds for all $0 < u_i < 1$, i = 1, ..., m that

$$\lim_{u\to 0^+} \frac{C(uu_1,\ldots,uu_k)}{C^*(u)} = \prod_{j=1}^m [\lambda_{L,j}^*(u_{k_{j-1}+1},\ldots,u_{k_j})]^{(m+k-k_m)^{-\varkappa}} \cdot \prod_{j=k_m+1}^k u_j^{(m+k-k_m)^{-\varkappa}}.$$

Theorem (Upper Tail Dependency)

Assume that the limits
$$\begin{split} \lim_{u\to 0^+} u^{-1}[1-C_i(1-uu_{k_{i-1}+1},\ldots,1-uu_{k_i})] &= \lambda_{U,i}(u_{k_{i-1}+1},\ldots,u_{k_i}) \\ exist for all <math>0 < u_{k_{i-1}+1},\ldots,u_{k_i} < 1, \ i = 1,\ldots,m. \\ Suppose that \\ m+k-k_m \geq 2. \ If \ \phi_0^{-1}(1-w) \ is \ regularly \ varying \ at \ zero \ with \ index \\ -\gamma_0 \in [-\infty,-1], \ then \ it \ holds \ for \ all \ 0 < u_i < 1, \ i = 1,\ldots,m \ that \end{split}$$

$$\lim_{u \to 0^{+}} \frac{1 - C(1 - uu_{1}, \dots, 1 - uu_{k})}{u}$$

$$= \begin{cases} \min\{\lambda_{U,1}(u_{1}, \dots, u_{k_{1}}), \dots, \lambda_{U,m}(u_{k_{m-1}+1}, \dots, u_{k_{m}}), u_{k_{m}+1}, \dots, u_{k}\} \\ if \quad \gamma_{0} = \infty, \\ \left(\sum_{i=1}^{m} [\lambda_{U,i}(u_{k_{i-1}+1}, \dots, u_{k_{i}})]^{\gamma_{0}} + \sum_{j=k_{m}+1}^{k} u_{j}^{\gamma_{0}}\right)^{1/\gamma_{0}} \\ if \quad 1 \le \gamma_{0} < \infty, \end{cases}$$

Time Varying Copulae

Papers:

Härdle, W.K., Okhrin, O., and Wang, W., HMM in dynamic HAC models, *Econometric Theory* 31(5), 2015, pp 981-1015

Härdle, W.K., Okhrin, O. and Okhrin, Y., Dynamic Structured Copula Models, *Statistics and Risk Modeling*, 30(4), 2013, pp.361-388

Giacomini, E., Härdle, W. K. and Spokoiny, V. (2009). Inhomogeneous dependence modeling with time-varying copulae, *Journal of Business and Economic Statistics* 27(2): 224-234.

Mercurio, D. and Spokoiny, V. (2004). Statistical inference for time-inhomogeneous volatility models, *Annals of Statistics* 32(2): 577-602.

UNIVERSITA

Local Change Point Detection

Figure 27: Dependence over time for DaimlerChrysler, Volkswagen, Bayer, BASF, Allianz and Münchener Rückversicherung, 20000101-20041231. Giacomini et. al (2009)

Adaptive Copula Estimation

- adaptively estimate largest interval where homogeneity hypothesis is accepted
- Local Change Point detection (LCP): sequentially test θ_t , s_t are constants (i.e. $\theta_t = \theta$, $s_t = s$) within some interval *I* (local parametric assumption).

$$\triangle_I(s,\theta) = \sum_{t\in I} \mathcal{K}\{C(\cdot;s_t,\theta_t), C(\cdot;s,\theta)\} \leq \triangle.$$

holds for some $\Delta \geq 0$. m_{k^*} is the ideal scale, $(s, \theta)^{\top}$ is ideally estimated from $I = [t_0 - m_{k^*}, t_0]$ and $\mathcal{K}(\cdot, \cdot)$ is the *Kullback-Leibler* divergence

$$\mathcal{K}\{C(\cdot; s_t, \theta_t), C(\cdot; s, \theta)\} = \boldsymbol{E}_{s_t, \theta_t} \log \frac{c(\cdot; s_t, \theta_t)}{c(\cdot; s, \theta)}$$

Under the SMB condition on I_{k^*} and assuming that $\max_{k \leq k^*} \mathbf{E}_{s, \boldsymbol{\theta}} | \mathcal{L}(\widetilde{s}_k, \widetilde{\boldsymbol{\theta}}_k) - \mathcal{L}(s, \boldsymbol{\theta}) |^r \leq \mathcal{R}_r(s, \boldsymbol{\theta})$, we obtain

$$egin{split} m{E}_{s_t,m{ heta}_t}\log\left\{1+rac{|\mathcal{L}(\widetilde{s}_{\widehat{k}},\widetilde{m{ heta}}_{\widehat{k}})-\mathcal{L}(s,m{ heta})|^r}{\mathcal{R}_r(s,m{ heta})}
ight\}\leq 1+\Delta,\ m{E}_{s_t,m{ heta}_t}\log\left\{1+rac{|\mathcal{L}(\widetilde{s}_{\widehat{k}},\widetilde{m{ heta}}_{\widehat{k}})-\mathcal{L}(\widehat{s}_{\widehat{k}},\widehat{m{ heta}}_{\widehat{k}})|^r}{\mathcal{R}_r(s,m{ heta})}
ight\}\leq
ho+\Delta, \end{split}$$

where \hat{a}_{l} is an adaptive estimator on l and \tilde{a}_{l} is any other parametric estimator on l.

Local Change Point Detection

- 1. define family of nested intervals $I_0 \subset I_1 \subset I_2 \subset \ldots \subset I_K = I_{K+1}$ with length m_k as $I_k = [t_0 - m_k, t_0]$
- 2. define $\mathfrak{T}_k = [t_0 m_k, t_0 m_{k-1}]$

Local Change Point Detection

- 1. test homogeneity $H_{0,k}$ against the change point alternative in \mathfrak{T}_k using I_{k+1}
- 2. if no change points in \mathfrak{T}_k , accept I_k . Take \mathfrak{T}_{k+1} and repeat previous step until $H_{0,k}$ is rejected or largest possible interval I_K is accepted
- 3. if $H_{0,k}$ is rejected in \mathfrak{T}_k , homogeneity interval is the last accepted $\widehat{I} = I_{k-1}$
- 4. if largest possible interval I_K is accepted $\hat{I} = I_K$

Test of homogeneity

Interval $I = [t_0 - m, t_0], \mathfrak{T} \subset I$

$$\begin{array}{ll} \mathcal{H}_{0} & : & \forall \tau \in \mathfrak{T}, \; \theta_{t} = \theta, \; s_{t} = s, \\ & \forall t \in J = [\tau, t_{0}], \forall t \in J^{c} = I \setminus J \\ \mathcal{H}_{1} & : & \exists \tau \in \mathfrak{T}, \; \theta_{t} = \theta_{1}, \; s_{t} = s_{1}; \; \forall t \in J, \\ & \theta_{t} = \theta_{2} \neq \theta_{1}; \; s_{t} = s_{2} \neq s_{1}, \forall t \in J^{c} \end{array}$$

Test of homogeneity

Likelihood ratio test statistic for fixed change point location:

$$T_{I,\tau} = \max_{\theta_1,\theta_2} \{ L_J(\theta_1) + L_{J^c}(\theta_2) \} - \max_{\theta} L_I(\theta)$$

= $ML_J + ML_{J^c} - ML_I$

Test statistic for unknown change point location:

$$T_I = \max_{\tau \in \mathfrak{T}_I} T_{I,\tau}$$

Reject H_0 if for a critical value ζ_I

$$T_I > \zeta_I$$

Selection of I_k and ζ_k

: set of numbers m_k defining the length of I_k and \mathfrak{T}_k are in the form of a geometric grid

(Mystery Parameters)

Sequential choice of ζ_k

- ⊡ after *k* steps are two cases: change point at some step $\ell \le k$ and no change points.
- \boxdot let \mathcal{B}_ℓ be the event meaning the rejection at step ℓ

$$\mathcal{B}_{\ell} = \{ T_1 \leq \zeta_1, \ldots, T_{\ell-1} \leq \zeta_{\ell-1}, T_{\ell} > \zeta_{\ell} \},\$$

and
$$(\widehat{s}_k, \widehat{oldsymbol{ heta}}_k) = (\widetilde{s}_{\ell-1}, \widetilde{oldsymbol{ heta}}_{\ell-1})$$
 on \mathcal{B}_ℓ for $\ell = 1, \dots, k$.

 \boxdot we find sequentially such a minimal value of ζ_ℓ that ensures following inequality

$$\max_{k=l,...,K} \boldsymbol{E}_{\boldsymbol{s}^*,\boldsymbol{\theta}^*} | \mathcal{L}(\widetilde{\boldsymbol{s}}_k,\widetilde{\boldsymbol{\theta}}_k) - \mathcal{L}(\widetilde{\boldsymbol{s}}_{\ell-1},\widetilde{\boldsymbol{\theta}}_{\ell-1})|^r \mathbf{I}(\mathcal{B}_\ell) \leq \rho \mathcal{R}_r(\boldsymbol{s}^*,\boldsymbol{\theta}^*) \frac{k}{K-1}$$

Illustration

Sequential choice of ζ_k

- 1. pairs of Kendall's τ : $\forall \{\tau_1, \tau_2\} \in \{0.1, 0.3, 0.5, 0.7, 0.9\}^2, \ \tau_1 \geq \tau_2$
- 2. simul. from $C_{\theta_i,\theta_j}(u_1, u_2, u_3) = C\{C(u_1, u_2; \theta_1), u_3; \theta_2\}, \theta = \theta(\tau)$
- 3. run sequential algorithm for each sample

Figure 28: ζ_k of the 3-dimensional HAC as a function of k with the fixed $m_0 = 40$, $\rho = 0.5$, r = 0.5, $\tau_1 = 0.1$ and for different τ_2 . $\tau_2 = 0.1$ (solid), $\tau_2 = 0.3$ (solid), $\tau_2 = 0.5$ (solid), $\tau_2 = 0.7$ (dashed), $\tau_2 = 0.9$ (dashed).

Simulation: Change in θ_1 , I

$$C_t(u_1, u_2, u_3; s, \theta) = \begin{cases} C\{u_1, C(u_2, u_3; \theta_1 = 3.33); \theta_2 = 1.43\} & \text{for } 1 \le t \le 200 \\ C\{u_1, C(u_2, u_3; \theta_1 = 2.00); \theta_2 = 1.43\} & \text{for } 200 < t \le 400 \end{cases}$$

- 1. N = 400 and 100 runs
- 2. LCP based on the same critical values

Figure 29: θ_1 and θ_2 on the intervals of homogeneity (median - dashed line, mean - solid line).

UNIVERSITA

Simulation: Change in θ_1 , II

Simulation: Change in θ_2 , I

$$C_t(u_1, u_2, u_3; s, \theta) = \begin{cases} C\{u_1, C(u_2, u_3; \theta_1 = 3.33); \theta_2 = 1.43\} & \text{for } 1 \le t \le 200 \\ C\{u_1, C(u_2, u_3; \theta_1 = 3.33); \theta_2 = 2.00\} & \text{for } 200 < t \le 400 \end{cases}$$

- 1. N = 400 and 100 runs
- 2. LCP based on the same critical values

Figure 31: θ_1 and θ_2 on the intervals of homogeneity (median - dashed line, mean - solid line).

UNIVERSITA

Simulation: Change in θ_2 , II

Simulation: Change in the Structure, I

$$C_t(u_1, u_2, u_3; s, \theta) = \begin{cases} C\{u_1, C(u_2, u_3; \theta_1 = 3.33); \theta_2 = 1.43\} & \text{for } 1 \le t \le 200 \\ C\{C(u_1, u_2; \theta_1 = 3.33), u_3; \theta_2 = 1.43\} & \text{for } 200 < t \le 400 \end{cases}$$

1. N = 400 and 100 runs

Simulation: Change in the Structure, II

TECHNISCHI UNIVERSITA

Application III

- daily values for the exchange rates JPN/USD, GBP/USD and EUR/USD
- \therefore timespan = [4.1.1999; 14.8.2009] (n = 2771)
- Gumbel and Clayton generators generators
- \boxdot a univariate GARCH(1,1) process on log-returns

$$\begin{array}{rcl} X_{j,t} & = & \mu_{j,t} + \sigma_{j,t}\varepsilon_{j,t} \text{ with } \sigma_{j,t}^2 = \omega_j + \alpha_j\sigma_{j,t-1}^2 + \beta_j(X_{j,t-1} - \mu_{j,t-1})^2 \\ \varepsilon_t & \sim & C\{F_1(x_1), \ldots, F_d(x_d); \theta_t\} \end{array}$$

HAC for whole sample

Generator	Structure	ML
Clayton	((JPY.USD) _{0.808(0.042)} .GBP) _{0.401(0.025)}	617.268
Gumbel	((JPY.USD) _{1.521(0.025)} .GBP) _{1.303(0.016)}	736.341

Table 15: Estimation results for HAC with Clayton and Gumbel generators for indices and exchange rates using full samples. The standard deviations of the parameters are given in the parenthesis.

TECHNISCHE UNIVERSITAT **GO JESSHE**

LCP for HAC to real Data

Figure 35: Structure, τ_1 and τ_2 of the HAC on the intervals of homogeneity

LCP for HAC to real Data

Figure 36: Intervals of homogeneity and ML on these intervals

VaR

VaR

		Clayton			Gumbel			DCC		
α	0.0100	0.0500	0.1000	0.0100	0.0500	0.1000	0.0100	0.0500	0.1000	
$\widehat{\alpha}_{w^*}$	0.0100	0.0487	0.0951	0.0091	0.0474	0.0977	0.0156	0.0413	0.0817	
$\widehat{\alpha}_{w_1}$	0.0083	0.0460	0.0912	0.0087	0.0447	0.0925	0.0152	0.0408	0.0812	
$\widehat{\alpha}_{w_2}$	0.0100	0.0487	0.0951	0.0096	0.0487	0.0977	0.0156	0.0413	0.0812	
$\widehat{\alpha}_{w_3}$	0.0100	0.0487	0.0951	0.0091	0.0482	0.0973	0.0156	0.0413	0.0812	
$\widehat{\alpha}_{w_4}$	0.0100	0.0487	0.0951	0.0091	0.0469	0.0973	0.0156	0.0417	0.0817	
$\widehat{\alpha}_{w_{5}}$	0.0100	0.0487	0.0947	0.0091	0.0478	0.0973	0.0156	0.0417	0.0817	
A_W	-0.0217	-0.0328	-0.0557	-0.0895	-0.0526	-0.0341	0.5482	-0.1652	-0.1852	
D_W	0.0649	0.0186	0.0125	0.0632	0.0406	0.0272	0.0335	0.0091	0.0042	

Table 16: Exceedance ratios for portfolios of exchange rates with w^* , w_i , i = 1, ..., 5, the average exceedance A_W over all portfolios and its standard deviation D_W .

Data and Copula

- ⊡ daily returns values for Dow Jones (DJ), DAX and NIKKEI
- : timespan = [01.01.1985; 23.12.2010] (n = 6778)
- Gumbel and Clayton generators
- APARCH(1,1) model with the residuals following the skewed-t distribution

$$\begin{array}{lll} X_{j,t} & = & \mu_j + \sigma_{j,t} \varepsilon_{j,t} \\ & \text{with} & \sigma_{j,t}^{\delta_j} = \omega_j + \alpha_j (|X_{j,t-1} - \mu_j| - \gamma (X_{j,t-1} - \mu_j))^{\delta_j} + \beta_j \sigma_{j,t}^{\delta_j} \end{array}$$

where $\varepsilon_{j,t} \sim t_{\text{skewed}}(\varkappa; \nu)$, $j = 1, \ldots, 3$. The parameters \varkappa and ν stand for the skew and shape (degrees of freedom) of the distribution.

TECHNISCHE UNIVERSITAT

HAC for whole sample

Generator	Structure	ML
Clayton	((DAX.DJ) _{0.459(0.021)} .NIKKEI) _{0.155(0.012)}	545.399
	((DAX.DJ) _{1.272(0.012)} .NIKKEI) _{1.103(0.007)}	542.736

Table 17: Estimation results for HAC with Clayton and Gumbel generators for indices and exchange rates using full samples. The standard deviations of the parameters are given in the parenthesis.

UNIVERSITA

LCP for HAC to real Data

Figure 38: Structure, τ_1 and τ_2 of the HAC on the intervals of homogeneity

LCP for HAC to real Data

VaR

Figure 40: Profit and Loss function

VaR

		Clayton			Gumbel			DCC		
α	0.0100	0.0500	0.1000	0.0100	0.0500	0.1000	0.0100	0.0500	0.1000	
$\widehat{\alpha}_{w^*}$	0.0054	0.0390	0.0935	0.0033	0.0249	0.0683	0.0155	0.0460	0.0830	
$\widehat{\alpha}_{w_1}$	0.0055	0.0372	0.0916	0.0040	0.0239	0.0705	0.0162	0.0453	0.0864	
$\widehat{\alpha}_{W_2}$	0.0073	0.0458	0.0994	0.0044	0.0303	0.0788	0.0152	0.0471	0.0830	
$\widehat{\alpha}_{w_3}$	0.0055	0.0412	0.0940	0.0030	0.0254	0.0718	0.0160	0.0480	0.0808	
$\widehat{\alpha}_{w_4}$	0.0052	0.0399	0.0943	0.0035	0.0225	0.0681	0.0157	0.0431	0.0818	
$\widehat{\alpha}_{w_{5}}$	0.0062	0.0422	0.0976	0.0043	0.0290	0.0765	0.0160	0.0507	0.0887	
A_W	-0.3902	-0.1781	-0.0497	-0.6187	-0.4496	-0.2686	0.5979	-0.0687	-0.1739	
D_W	0.0930	0.0508	0.0286	0.0953	0.0932	0.0638	0.0959	0.0829	0.0609	

Table 18: Exceedance ratios for portfolios of indices with w^* , w_i , i = 1, ..., 5, the average exceedance A_W over all portfolios and its standard deviation D_W .

Hidden Markov Models

Stochastic process driven by an underlying Markov process, Bickel, Ritov and Ryden (1998), Fuh (2003):

Figure 41: Graphical representation of the dependence structure of HMM

Hidden Markov Models

Observe i.i.d. $Y = (Y_1, Y_2, \ldots, Y_T)^\top \in \mathbb{R}^d$, where $\{Y_t\}_{t \ge 0}$ is connected with an underlying Markov Chain $\{X_t\}_{t \ge 0}$, $t = 1, \ldots, T$, X_t takes value on $1, \ldots, M$.

$$\boldsymbol{P}(X_t|X_{1:(t-1)}, Y_{1:(t-1)}) = \boldsymbol{P}(X_t|X_{t-1})$$
(3)

$$P(Y_t|Y_{1:(t-1)}, X_{(1:t)}) = P(Y_t|X_t),$$
(4)

 $\{X_t, Y_t\}$ follows an HMM.

Likelihood

Define p_{ij} = P(X_t = j | X_{t-1} = i) the transition probability
 π_i the initial probability
 f_j {b; s^(j), θ^(j)} (abbreviated as f_j(.)) the HAC-based density
 g ^{def} = ({s, θ}, p_{ij}) (i = 1,..., M, j = 1,..., M).

Likelihood

For given *d* dimensional time series $y_1, \dots, y_T \in \mathbb{R}^d$ $(y_t = (y_{1t}, y_{2t}, y_{3t}, \dots, y_{dt})^\top) \pi_{x_t}$ as the π_i for $x_0 = i, i = 1, \dots, M$, and $p_{x_{t-1}x_t} = p_{ji}$ for $x_{t-1} = j$ and $x_t = i$. The likelihood of Y and X can be expressed as:

$$p_T(y_1, \cdots, y_T; x_1, \dots, x_T) = \pi_{x_0} \prod_{t=1}^T p_{x_{t-1}x_t} f_{x_t}(y_t; \theta^{(x_t)}, s^{(x_t)})$$

EM algorithm

Following Dempster, Laird and Rubin (1997)
(a) E-step : compute Q(g; g^(ν)),
(b) M-step : choose the update parameters

$$\mathfrak{g}^{(\nu+1)} = \operatorname{arg} \operatorname{max}_{\mathfrak{g}} \mathcal{Q}(\mathfrak{g}; \mathfrak{g}^{(\nu)}),$$

where $\mathcal{Q}(\mathfrak{g}; \mathfrak{g}^{(\nu)}) \stackrel{\text{def}}{=} \boldsymbol{E}_{\mathfrak{g}^{(\nu)}} \{ \log L(Y, X, \theta, \mathbf{s}) | Y \}.$

EM algorithm – E-step

$$\mathcal{Q}(\mathbf{g}; \mathbf{g}') = \sum_{i=1}^{M} \mathbf{P}_{(\mathbf{g}')}(X_0 = i | \mathbf{Y}) \log\{\pi_i f_i(Y_0)\} \\ + \sum_{t=1}^{T} \sum_{i=1}^{M} \sum_{j=1}^{M} \mathbf{P}_{(\mathbf{g}')}(X_{t-1} = i, X_t = j | \mathbf{Y}) \log\{\mathbf{p}_{ij}\} \\ + \sum_{t=1}^{T} \sum_{i=1}^{M} \mathbf{P}_{(\mathbf{g}')}(X_t = i | \mathbf{Y}) \log f_i(Y_t)$$

Likelihood with constraints:

$$\mathfrak{L}(\mathfrak{g},\lambda;\mathfrak{g}') = \mathcal{Q}(\mathfrak{g};\mathfrak{g}') + \sum_{i=1}^{M} \lambda_i (1-\sum_{j=1}^{M} p_{ij}). \tag{5}$$

{

EM algorithm – M-step

$$\widehat{\theta}_{(\nu)}^{(i)}, \widehat{s}_{(\nu)}^{(i)} \} = \arg \max_{s^{(i)}, \theta^{(i)}} \sum_{t=1}^{T} \boldsymbol{P}(X_t = i | Y) \mathfrak{L}(\mathfrak{g}_i, \lambda; \mathfrak{g}')$$

$$\{ \widehat{\theta}_{ij} \} = \arg \operatorname{zero}_{\theta_{ij}} \sum_{t=1}^{T} \boldsymbol{P}(X_t = i | Y) \partial \log f_i(y_t) / \partial \theta_{ij},$$

$$i \in 1, \cdots, M$$

Theoretical Results

Theorem

Under certain conditions, we can consistently find the corresponding structure:

$$\lim_{n \to \infty} \boldsymbol{P}(\hat{\boldsymbol{s}}^{(i)} = \boldsymbol{s}^{*(i)}) = 1, \forall i, 1, \dots, M$$
(6)

Theorem

Given the selected structures $\{\hat{s}^{(i)}\}s$, the estimator $\hat{\theta}^{(i)}$ satisfies:

$$\lim_{n \to \infty} \boldsymbol{P}(\widehat{\boldsymbol{\theta}}^{(i)} = \boldsymbol{\theta}^{*(i)}) = 1, \forall i.$$
(7)

Simulations

- Aim is to check if estimation performance of HMM HAC is affected by
 - 1. adopting nonparametric margins.
 - 2. assuming parametric margins.
 - 3. introducing a GARCH dependency in the marginal time series.
- ⊡ Simulation I: Simulation of 3 dimensional time series model
- □ Simulation II: Simulation of 5 dimensional time series model
- Simulation III: Forcasting comparison of the DCC method with the HMM HAC approach

 Simulation according to a GARCH(1, 1) model for studying effect of deGARCH,

$$Y_{tj} = \mu_{tj} + \sigma_{tj} \varepsilon_{tj}$$

with

$$\sigma_{tj}^2 = \omega_j + \alpha_j \sigma_{t-1j}^2 + \beta_j (Y_{t-1j} - \mu_{t-1j})^2,$$

with parameters $\omega_j = 10^{-6}, \alpha_j = 0.8, \beta_j = 0.1$, with standard normal residuals $\varepsilon_{t1}, \varepsilon_{t2}, \varepsilon_{t3} \sim N(0, 1)$.

Dependence structure is modeled by HAC with Gumbel generators.

Transition matrix:
$$\begin{pmatrix} 0.982 & 0.010 & 0.008 \\ 0.008 & 0.984 & 0.008 \\ 0.003 & 0.002 & 0.995 \end{pmatrix}$$

 $n = 2000, d = 3, M = 3$, fixed marginal distributions:
 $Y_{t1}, Y_{t2}, Y_{t3} \sim N(0, 1)$

$$C\{u_1, C(u_2, u_3; \theta_1^{(1)} = 1.3); \theta_2^{(1)} = 1.05\} \text{ for } i = 1$$

$$C\{u_2, C(u_3, u_1; \theta_1^{(2)} = 2.0); \theta_2^{(2)} = 1.35\} \text{ for } i = 2$$

$$C\{u_3, C(u_1, u_2; \theta_1^{(3)} = 4.5); \theta_2^{(3)} = 2.85\} \text{ for } i = 3$$

with i indicating the three states.

Simulation, I

Figure 42: The underlying sequence x_t (upper left panel), marginal plots of $(y_{t1}, y_{t2}, y_{t3})(t = 0, ..., 1000)$.

Figure 43: Snapshots of pairwise scatter plots of dependency structures (t = 0, ..., 1000), the (y_{t1}) vs. (y_{t2}) (left), the (y_{t1}) vs. (y_{t3}) (middle), and the (y_{t2}) vs. (y_{t3})(right). Circles, triangles, and crosses correspond to the observations from states i = 1, 2, 3 respectively.

With GARCH effects in the margins, nonparametrically estimated margins

Figure 44: The averaged estimation errors for the transition matrix (left panel), parameters (middle panel), convergence of states (right panel). Estimation starts from near true value (dashed); starts from values obtained by rolling window (solid). x-axis represents represents iterations. Number of repetitions is 1000.

Without GARCH effects in the margins, nonparametrically estimated margins

Figure 45: The averaged estimation errors for the transition matrix (left panel), parameters (middle panel), convergence of states (right panel). Estimation starts from near true value (dashed); starts from values obtained by rolling window (solid). x-axis represents represents iterations. Number of repetitions is 1000.

Without GARCH effects in the margins, parametric margins

Figure 46: The averaged estimation errors for the transition matrix (left panel), parameters (middle panel), convergence of states (right panel). Estimation starts from near true value (dashed); starts from values obtained by rolling window (solid). x-axis represents represents iterations. Number of repetitions is 1000.

				True D0	GP is ID	True DGP is GARCH(1.1)		
			True	Rol. Win.	True Str.	Rol. Win.	True Str.	
SL	C_1	$\theta_1^{(1)}$	1.05	1.030 (0.046, 0.003)	1.057 (0.068, 0.005)	1.100 (0.888, 0.791)	1.138 (0.080, 0.014)	
Margins	c_1	$\theta_{2}^{(1)}$	1.30	1.313 (0.156, 0.025)	1.308 (0.083, 0.007)	1.407 (0.888, 0.800)	1.246 (0.080, 0.009)	
Σ	C_2	$\theta_{1}^{(2)}$	1.35	1.366 (0.121, 0.015)	1.346 (0.182, 0.033)	1.403 (1.473, 2.173)	1.436 (2.608, 6.089)	
tric	C2	$\theta_2^{(2)}$	2.00	2.556 (1.052, 1.416)	3.212 (1.991, 5.433)	3.288 (1.473, 3.829)	5.106 (2.608, 16.449)	
Nonparametric	<i>C</i> ₃	$\theta_1^{(3)}$	2.85	2.854 (0.073, 0.005)	2.854 (0.073, 0.005)	2.772 (0.936, 0.882)	2.790 (0.941, 0.889)	
bara	C3	$\theta_2^{(3)}$	4.50	4.497 (0.133, 0.018)	4.496 (0.130, 0.017)	4.570 (0.936, 0.881)	4.606 (0.941, 0.897)	
luo	5 rat. of correct states		0.958 (0.029)	0.933 (0.056)	0.853 (0.054)	0.813 (0.061)		
z	$\sum_{i=1}^{d}$	$_{i=1} \widehat{p}_{ij}-p_{ij} $		0.278 (0.230)	0.404 (0.307)	0.601 (0.217)	0.770 (0.242)	
	rat. of correct structures		0.949	0.918	0.853	0.757		

Table 19: Simulation results for different DGPs, sample size T = 2000, 1000 repetitions, standard deviations and MSEs are provided in brackets.

				True D0	GP is ID	True DGP is GARCH(1.1)		
			True	Rol. Win.	True Str.	Rol. Win.	True Str.	
	C	$\theta_1^{(1)}$	1.05	1.030 (0.041, 0.002)	1.056 (0.066, 0.004)	1.205(1.261,1.614)	1.107(0.079,0.009)	
ins	\mathcal{C}_1	$\theta_2^{(1)}$	1.30	1.310 (0.154, 0.024)	1.306 (0.087, 0.008)	1.843 (1.261,1.885)	1.145 (0.079,0.030)	
Margins	C_2	$\theta_{1}^{(2)}$	1.35	1.365 (0.130, 0.017)	1.344 (0.173, 0.030)	1.577(1.381, 1.959)	1.838(1.612,2.837)	
	C2	$\theta_2^{(2)}$	2.00	2.544 (0.962, 1.221)	3.157 (1.906, 4.971)	3.15(1.381,3.230)	3.480 (2.270, 7.343)	
Parametric	<i>C</i> -	$\theta_1^{(3)}$	2.85	2.855 (0.074, 0.006)	2.854 (0.074, 0.005)	3.879(1.453, 3.170)	3.906(1.523, 3.435)	
ran	C ₃	$\theta_2^{(3)}$	4.50	4.513 (0.133, 0.018)	4.513 (0.132, 0.018)	6.39 (1.453,5.683)	6.592(1.523, 6.696)	
Pa	പ്പ് rat. of correct states		0.959 (0.029)	0.934 (0.056)	0.732 (0.08)	0.747 (0.053)		
	$\sum_{i,j=1}^{d} \widehat{p}_{ij} - p_{ij} $		0.278 (0.232)	0.395 (0.297)	0.761 (0.179)	0.76 (0.156)		
rat. of correct structures		0.955	0.921	0.358	0.323			

Table 20: Simulation results for different DGPs, sample size T = 2000, 1000 repetitions, standard deviations and MSEs are provided in brackets.

				True D0	GP is ID	True DGP is GARCH(1.1)		
			True	Rol. Win.	True Str.	Rol. Win.	True Str.	
	C	$\theta_1^{(1)}$	1.05	1.030 (0.045, 0.002)	1.056 (0.067, 0.005)	1.030 (0.736, 0.542)	1.067 (0.141, 0.020)	
	C_1	$\theta_2^{(1)}$	1.30	1.320 (0.264, 0.070)	1.307 (0.081, 0.007)	1.333(0.736, 0.543)	1.305 (0.141, 0.020)	
deGARCHing	C_2	$\theta_{1}^{(2)}$	1.35	1.367 (0.123, 0.015)	1.345 (0.166, 0.028)	1.356 (1.059, 1.122)	1.333 (1.755, 3.080)	
SCH CH	C ₂	$\theta_2^{(2)}$	2.00	2.577 (1.273, 1.953)	3.180 (1.976, 5.297)	2.579(1.059, 1.457)	3.351(1.755, 4.905)	
GAF	C	$\theta_1^{\overline{(3)}}$	2.85	2.852 (0.074, 0.005)	2.852 (0.074, 0.005)	2.835(0.816, 0.666)	2.833(0.816, 0.666)	
de(<i>C</i> ₃	$\theta_2^{(3)}$	4.50	4.489 (0.133, 0.018)	4.488 (0.130, 0.017)	4.452(0.816, 0.668)	4.451(0.816, 0.668)	
	rat. of correct states			0.958 (0.029)	0.933 (0.056)	0.958 (0.028)	0.925(0.058)	
2	$\sum_{i,j=1}^{d} \widehat{p}_{ij} - p_{ij} $		0.280 (0.234)	0.399 (0.299)	0.299 (0.235)	0.46 (0.325)		
	rat. of correct structures		0.950	0.919	0.938	0.916		

Table 21: Simulation results for different DGPs, sample size T = 2000, 1000 repetitions, standard deviations and MSEs are provided in brackets.

Marginal distributions: Y_{t1} , Y_{t2} , Y_{t3} , Y_{t4} , $Y_{t5} \sim N(0, 1)$, M = 3, n = 2000, d = 3

$$\begin{split} & C(u_1, C[u_2, C\{u_3, C(u_5, u_4; \theta_1^{(1)} = 3.15); \theta_2^{(1)} = 2.45\}; \theta_3^{(1)} = 1.75]; \theta_4^{(1)} = 1.05) \text{ for } i = 1, \\ & C(u_3, C[u_5, C\{u_2, C(u_1, u_4; \theta_1^{(2)} = 3.15); \theta_2^{(2)} = 2.45\}; \theta_3^{(2)} = 1.75]; \theta_4^{(2)} = 1.05) \text{ for } i = 2, \\ & C(u_5, C[u_4, C\{u_3, C(u_1, u_2; \theta_1^{(3)} = 3.15); \theta_2^{(3)} = 2.45\}; \theta_3^{(3)} = 1.75]; \theta_4^{(3)} = 1.05) \text{ for } i = 3, \end{split}$$

Transition matrix:

$$P = \begin{pmatrix} 0.82 & 0.10 & 0.08 \\ 0.08 & 0.84 & 0.08 \\ 0.03 & 0.02 & 0.95 \end{pmatrix}$$

Simulation, II

Figure 47: Snapshots of pairwise scatter plots of dependency structures (t = 0, ..., 1000).

Simulation, II

Figure 48: The averaged estimation errors for transition matrix (left panel), parameters (middle panel), convergence of states (right panel). Estimation starts from near true value (dashed); starts from values obtained by rolling window (solid). x-axis represents represents iterations. Number of repetitions is 1000.

Simulation, II

	True	Param. Margins	deGARCHing
<i>C</i> ₁	$\theta_1^{(1)}$ 1.05	1.019 (0.020, 0.001)	1.019 (0.020, 0.001)
	$\theta_2^{(1)}$ 1.75	1.739 (0.077, 0.006)	1.741 (0.078, 0.006)
	$\theta_3^{(1)}$ 2.45	2.584 (0.126, 0.034)	2.583 (0.126, 0.034)
	$\theta_4^{(1)}$ 3.15	3.328 (0.194, 0.069)	3.318 (0.194, 0.066)
<i>C</i> ₂	$\theta_1^{(2)}$ 1.05	1.017 (0.021, 0.002)	1.017 (0.021, 0.002)
	$\theta_2^{(2)}$ 1.75	1.795 (0.084, 0.009)	1.797 (0.084, 0.009)
	$\theta_3^{(2)}$ 2.45	2.499 (0.120, 0.017)	2.499 (0.122, 0.017)
	$\theta_4^{(2)}$ 3.15	3.381 (0.216, 0.100)	3.369 (0.215, 0.094)
	$\theta_1^{(3)}$ 1.05	1.044 (0.017, 0.000)	1.045 (0.018, 0.000)
C3	$\theta_2^{(3)}$ 1.75	1.745 (0.041, 0.002)	1.747 (0.041, 0.002)
03	$\theta_3^{(3)}$ 2.45	2.492 (0.065, 0.006)	2.492 (0.065, 0.006)
	$\theta_4^{(3)}$ 3.15	3.189 (0.094, 0.010)	3.185 (0.095, 0.010)
rat. of correct states		0.915 (0.011)	0.915 (0.011)
$\sum_{i,j=1}^{d} \widehat{p}_{ij} - p_{ij} $		0.133 (0.054)	0.133 (0.054)
rat. of correct structures		1	1

Table 22: The summary of estimation accuracy in five dimensional model, standard deviations and MSEs are provided in brackets. The case of deGARCHing is with nonparametrically estimated margins.

Simulation, III

- Simulation of data from three different true models: HMM GARCH, HMM ID and DCC
- Simulation of three dimensional time series from the simulated data
- □ Application of the models on the simulated data
- one-step ahead distribution forecast comparison of true and estimated model
- Comparison by Kolmogorov-Smirnov (KS) test statistics

TECHNISCHE UNIVERSITAT

Simulation, III

$True \setminus Estimated$	Sample size	HMMGARCH	HMM ID	DCC
HMM GARCH		0.0899 (0.0353)	0.1243 (0.0571)	0.1949 (0.1112)
DCC	250	0.0607 (0.0241)	0.0723 (0.0320)	0.0782 (0.0309)
HMM ID		0.0908 (0.0359)	0.0867 (0.0345)	0.1424 (0.0271)
HMMGARCH		0.0889 (0.0338)	0.1203 (0.0556)	0.2117 (0.0782)
DCC	500	0.0541 (0.0194)	0.0672 (0.0325)	0.0774 (0.0254)
HMM ID		0.0936 (0.0331)	0.0924 (0.0326)	0.1515 (0.0239)
HMM GARCH		0.0869 (0.0321)	0.1237 (0.0605)	0.3703 (0.1366)
DCC	1000	0.0494 (0.0166)	0.0659 (0.0320)	0.0823 (0.0392)
HMM ID		0.0919 (0.0331)	0.0907 (0.0322)	0.1509 (0.0213)

Table 23: The estimated mean KS test statistics (standard deviation) of the forecast distribution from the true model and the estimated model. Number of repetitions is 1000.

Application IV

- □ JPN/EUR, GBP/EUR and USD/EUR, from DataStream,
- ⊡ [4.1.1999; 14.8.2009], 2771 obs.
- Fit to each marginal time series of log-returns a univariate GARCH(1,1) process:

$$X_{j,t} = \mu_{j,t} + \sigma_{j,t} \varepsilon_{j,t} \text{ with } \sigma_{j,t}^2 = \omega_j + \alpha_j \sigma_{j,t-1}^2 + \beta_j (X_{j,t-1} - \mu_{j,t-1})^2,$$

and $\omega > 0, \ \alpha_i \ge 0, \ \beta_i \ge 0, \ \alpha_i + \beta_i < 1.$

Figure 49: Rolling window for Exchange Rates: structure (upper) and parameters (lower, θ_1 and θ_2) for Gumbel HAC. w = 250.

Figure 50: LCP for Exchange Rates: structure (upper) and parameters (lower, θ_1 and θ_2) for Gumbel HAC. $m_0 = 40$.

Figure 51: HMM for Exchange Rates: structure (upper) and parameters (lower, θ_1 and θ_2) for Gumbel HAC.

Figure 52: Plot of estimated number of states for each window

VaR

T = 2219, $N = 10^4$ is the sample size, $\omega = 1000$ portfolios. The P&L function is $L_{t+1} = \sum_{i=1}^{3} w_i (y_{i,t+1} - y_{i,t})$. The VaR at level α is $VaR(\alpha) = F_L^{-1}(\alpha)$

$$\widehat{\alpha}_{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^{T} \mathsf{I}\{L_t < \widehat{\mathsf{VaR}}_t(\alpha)\}.$$

The distance between $\widehat{\alpha}$ and α

$$e_{\mathbf{w}} = (\widehat{\alpha}_{\mathbf{w}} - \alpha)/\alpha.$$

The performance of models is measured through

$$egin{aligned} \mathcal{A}_W &= rac{1}{|W|} \sum_{\mathbf{w} \in W} \mathbf{e}_{\mathbf{w}}, \qquad D_W &= \left\{ rac{1}{|W|} \sum_{\mathbf{w} \in W} (\mathbf{e}_{\mathbf{w}} - \mathcal{A}_W)^2
ight\}^{1/2}. \end{aligned}$$

Backtesting

	$Window \backslash lpha$	0.1	0.05	0.01
HMM, RGum	500	0.0980	0.0507	0.0128
HMM, Gum	500	0.0981	0.0512	0.0135
Rolwin, RGum	250	0.1037	0.0529	0.0151
Rolwin, Gum	250	0.1043	0.0539	0.0162
LCP, $m_0 = 40$	468	0.0973	0.0520	0.0146
LCP, $m_0 = 20$	235	0.1034	0.0537	0.0169
DCC	500	0.0743	0.0393	0.0163

Table 24: VaR backtesting results, $\overline{\hat{\alpha}}$, where "Gum" denotes the Gumbel copula and "RGum" the rotated survival Gumbel one.

Backtesting

	$Window \backslash \alpha$	0.1	0.05	0.01
HMM, RGum	500	-0.0204 (0.013)	0.0147 (0.012)	0.2827 (0.064)
HMM, Gum	500	- 0.0191 (0.008)	0.0233 (0.018)	0.3521 (0.029)
Rolwin, RGum	250	0.0375 (0.009)	0.0576 (0.012)	0.5076 (0.074)
Rolwin, Gum	250	0.0426 (0.009)	0.0772 (0.030)	0.6210 (0.043)
LCP, $m_0 = 40$	468	-0.0270 (0.010)	0.0391 (0.018)	0.4553 (0.037)
LCP, $m_0 = 20$	235	0.0344 (0.009)	0.0735 (0.026)	0.6888 (0.050)
DCC	500	-0.2573 (0.015)	-0.2140 (0.015)	0.6346 (0.091)

Table 25: Robustness relative to $A_W(D_W)$

Thank you for your attention !!!

Assumptions - Law of Large Numbers

▶ Back LLN (▶ Back CLT (▶ Back Local Power (▶ Back Theorem)

Notation:

- $\mathcal{N}(\theta^*)$ denote an open neighborhood of θ^*
- $\ell_{\theta,j}(u_1,\ldots,u_d;\theta) = \frac{\partial \ell_{\theta}(u_1,\ldots,u_d;\theta)}{\partial u_j}, j = 1,\ldots,d$

$$\ell_{\theta\theta,j}(u_1,\ldots,u_d;\theta) = \frac{\partial \ell_{\theta\theta}(u_1,\ldots,u_d;\theta)}{\partial u_j}, j = 1,\ldots,d$$

• Assumptions:

A1: $\ell_{\theta}(u; \theta)$ and $\ell_{\theta\theta}(u; \theta)$ are continuous with respective to θ for any $u \in [0, 1]^d$; there exist integrable functions $G_1(u)$ and $G_2(u)$ such that $\|\ell_{\theta}(u; \theta)\ell_{\theta}^{\top}(u; \theta)\| \leq G_1(u), \|\ell_{\theta\theta}(u; \theta)\| \leq G_2(u) \ \forall \theta \in \mathcal{N}(\theta^*)$ A2: Matrix $S(\theta^*) = -E_0 [\ell_{\theta\theta} \{F(X_1)\}; \theta^*]$ is finite and nonsingular.

Assumptions - CLT I

Back Local Power

B1: Denote $J_i(u) = const \times \prod_{k=1}^d \{u_k(1-u_k)\}^{-\xi_{ik}}$, where $\xi_{ik} \ge 0$, $i = 1, 2, \xi_{ik}$ are some constants. Suppose that for all $\theta \in \mathbb{N}_{\theta^*}$, $\|\ell_{\theta}(u; \theta)\ell_{\theta}^{\top}(u; \theta)\| \le J_1(u), \|\ell_{\theta\theta}(u; \theta)\| \le J_2(u)$, and $E_0 \left[J_i^2 \{F(X_1)\}\right] < \infty$.

Back Theorem

B2: Suppose that both $\ell_{\theta,k}(u;\theta)$ and $\ell_{\theta\theta,k}(u;\theta)$, k = 1, 2, ..., d exist and are continuous. Denote $\widetilde{J}_i^k(u) = const \times \{u_k(1-u_k)\}^{-\widetilde{\xi}_{ik}} \prod_{j=1, j \neq k}^d \{u_j(1-u_j)\}^{-\xi_{ij}}$, where $\widetilde{\xi}_{ij} > \xi_{ij}$ are some constants, such that for all $\theta \in \mathbb{N}(\theta^*)$, $\|\ell_{\theta,k}(u;\theta)\| \leq \widetilde{J}_1^k(u)$ and $\|\ell_{\theta\theta,k}(u;\theta)\| \leq \widetilde{J}_2^k(u)$, and furthermore, $\mathsf{E}_0\left[\widetilde{J}_i\{F(X_1)\}\right] < \infty$, i = 1, 2 and k = 1, 2, ..., d.

Assumptions - CLT II

Back CLT Back Theorem

B3: Suppose $\frac{\partial \ell_{\theta\theta}(u;\theta)}{\partial \theta_k}$, k = 1, 2, ..., p exist and are continuous with $\theta \in \mathbb{N}(\theta^*)$, and there exists an integrable function $G_3(u)$ such that $\|\frac{\partial \ell_{\theta\theta}(u;\theta)}{\partial \theta_k}\| \le G_3(u)$ for all $\theta \in \mathbb{N}(\theta^*)$, k = 1, ..., d.

C1: The block size *m* is of order $o(n^a)$ with $0 \le a \le \frac{1}{4}$.

Assumption - Local Power of Evaluation

Back Local Power

D1: Both the copula $C_0(\cdot; \theta_0)$ and $C_1(\cdot)$ in $P_n^{C_1,\delta}(x)$ are absolutely continuous with respective to square integrable densities $c_0(\cdot; \theta_0)$ and $c_1(\cdot)$. Moreover

$$\int_{u\in[0,1]^d}\left[\sqrt{n}\left\{\sqrt{p_n^{c_1,\delta}(u)}-\sqrt{p_0(u)}\right\}-\frac{1}{2}\delta g(u)\sqrt{p_0(u)}\right]^2du\to 0,$$

as
$$n \to \infty$$
, where $p_n^{c_1,\delta}(u) = (1 - \frac{\delta}{\sqrt{n}})c_0(u;\theta_0) + \frac{\delta}{\sqrt{n}}c_1(u)$,
 $p_0(u) = c_0(u;\theta_0)$ and $g(u) = \frac{c_1(u) - c_0(u;\theta_0)}{c_0(u;\theta_0)}$.

Assumptions - Large sample properties I

Back Theorem

- E1. $\{(Y_t^{\top}, Z_t^{\top}), t = 1, ..., n\}$ is stationary β -mixing with serial decay rate of order $O(t^{-\frac{\xi}{\xi-1}})$ for some $\xi > 1$
- E2. $\hat{\eta}$ is a root-*n* consistent estimator of η_0
- E3. For all $t \ge 1$ and j = 1, ..., d, $\epsilon_{tj} = \sum_{tj}^{-1/2} (\eta^0) \{ Y_{tj} \mu_{tj}(\eta^0_1) \}$ is continuously differentiable in the neighbood of η^0 , and $\omega_1 = \mathsf{E}_0 \{ \sum_{tj}^{-1/2} (\eta^0) \dot{\mu}_{tj}(\eta^0_1) \} < \infty$ and $\omega_2 = \mathsf{E}_0 \{ \sum_{tj}^{-1} (\eta^0) \dot{\Sigma}_{tj}(\eta^0) \} < \infty$, where $\dot{\mu}_{tj}(\eta^0_1) = \frac{\partial \mu_{tj}(\eta^0_1)}{\partial \eta_1}$ and $\dot{\Sigma}_{tj}(\eta^0) = \frac{\partial \Sigma_{tj}(\eta^0)}{\partial \eta}$.

Assumptions - Large sample properties II

E4. The PMLE $\widehat{\theta}$ has the following asymptotic expansion

$$\widehat{\theta} - \theta^* = \frac{1}{n} \sum_{t=1}^n \varphi_{\theta} (U_t; \theta^*) + o_{\rho}(n^{-1/2}),$$

where
$$U_t = (U_{t1}, ..., U_{td})^{\top}$$
, $U_{tj} = F_j(\epsilon_{tj})$, $j = 1, ..., d, t = 1, ..., n$ and

$$\begin{split} \varphi_{\theta}\left(U_{t};\theta^{*}\right) &= S(\theta^{*})^{-1}(\ell_{\theta}\left(U_{t};\theta^{*}\right) \\ &+ \sum_{j=1}^{d} \mathsf{E}_{0}\left[\ell_{\theta,j}\left(U_{s};\theta^{*}\right)\left\{\mathsf{I}\left(U_{tj} \leq U_{sj}\right) - U_{sj}\right\}|U_{tj}\right]\right). \end{split}$$

Assumptions - Penalization I

Define $\ell_i(\theta) = \log c(U_{i1}, \ldots, U_{id_k}; \theta)$:

(1) Model is identifiable and $\theta_{k(\ell),0}$ is an interior point of the compact parameter space $\Theta_{k(\ell)}$. We assume that $E_{\theta_{k(\ell)}}\{\ell'_i(\theta_{k(\ell)})\}=0$ and information equality holds,

$$\mathcal{V}(heta_{k(\ell)}) \stackrel{ ext{def}}{=} oldsymbol{E}_{ heta_{k(\ell)}} \left\{ \ell_i'(heta_{k(\ell)})^2
ight\} = -oldsymbol{E}_{ heta_{k(\ell)}} \left\{ \ell_i''(heta_{k(\ell)})
ight\}$$

for i = 1, ..., n.

(2) Fisher information $V(\theta_{k(\ell)})$ is finite and strictly positive at $\theta_{k(\ell),0}$.

Assumptions - Penalization II

(3) There exists an open subset Ω of Θ_{k(ℓ)} containing the true parameter θ_{k(ℓ),0} such that for almost all U_i, i = 1,..., n, the density c(U_{i1},..., U_{id_k}; θ_{k(ℓ)}) admits all third derivatives c^{'''}(·; θ_{k(ℓ)}) for all θ_{k(ℓ)} ∈ Ω. Furthermore, there exist functions M(·) such that |ℓ_i^{'''}(θ_{k(ℓ)})| ≤ M(U_i), for all θ_{k(ℓ)} ∈ Ω, with E {M(U_i)} < ∞.

▶ Penalized ML